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Abstract— We propose a novel algorithm that predicts the
interaction of pedestrians with cars within a Markov Decision
Process framework. It leverages the fact that Q-functions may
be composed in the maximum-entropy framework, thus the
solutions of two sub-tasks may be combined to approximate
the full interaction problem. Sub-task one is the interaction-
free navigation of a pedestrian in an urban environment
and sub-task two is the interaction with an approaching car
(deceleration, waiting etc.) without accounting for the environ-
mental context (e.g. street layout). We propose a regularization
scheme motivated by the soft-Bellman-equations and illustrate
its necessity. We then analyze the properties of the algorithm in
detail with a toy model. We find that as long as the interaction-
free sub-task is modelled well with a Q-function, we can learn
a representation of the interaction between a pedestrian and a
car.

I. INTRODUCTION

Autonomous vehicles (AVs) need to be able to navigate
urban environments in a time efficient manner while avoiding
collisions with vulnerable road users such as pedestrians.
Simply extrapolating the current velocity and direction of
a pedestrian into the future to determine potential collision
points is insufficient as it does not consider any environmen-
tal context (street layout) or interaction effects (may yield
to approaching car). AVs that predict future trajectories of
pedestrians in this manner may behave intolerably defensive
and may simply freeze in crowded scenarios. Therefore,
predicting the intentions of pedestrians is important so that
AVs may anticipate the reaction of a pedestrian to its actions
(accelerating, no change, braking) which results in more
desirable trajectories that are safe, comfortable and, time
efficient.
Previous work either discards the interaction of cars and
pedestrians entirely [1], [2], limits the interaction to one
motion type (continue or stop) while reducing the environ-
ment to a simplified representation (where is curb?) [3] or
employs statistical learning approaches that are tested on
datasets with limited interactions that may not generalize
well to unseen environments and are untested on stop-go
motion types usually encountered in the intelligent vehicle
domain [4].

Regression based approaches that handle the environmen-
tal context and interaction with other agents need to deal
with a multitude of combinations of obstacle configurations,
street layouts and agent-agent interactions, which might limit
generalizability. We want to investigate an approach that
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Fig. 1: (left) A Q-function Q1 describing the interaction-
free navigation of a pedestrian towards a school building.
(middle) A Q-function Q2 describing the interaction of a
pedestrian and a car. (right) Combination of Q1 and Q2
results in a Q-function that describes the interaction-free
navigation of a pedestrian and the interaction with a car
(pedestrian yields).

decouples the environmental context from the interactions,
reducing the combinatorial explosion of “environment con-
figurations times interaction configurations”. We leverage
the key insight of [5] that two Q-functions in the maximum-
entropy framework [6] of two distinct reinforcement learning
tasks may be combined to obtain an algorithm that solves
both tasks without the need of retraining or additional data
collection. We propose a novel algorithm that separates
the problem into two sub-tasks, one involving interaction-
free movement of a pedestrian and another that describes
the interaction of a pedestrian with a car. All of this is
integrated into the same framework instead of relying on
two separate algorithms. We find that the separation is
successfully reproducing the actual interaction behaviour
for a toy model using the soft-Q-learning algorithm (SQL)
introduced by [7], validating the compositionality of certain
robotics tasks as discussed in [5]. We propose another toy
model for pedestrian-car interactions to validate our proposed
algorithm.

II. RELATED WORK

A sizeable amount of work exists on the problem of
forecasting the intentions of pedestrians. We will list pub-
lications that we consider closest to ours. [8], [2], [1], [9]
reason about the paths that pedestrians may choose given
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context information such as the environmental semantics
(street layout, obstacles, etc.) or traffic light phase [1], [9].
Another set of publications [10], [11], [12] ignore context
information while considering the interactions of multiple
pedestrians and predicting their collective (collision-free)
paths. [13], [4], [14] and [15] combine the interactions
of multiple agents and static obstacles (e.g. a wall) to
obtain collision-free trajectories that may be used to navigate
through obstacle rich crowded spaces with an autonomous
robot. All the above publications solely focus on trajectories
or environment features whereas [16] and [3] analyse the
intentions of pedestrians to enter the street by including addi-
tional observations. In particular, [3] address this problem by
adding pedestrian’s head orientation as an intention feature
to assess the criticality of situations. Other features that may
be used are the human pose [17], [18] and optical flow [16]
to determine the state of a pedestrian.

