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Abstract. Sheridan and Verplank's (1978) 'levels of automation' dimension has 
proved useful and widely relevant across human factors and automation interac-
tion researchers. In respects to the recently vast increase of automation in dif-
ferent forms, especially in transportation domains, we propose an extended au-
tomation taxonomy via additional dimensions. Specifically, we propose a 4D 
LINT representation for vehicle control across multiple simultaneous dimen-
sions of (1) Location (from local to remote), (2) Identity (between human and 
computer), (3) Number of agents (degree of centralization of control), and (4) 
adaptive optimization over Time. Our model aims to provide guidance and sup-
port in communicable ways to allocation authority agents (whether human or 
computer) in supervisory control of complex and intelligent dynamic systems 
for more efficient, safe, and robust transportation operations. We introduce ex-
amples within the model from the Aerospace and Automotive applications. 
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trol Optimization · Levels of Automation · Human-Machine Interaction · Hu-
man Systems Integration · Systems Engineering · Unmanned Aerial Vehicles · 
UAS Traffic Management · Automated Driving · Autonomous Vehicles · V-2-
V, Vehicle-to-Vehicle · V-2-I, Vehicle-to-Infrastructure · V-2-X, Vehicle-to-
Everything · Tele-Operated Driving  

1 Introduction 

Models and frameworks for human-automation interaction and the design of control 
systems have the potential for longstanding impact to shape and direct advances in 
fields such as intelligent transportation systems. Seminal man-machine systems re-
search [1] described ten levels of automation (LoA) ranging between full human con-
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trol and full automation control. Multiple frameworks issued by major governmental 
and professional societies have recently translated such LoA concepts into LoDA 
(Level of Driving Automation). The German Federal Highway Research Institute 
(BASt) defined five LoDA [2]; the US DOT National Highway Traffic Safety Admin-
istration identified their own five LoDA [3], and the SAE International defined six 
LoDA [4a].  

Far from being finalized, over time these frameworks have been updated and 
broadened. SAE International released a revision with a substantial expansion of ra-
tionale, examples, and explanatory material; for example, the consideration of opera-
tional design domains [4b]. In the academic realm, similar evolutions of LoA models 
have also been growing towards greater dimensionality. The allocation of work be-
tween humans and computers was extended by [5] to account for four different stages 
of information processing: sensory processing, perception/working memory, decision 
making, and response selection. Further extensions and modeling of task details were 
argued for by [6], beyond the previous concepts that they identified as being too 
coarse-grained and unidimensional. In 2005, a Human Factors and Ergonomics Socie-
ty panel was convened around a theme of perceived unrest and dissatisfaction with 
simple LOA schemes from the past. In their position statements from the panel, Sher-
idan advocated the utility of his LOA to “get people thinking”, and Parasuraman of-
fered that “empirical studies point to the value of variable or flexible LOA, in contrast 
to a fixed LOA” [7]. As a common thought experiment, comparisons to a long history 
of trials and tribulation of humans and automation in the Aerospace domain are often 
used to reflect on recent developmental pushes in automated and autonomous Auto-
motive driving (e.g., the case-in-point name of the Tesla “Autopilot”). Notably, the 
evolutionary path in Aerospace has included additional dimensions regarding where a 
control agent was located (e.g., remotely piloted aircraft) and how many agents were 
in control (e.g., pilot crew team sizes). 

2 Model 

The task of operating a vehicle is represented along three dimensions and optimized 
across a fourth, resulting in an expanded function allocation solution space-time mod-
el (Fig. 1). The three spatial axes are (1) the location of the control agent relative to 
the vehicle, (2) the identity of control residing with a human or computerized source, 
and (3) the numeric degree of centralized control obtained by dividing the number of 
vehicles by the number of agents. The fourth dimension characterizes movement of 
the point of control authority over time (4) such as in outer-loop supervisory control 
adaptation. While axis (2) has historically been bounded by human/computerized 
extremities and discretely divided, we present the remaining axes as ranging across 
unbounded continua (note: in a meta-adaptive manner, axis (4) may span a range of 
control being always fixed to sometimes adaptive to always adaptive). Orthogonally 
arranging these axes depicts a 4D function allocation solution space-time model for a 
control agency’s Location, Identity, and Number over Time (LINT). Although appli-
cable to any vehicle and transport operation (across air, space, land, or sea), we aim to 
introduce this concept via recounting familiar/established cases in Aerospace towards 
potential outlook for new and emergent possibilities in Automotive applications.  