Inferring the future path of a pedestrian is inherently
difficult given the multi-modality of possible motion patterns.
In particular, constant velocity based Kalman filters fail to
adjust to sudden changes in the dynamics [16]. [3] improves
on these types of models by considering a switching-linear
dynamical system in combination with multiple intention
features that enable faster adjustments to the observed pedes-
trian dynamics at the curb. [1] does something similar via
jump Markov processes which model a sudden change in
a pedestrian’s intended goals (heading direction), though
stop-go types of motion were not considered. [13] considers
different classes of trajectories (homotopy classes) that an
agent may choose such as swerving to the left or right or
choosing different goal states that are far apart. Models based
on GANs and Recurrent-Neural Networks such as [11] and
[4] are also able to provide multi-modal solutions. However,
this does not apply to neural network based models such as
[12], [14] and [15].

The combination of environmental features and the inter-
action of multiple agents is our focus. [4] applies a varia-
tional autoencoder to sample the candidate trajectories which
are finetuned by a recurrent neural network that receives an
environment map and social pooling features of the other
participants. [14] and [15] apply deep reinforcement learning
to learn an interaction model for a robot with humans and
obstacles in crowded environments. Global path planning
is handled separately and not performed by the deep RL
algorithm. [13] integrates global planning and interaction of
agents in a maximum-entropy framework. The underlying
rewards are learned via inverse reinforcement learning and
the trajectories are sampled using Hamiltonian MCMC sam-
pling. [19] take the solution of a MDP in the maximum-
entropy framework to obtain a force which is integrated
into their social forces model that can describe agent-agent
interactions and planning at the same time.

The decomposition of Q-functions has been discussed
before in e.g. [20]. The authors propose to decompose a
problem into sub-tasks, each with its own reward and corre-
sponding Q-function and outline an algorithm that converges
to the optimal Q-function. They point out that simply adding

up the Q-functions may yield sub-optimal policies, though
[5] made clear that this approach may still be feasible in
real-world settings for the maximum-entropy framework.
Additionally, [20] test their approach on a race car that
drives around in a small sized grid-world while avoiding
obstacles where they decomposed the sub-tasks into one
for navigation and one for obstacle avoidance. Similarly,
we propose composing Q-functions to separate interaction-
free navigation from interactions with other agents, though
to the best of our knowledge we are the first to propose
this decomposition so that we may imitate the behaviour
of pedestrians and cars with no predefined reward function.
The approach integrates global path planning and interaction
in one framework. Our contributions are as follows. 1) We
validate the compositionality of Q-functions for the SQL
algorithm - as proposed by [5] - for interacting agents in
a toy model. 2) We propose to learn the interaction Q-
function directly via gradient descent and argue that this is
sensible given the domain 3) We propose a regularization
scheme based on the soft-Bellman-equation so that function-
approximators such as neural networks learn proper interac-
tion soft-Q-functions. We explore our proposals on a toy
model and point out future research avenues.

III. METHODOLOGY

A. Overview

Human behaviour may be described as driven by rewards
that are partially hidden from others or even the person
itself as they are mostly the product of the unconscious
inner workings of the persons brain. We will describe the
interaction behaviour of a pedestrian and a car with a
“Markov Decision Process” (MDP). The MDP describes
how the state st (e.g. position) of an agent (pedestrian, car)
changes given an action at (e.g. pedestrian steps to the left) at
time step t (time is discrete). Additionally, the agent receives
a reward r(at ,st) when performing an action. The goal of an
agent is to maximize the total reward by taking appropriate
actions.

Additionally, we assume that actions are not optimal, i.e.
the agent may choose an action that does not result in the
maximum expected reward. A common way to describe this
situation is the maximum-entropy framework [6] where the
policy is expressed in terms of an energy based model
π ∼ exp(Energy)

π(at |st)∼ exp
(

1
α

Q(at ,st)

)
(1)

Where the “energy” - also known as soft-Q-function -
Q(at ,st) is the expected future reward given that the agent
performs the action at which can be expressed in terms of
the value function V (st)

Q(at ,st) = r(at ,st)+ ∑
st+1

p(st+1|st ,at)V (st+1)

= r(at ,st)+V (ŝt+1(st ,at)) (2)



We will only consider deterministic environment tran-
sitions where p(st+1|st ,at) reduces to a delta-function
δ (ŝt+1(st ,at)−st+1) thereby eliminating the summation over
possible future states. The value function can be expressed
in terms of the Q-function

V (st) = α log
∫

exp(
1
α

Q(at ,st))dat (3)

Equations 2 and 3 correspond to the soft-Bellman-equations
for V and Q. α is a “temperature” parameter that determines
the degree of optimality of an agent’s actions. α → 0
corresponds to an agent that will choose an action with the
highest expected overall reward. This limit will also repro-
duce the Bellman-equations since log

∫
exp( 1

α
Q(at ,st))dat→

maxat Q(at ,st) for α → 0. Therefore, in the maximum-
entropy framework the value function corresponds to a
“soft” maximization of the Q-function instead of an actual
maximization.
An interpretation of equation 1 is as follows: An action
at is sampled proportional to the overall future expected
reward that will result after the action is executed and the
policy π(at |st) is followed thereafter. In particular, given
deterministic environment transitions we may express the
distribution over trajectories as

p(τ)∼ exp

(
1
α

∑
(ai,si)∈τ

Q(ai,si)

)
(4)

Therefore, sub-optimal trajectories τi =
{(ai1,si1), ...,(aiN ,siN)} that choose actions with low
Q-values are less likely than trajectories that choose high
Q-value actions. Trajectories that have similar overall Q
values have the same probability irrespective of what they
look like. Therefore, the maximum-entropy framework may
describe a situation where a pedestrian yields to a car or
continues to cross since it is able to incorporate multi-modal
behaviour naturally. Solutions in the limit α → 0 fail to
account for multi-modality and collapse to a single mode
solution that maximizes the overall reward while ignoring
solutions with similar expected overall reward. Furthermore,
given similar overall rewards the agent maximizes the
entropy of its policy by increasing the probability of all
trajectories/ actions as long as this does not impact the
expected future reward, e.g. when walking along a cliff on
a windy day it may not matter if we walk 2m, 5m or 20m
away from the edge but it certainly makes a difference if we
try to walk on the edge directly (wind increases probability
of falling down). We aim to derive policies that maximize
entropy where they can (random behaviour) and minimize
it where they need to (deterministic behaviour).
A major advantage of the maximum-entropy framework
may be the compositionality of the Q-functions [5]. Imagine
two tasks that are each solved with a corresponding
Q-function Qa and Qb resulting in two policies πa and πb.
How do we derive a policy that solves both tasks at the
same time? We simply add up the Q-functions to obtain
Q = Q1 +Q2 leading to a unified policy π ∼ exp(Q1 +Q2)