 

  
Fig. 1. The LINT model of vehicle control regarding dimensions of Location,  

Identity, Number, and Time. 
 

The LINT model can support a notation scheme to communicate concepts in a 
standardized way. In this notation, a dot delineation indicates which levels of each of 
the three spatial axes (i.e., Location, Identity, and Number) are considered (in this 
order). By use of a single value or range of values, it can be conveyed if a specific 
dimension is fixed or variant over the fourth dimension (i.e., Time). For example, 
current day manual driving would be 1.1.1 (i.e., an agent that is respectively local, 
human, and singularly in control of one vehicle without time adaptation). An autono-
mous SAE level 5 driving pod (e.g., “Google car”) with a fully computerized driving 
agent would be 1.5.1; while movement of control between various SAE LoDA across 
time would span a range along the human-computer agent identity axis as 1.1-5.1. 
Adaptive shared control for a single vehicle between a pair of localized agents (one 
human and one computerized) would be 1.1-5.1/2, with the last dimension indicating 
a ratio of one vehicle divided by two control agents. An example with three adaptive 
levels of tele-remote driving (e.g., in-vehicle, in-line-of-sight, beyond-line-of-sight) 
with a single human operator and single vehicle would be show a range in the first 
dimension, 1-3.1.1; whereas if supported by various computerized aid, it would be 1-
3.1-5.1; and if also allowing for a remote team of up to four human operators, it 
would become 1-3.1-5.1/1-4. A remote highly centralized autonomous full city cloud 
control concept could be represented as 2.5.1-100000/1-1000 (i.e., supporting up to 
100000 vehicles with a ranging network of up to 1000 off-board computers). 

From a LINT model perspective, a sizeable proportion of automotive attention [2-
4] is devoted to only just one line parallel to the (2) Identity axis, at a single midpoint 
of the (3) Number axis and at the local end of the (1) Location axis (i.e., concerning a 
1:1 vehicle to agent ratio of a localized agent). Along such a single line, with varied 
human-computer identity (2) at different points in time (4), a majority of openly dis-
seminated automated/autonomous driving function allocation concepts are represent-



ed, while still being limited to the same position as manual driving along our remain-
ing two axes (1) and (3). Across the expanded area provided by the 4D LINT model, 
Table 1 illustrates further concept examples derivable from incorporating the support 
of the other two dimensions. 

Table 1. Examples of control concepts from Aerospace and Automotive, spanning 
polar regions of the 4D LINT model space.  
Polar Region Aerospace Example Automotive Example 
a) Multiple local humans in 
single vehicle, no/little auto-
mation 
 

Vickers VC10 jet airliner 
with Captain, Co-Pilot, Navi-
gator, and Flight Engineer 
 

Driving instructor(s) with 
redundant controls available 
from passenger/back seat(s) 

b) Multiple local computers 
in single vehicle, much/full 
automation 
 

Cormorant/AirMule VTOL 
UAV with Flight Manage-
ment System (FMS), Flight 
Control System (FCS), and 
Vane Control System (VCS) 
 

Different on-board software 
applications conducting sepa-
rate components of driving 
task (smartphone, tablet, etc.) 

c) Multiple remote computers 
operating a single vehicle  

BADR-B satellite with highly 
autonomous ground station 
control in UK and Pakistan 
  

V2I, smart city/highway 
concepts with dominant 
infrastructure authority  
 

d) Multiple remote human 
operators for a single vehicle 
 
 

RQ-4 Global Hawk aircraft 
with 3 ground pilots: launch-
recovery, mission control, 
and sensors operation 
 

Team of tele-remote drivers 
coordinating sub-tasks of 
driving responsibility 
 

e) Single remote human 
operating multiple vehicles, 
no/little automation 
 

Small package UAV deliver-
ies by remote human operator 

Parking garage office at-
tendant valet service  

f) Single remote computer 
automating control (aspects) 
of multiple vehicles 
 

Lockheed Martin Vehicle 
Control System VCS-4586 

Centralized de-conflicted 
traffic control across an urban 
or highway network 
 

g) Single local computer 
operating multiple vehicles 
 

Autonomous formation flying 
with a designated lead air-
craft, Georgia Tech ¼ Piper 
Cubs x 3 
 

Truck platooning, computer 
leader with automated fol-
lowers 
 

h) Single local human operat-
ing multiple vehicles, no/little 
automation 
 

1940 Australian Brocklesby 
mid-air plane adhesion, pi-
loted safely by Leonard 
Fuller 
 

Truck platooning, human 
leader with physical tow-bar 
(low-tech) followers/trailers 
 

i) Adaptive, Adaptable allo-
cation authority optimization 
 

F-16 Auto-GCAS (Ground 
Collision Avoidance System) 