[5]. Unfortunately, this is an approximation and may fail
to obtain a policy that is close to an optimal policy π∗

solving both tasks. If we consider two agents that do not
interact with each other in any way then we may derive an
optimal policy that solves the task of each agent by adding
up the Q-functions Q(a1,a2,s1,s2) = Qa(a1,s1)+Qb(a2,s2).
The state-action pairs (ai,si) do not affect each other. An
astronaut navigating on the moon and another astronaut
navigating on mars at the same time may be described in
this way. Both problems can be solved with a combined
Q-function since there is no interaction. Though, if both
astronauts navigate inside the same space ship the full
Q-function includes an interaction. Astronaut a may
want to open a hatch to get outside filling the ship with
a vacuum. If Astronaut b does not wear a spacesuit
already this action will affect his/ her future actions.
Therefore, the Q-function may look like Q(a1,a2,s1,s2) =
Qa(a1,s1) + Qb(a2,s2) + QOpenHatch(a1,a2,s1,s2). We will
describe the interaction of cars and pedestrians in this way
where we have an interaction free Q-function that describes
interaction free navigation towards a goal (as solved by [2])
and an interaction only Q-function that switches on when
the two agents start to interfere with each other (pedestrian
yields to car).

B. Compositionality in Soft-Q-Learning

Fig. 2: (left) Sub-task 1, the agents try to avoid getting
close while approaching their respective goals. (middle) Sub-
task 2, the agents have to stay outside the blue areas while
approaching their respective goals. No collision reward is
defined. (right) Combined task: the agents stay out of the
blue regions, avoid getting close while approaching their goal
positions.

We demonstrate that the decomposition of a task into sub-
tasks may indeed be feasible for two interacting agents such
as a car and a pedestrian. We adapt the didactic example for
a multi-goal environment of [7] for our case, using the code
provided by the authors. Instead of one agent with multiple
goals we have two interacting agents with one goal position
each. Additionally, we add obstacles that the agents need to
avoid. The rewards that define the behaviour of the agents
are as follows: A collision reward of −400 is triggered if the
x or y position of the agents gets closer than two distance
units; a goal reward of 100 for reaching the goal, which also
ends the episode. A reward for going in the correct direction
towards the goal is calculated with 400 · (~st− ~goal)·~at

‖~st− ~goal‖
. A reward

for leaving a specific “lane” of −100, i.e. agent 1 has to stay
inside the interval y ∈ [−0.5,0.5] and agent 2 needs to stay



inside the interval x ∈ [−0.5,0.5].
Mastering the task requires both agents to stay inside their
lanes and reach the goal position while avoiding a collision.
We will apply soft-Q-learning (SQL) for learning a cen-
tralized policy π(a|s) that controls both agents at the same
time represented by a neural network1 that samples a four-
dimensional continuous action (where to go next) from a Q-
function, i.e. π(a|s)∼ exp(Q(a,s)) (for details please refer to
[7]). It is possible to solve this task by reusing Q-functions
from sub-tasks that are inherently different. We will define
these sub-tasks as follows (figure 2):
Sub-task 1: Rewards for approaching the goal position;
Negative reward for collision event.
Sub-task 2: Rewards for approaching the goal position;
Negative reward for moving outside the walkway.
Sub-task 1 does not involve any lanes/ obstacles, so the
agents can roam freely. Contrary to this scenario sub-task
2 does include a reward for leaving the lanes but does not
punish collisions. Hence, the agents can get as close to each
other as they like. Following the argument in [5] we expect
a policy approximating π(a|s) ∼ exp(Q1(a,s)+Q2(a,s)) to
perform much better than a policy that is trained on a
sub-task πi(a|s) ∼ exp(Qi(a,s)) and tested on the full task
(including lane rewards and collision rewards). To verify
this hypothesis, we train six (different seeds) Q-functions
on sub-task 1 (Q1), six Q-functions on sub-task 2 (Q2) and
six Q-functions on the combined task for reference (Q). The
overall reward is averaged over 10 episodes for each (i.e. 60
evaluations in total). The following table gives an overview
of the results (mean reward ± standard deviation).

Q Q1 +Q2 Q1 Q2
111666222222±117 111666555777±62 −525±48 −546±785

As expected, the combined Q-function outperforms the in-
dividual Q-functions significantly and is able to close in on
a Q-function that was trained on the full task. Therefore,
the combined task can be solved by Q-functions trained on
sub-tasks without any retraining on the combined task. The
high standard deviation of Q2 is explained by trajectories that
happen to avoid collisions, thus receiving high rewards. It is
worth mentioning that adding Q2 on top of Q1 improved the
overall reward by at least 1247.

Even though the task at hand seems trivial, it takes
a certain amount of engineering to successfully derive a
policy from the given rewards while avoiding mode collapse,
diverging losses and low sample efficiency with the SQL
algorithm. This property is also known as “the deadly
triad” [21] of function approximation, bootstrapping and off-
policy training that is a general observation in reinforcement
learning for similar algorithms (e.g. Deep-Q-learning [22].
As such, we will not make any further use of SQL, pointing
out a simple alternative for our domain-specific use-case in
the next section.

1Policy and Q-function are represented using fully connected neural
networks with two hidden layers, hidden dimension of 128 and ReLU non-
linearities

C. Learning the Interaction Q-Function by Gradient Descent

In reality we are not provided with the rewards that
determine how pedestrians interact with other road users.
These may be rather complex compared to the simplistic
hand engineered rewards used in the previous section which
would introduce a bias in terms of what the model can pos-
sibly express. We propose to directly propagate the learning
signal (i.e. gradient) into the interaction Q-function. The
reasoning for why this can be a sensible thing to do is
as follows: the beauty of rewards is that they are invariant
with respect to new environment settings. E.g. if a goal
reward for reaching a goal is given, then the reward does
not change, irrespective of where the goal is and if there
are any obstacles. The solution and thus the Q-function
does change of course. Yet, if a Q-function were only to
describe the collision avoidance of two agents given only
their current position and velocity, then this Q-function will
approximately look the same, irrespective of the environment
configuration. The relative distance and velocity are the only
important factors (approximately). Therefore, we can simply
learn the Q-function Q2 directly instead of the interaction
reward, combine it with a Q-function Q1 that describes the
interaction free behaviour of an agent (i.e. planning) and end
up with a Q-function Q=Q1+Q2 that solves the overall task.
In particular, we assume that the interaction-free Q-function
Q1 is given.

Another advantage of our proposal is that we can cir-
cumvent the combination of inverse reinforcement learning
and reinforcement learning - both non-trivial steps - to learn
the correct rewards and corresponding policy from data.
One disadvantage is the potential for compounding errors as
long as we only consider one-step actions during training,
in contrast to full policy roll-outs in inverse reinforcement
learning. Though, this can be compensated for by taking
multiple steps into account.
During training we minimize the negative log-likelihood of
the observed trajectories via gradient descent (deterministic
environment).

−∇ψ log p(τ|ψ) =−∇ψ ∑
t

logπψ(at |st) =

−∑
t

[
∇ψ Qψ(at ,st)− ∑

ât∈A
πψ(ât |st)∇ψ Qψ(ât ,st)

]
(5)

If our Q-function separates into Qψ(at ,st) = ∑i Qi,ψi(at ,st)
where every Qi,ψi has its own parameters ψi, then the
gradient w.r.t ψi is as follows.

−∇ψi log p(τ|ψ) =−∑
t

[
∇ψiQi,ψi(at ,st)−

∑
ât∈A

πψ(ât |st)∇ψiQi,ψi(ât ,st)
]

(6)

1) Including soft-Bellman-equation: One of the main
drawbacks of using a flexible Q-function approximation
such as a neural network is that it can overfit easily. In
particular, the neural network is likely to learn to copy the



Fig. 3: We approximate Q2 (interaction) with a neural
network and explore different regularization strengths. We
provide the mean and standard deviation of 10 training runs.
The bottom horizontal line is the (actual) log-likelihood of
the validation data that provides a reference for our model.
The top horizontal line corresponds to a model where Q2 = 0
so that Q = Q1, thus no interaction is modelled.