Driver state monitoring (at-
tentive eyes, healthy heart, 
etc.) in transitions of control 

 



In addition to supporting thought-experiment explorations across polar regions 
available within the 4D LINT model (Table 1), practical solutions can be predicted as 
emergent concepts upon consideration of specific real-life operational con-
straints/aims. For example, while present-day automotive artificial intelligence has 
not yet reached the same robust flexibility for problem recognition/solution as human 
drivers, an autonomous car might defer to a remote human agent upon reaching an 
uncertain situation requiring human oversight without burdening on-board occupants, 
thus allowing them to retain the coveted role of passenger rather than responsible 
agent. A specific case suggested by Nissan in their “Seamless Autonomous Mobility” 
concept is that of the inability of a near-term autonomous car to interpret and execute 
rule-breaking behavior such as road construction workers deviating traffic to cross 
slowly to the opposite side of the road, beyond double-line boundaries, and in spite of 
a red traffic light signal [8]. A smaller set of remote human agents operating from an 
off-site office call center might thus support periodic on-demand cases to enable a 
wider fleet of on-road autonomous vehicles expand their operational domains. Within 
the 4D LINT model, this solution is represented for a single vehicle as a point of con-
trol movement from a 1.5.1 (local computer) to a 3.1.1 (remote human) instantiation, 
or as a 1-3.1-5.1 time variant adaptive concept. For a larger fleet of multiple vehicles 
and a smaller network pool of remote on-demand operators, the last numerical dimen-
sion in the notation scheme would reflect centralized control concepts of specific 
capacity sizes. 

3 Discussion and Concluding Remarks 

A key value of the expanded solution space of our LINT model is to cohesively struc-
ture and communicate alternative paths and flexibility in terms of function allocation 
design and implementation strategies. This value is especially relevant and timely to 
research and development during periods of ‘post-peak’ technology. Collectively 
known as a ‘hype cycle’, a stereotypical pattern of activity surrounding new technolo-
gy progresses first from a trigger point, upwards through a rapid peak of inflated ex-
pectations, then succumbs into a trough of disillusionment before a more gradual 
climb towards a steady production/penetration plateau [9]. Greater dimensionality 
such as afforded by our LINT model draws a broader map of opportunities to explore 
for the potentially lost/stuck system control concept designer and human systems 
engineer.  

Regarding a potential mapping of problem space to our modeled solution space, 
the question of what either (hu)man or machine can do better than the other has been 
previously directly raised and addressed in seminal work commonly referred to as 
Fitts’ List [10]. Similar constructs of tradeoffs along the remaining dimensions of the 
LINT model beyond human-automation agent Identity are not difficult to imagine for 
Location, Number and Time. To begin with, local agents have more direct access, 
whereas remote agents are better positioned for a broader “big picture” view. Higher 
numbers of agents than vehicles increase robustness through redundancy, whereas 
fewer agents can reduce coordination/communication lags, improve efficiency and cut 
costs. Adaptive/adaptable control systems are more agile and capable despite high 
entropy (dynamics and uncertainty) task environments, whereas fixed control systems 



afford greater transparency (predictability and comprehension) and parsimony. Thus, 
akin to the aforementioned control agent identity axis exploration provided by Fitts’ 
MABA-MABA (Men Are Better At, Machines Are Better At) perspective; additional 
lists are conceivable: LABA-RABA (Local Agents Are Better At-Remote Agents Are 
Better At), FAVABA-MAVABA (Fewer Agents than Vehicles Are Better At-More 
Agents than Vehicles Are Better At), and ASABA-FASABA (Adaptive/Adaptable 
Systems Are Better At-Fixed Allocation Systems Are Better At). Such lists all share 
utility in the provision of generating guidance towards allocation authority arbiters, 
whether human or computerized, as would be the case in autonomous self-learning 
systems. Such function allocation lists for outer-loop supervisory control optimization 
may be understood as analogous to and in complement to the modes of adaptive pa-
rameter settings for inner-loop direct control [11]. 

The principal motivation for the 1978 Sheridan LoA has been identified as to clari-
fy that (the question of) automation is not an either-or (answer) [12]. Our four-
dimensional LINT model aims to illustrate available alternatives, especially as may 
presently become fruitful for the Automotive domain akin to historical developments 
and operational breadth across the Aerospace domain. 
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