exact statistics of the data. Hence, if a certain (st ,at) tuple
has only been observed once, then the optimization of the
neural network will lead to a deterministic policy that always
predicts the same at given st even though there may be
other (st ,at) nearby (i.e. states are very close) that show
different behaviour. Additionally, we have no guarantees
for the prediction behaviour for states that are outside of
the training distribution. There is a simple regularization
scheme to address these issues that we can motivate with
the soft-Bellman-equation. We assume that the interaction
reward r2 is local, i.e. an agent may only receive a reward
if an actual collision happens. This does not mean that the
interaction Q-function is local as well. A heavy train needs
to start breaking well in advance of the actual collision event,
hence the interaction Q-function is “long-range”. Though we
assume that a pedestrian reacts locally, i.e. the Q-function is
“short-range”. Therefore, there is a certain distance from the
collision event from which on Q2 ≈ c is a constant, thus does
not influence the behaviour of the pedestrian. We can see this
directly from the soft-Bellman-equation. With εint being the
set of states where Q2 6= 0.

Q(at ,st) = r1(st ,at)+

=0︷ ︸︸ ︷
r2(st ,at)+

log
∫

exp
(

Q1(at ,s′t)+Q2(at ,s′t)
)

dat

(7)

= r1(st ,at)+ log
∫

exp
(

Q1(at ,s′t)+Q2(at ,s′t)
)

dat (8)

st ,s′t /∈εint≈ r1(st ,at)+ log
∫

exp
(

Q1(at ,s′t)+ c
)

dat (9)

= Q1(at ,st)+ c (10)

The last statement corresponds to the soft-Bellman equation
for Q1 shifted by c and is therefore always true. It is
noteworthy that shifting the Q-function by a constant c
or state-dependent function c(st) is a transformation that
results in the same policy π(at |st)∼ exp(Q(at ,st)+c(st))∼
exp(Q(at ,st)) though shifting by c(st) is generally not an

invariant transformation of the soft-Bellman equation. We
can use this to motivate an additional regularization term
when training a neural network, enforcing Q2 = c = 0. If the
data does not support Q2 6= 0 (interaction happening), then
the neural network should always predict Q2 = 0. We did not
see a significant difference in using an l1- or l2-norm and
chose the l1-norm for the experiments presented here.

g0 = λ ∑
s∈Λ

∑
a∈A
|Qψ(a,s)| (11)

With a hyper-parameter λ ≥ 0 that determines the strength of
the regularization. Q2 = c does not hold true for all states, in
particular those close to an actual collision event but will
be correct for every other state. If the interactions result
in “long-range” Q-functions, this regularization scheme may
not be advisable. At least it may be necessary to consider
the effective range of the interaction and drop/ weaken the
regularization inside that range.

The full optimization target that we want to maximize
using Adam [23] is

L = −∑
τ

∑
t

logπψ2(at |st) + λ ∑
s∈Λ

∑
a∈A
|Q2,ψ2(a,s)| (12)

This loss solely depends on the parameters of Q2 as Q1 will
be known beforehand for the remaining analysis. For the fol-
lowing analysis we choose the interaction-free Q-function Q1
that [2] proposes to model the path planning of pedestrians
in urban environments. The state-space consist of the two-
dimensional position of a pedestrian and a two-dimensional
action space (e.g. left/right/up/down). Each state receives
a reward that depends on the environmental context (e.g.
street=−3, walkway=−1) and a goal reward for reaching a
pre-defined position. The Q-function is derived by applying
equation 2 and 3 over and over again, which is referred to
as value iteration.

There are certain limitations to the solution of [2] which
we want to point out before progressing further. First,
the model does not account for the preferred velocity of
the pedestrian, basically defaulting to one average veloc-
ity. Second, the model is discrete and thereby introduces
a potentially strong bias. Increasing the resolution of the
action space and state space scales the time-complexity by
O(|S|2|A|2). Third, the model has no notion of inertia, due
to the fact that the state space is limited to the position of
an agent. Without any history of positions (e.g. velocity)
the model will not produce smooth trajectories. A major
benefit of the maximum-entropy framework is to account for
uncertainty. However, the uncertainty should not be modelled
by purely positional entropy as [2] proposes but by entropy of
higher order derivatives such as the jerk. This would provide
us with a variety of smooth trajectories. Using a tabular
representation we would need to expand the state space (i.e.
include previous states, velocity, ...) which renders the naive
application of value iteration intractable.

We want to emphasize that these limitations are not
inherent to our proposed algorithm but the choice of Q1.
We use it as it is a simple representation of interaction-free



path planning that helps us to explore our proposal in more
detail.

IV. EXPERIMENTS

A. Unbiased Interaction-Free Q

We will analyse the proposed approach on a toy model.
This will help us understand the properties of the algorithm.
The movement patterns of the agents in our toy model are
indicated in figure 5. The car agent can only go upwards on
a straight line whereas the pedestrian agent can choose any
action within a certain radius around its current position. For
simplicity we assume that the states and actions are discrete.
The interaction is modelled with a manually constructed Q
function:

Q2(a,d) =−α exp(−β‖d‖)exp(−γ|t1(a,d)− t2(a,d)|)
Q2(a,d)≤ 0 (13)

With α = 1000, β = 0.2 and γ = 0.1. Where d is the
relative coordinates d = s1− s2. ti ∈ (−∞,+∞) is the time
to collision that we can derive by obtaining the intersection
(collision) point of two straight lines given action a and
relative coordinates d and calculate the time it takes each
agent to get to that point if they were to commit to action a
forever. If the lines run in parallel, one of the agents chooses
ai = 0 or ti < 0 (past collision point), we set Q(a,d) = 0.
The interaction free part is modelled in a similar fashion
as [2]. Assuming rewards for getting to the goal position
and rewards for staying on the street/ sidewalk results in Q1
when applying equation 2 and 3 over and over again (value
iteration). We set the goal reward to 1, non-goal reward to
−15, discount factor to 0.99, grid size to 100x100 and the
maximum action radius to 3.2 for the pedestrian and 3 for
the car.
The full Q function is given by adding up the interaction-
free and interaction-only part Q=Q1+Q2. Given this simple
formula our toy model exhibits interesting behaviour such as
the car stopping, the pedestrian staying close to one position
until the car has passed or the pedestrian swerving behind
the car. The policy derived from the Q-function is stochastic
so that the behaviour given the same starting position can
vary drastically (multimodal behaviour).

Since the Q-function does not depend on any history,
we will model it using a simple two-layer fully connected
neural network with ReLU activations that takes the relative
coordinates d as input and outputs Q2(a,d).

We sampled 100 “expert” trajectories for the training
set with the starting x-position of the car being uniformly
sampled in the range [40, 60], the starting y-position fixed at
10 and the starting y-position of the pedestrian being sampled
in the range [40, 60] and the starting x-position fixed at
80. The validation set consists of 100 trajectories as well,
although we did increase the sampling ranges to [20, 90]
to create a slight distributional mismatch of the training and
validation data set. The goal position of the pedestrian is the
state (10, 50), whereas the car is supposed to go all the way

(a) λ = 0.01, q(s) for all possible pedestrian states, car
moving up as indicated by blue arrow

(b) λ = 0.01, q(s) for all possible pedestrian states, car
not moving as indicated by blue dot. Since no interaction
takes place, q(s) is small.

(c) λ = 0, same as 4a, high degrees of overfitting. Without
regularization we fail to account for the local nature of the
interaction.

(d) λ = 0, same as 4b, even though the car is standing
still, due to overfitting the unregularized model predicts
strong interaction q(s) values for all states.

Fig. 4: Interaction q(s) with and without regularization.



(a) (b)

Fig. 5: (a) A pedestrian moves to a goal position on the left
side, while the car is moving up. Both try to avoid a collision.
(b) Example output of actual model with pedestrian swerving
behind car.

up (one-dimensional actions only). Since we fully specified
a generative model, we actually know the log-likelihood of
each trajectory and can use it as a reference for evaluation.
Given a learning rate of µ = 0.01 we probe the regularization
scheme (11) for multiple regularization strengths. We find
that it is important in getting the model predictions close
to the reference log-likelihood as can be seen in figure 3.
Since the validation loss diverges during training for low
regularization strengths (λ < 10−4), we evaluate 10 training
runs (varying seeds) and extract the iteration with the best
validation loss. In total we train for 1000 iterations and
evaluate on the validation data set on each iteration. With
regularization on the other hand, the training converges,
with low variance results and the best performance on the
validation data set.

The effect of regularization can be seen when investigating
the Q2 values for each state. For this purpose we construct
contour plots that indicate whether the neural network pre-
dicts anything other then Q2 = c(s).

q(s) = ∑
a∈A

∣∣∣Q2(a,s)−
1
|A| ∑â∈A

Q2(ã,s)
∣∣∣ (14)

Basically, we look at the sum of the absolute values of
each action. Since Q2 = c(s) can have high ∑a∈A |Q2(a,s)|
even though it does not affect π(a|s) we subtract the
mean. If q(s) 6= 0 then π(a|s) ∼ exp(Q1(a,s)+Q2(a,s)) �
exp(Q1(a,s)). Hence, we create a suitable way of visualizing
where our model switches on the interaction Q2 and where
it thinks that Q1 on its own is sufficient. The resulting
contour plots for a regularization strength of λ = 0.01 and
no regularization at all are given in fig. 4a-4d. It is important
to note that we forced the output of the neural network
to be symmetric around the car position as a pedestrian
approaching from the left or right is the same.

Since the overall action vector is four-dimensional, we
explore two scenarios with fixed car position and action
to obtain a meaningful two-dimensional visualization. One
scenario where the car is placed at the state (50, 50) with
the preselected action a = [0,0] (i.e. do not move) in fig.
4b, 4d and another scenario where it is placed at (50, 50)
as well but is going to select the action a = [0,3] (i.e. move
up fast) in fig. 4a, 4c. The contour plots indicate where the
pedestrian has to pay attention given the car position and car
action.

As expected no regularization at all results in a neural
network that overfits on the data and predicts significant q(s)
values in areas where Q2 = 0 would be the actual solution
partially due to not having seen the states in the training
distribution. The regularization scheme on the other hand
produces sensible contour plots with q(s) 6= 0 around the
area of where the pedestrian is interacting with the car (state
(50, 50)).

B. Biased Interaction-Free Q

Fig. 6: Due to biased data and biased Q1 = 0 during training,
the neural network cannot learn a decent local representation
of Q2.

The reader may ask what happens if we are not provided with
the correct interaction-free Q-function Q1 but with a biased
version. Are we still able to obtain the interaction Q-function
Q2? We illustrate the situation by setting Q1 = 0 during
training. Now the neural network does not only try to predict
the interaction but also the interaction-free movement. Since
the data is biased towards a pedestrian moving from right to
left and a car moving from the bottom up, the neural network
can pick up these patterns even though it is only provided
with the relative coordinates d. Fig. 6 shows the contour
plot of q(s) for a regularization strength of λ = 0.001 and
no symmetric output (otherwise training gets stuck). The fact
that there are large areas where q(s) = 0 is mostly due to the
fact that the training set of 100 trajectories does not cover
the full state space, i.e. the regularization forces the output
to Q2(a,s) = 0.

V. DISCUSSION

A. Biased Interaction-Free Q

Assuming that both Q1 and Q2 receive the same features/
information, we may reason from the analyses above that if
Q1 is an unbiased model of a non-interacting pedestrian -
given proper regularization schemes - we will be able to
derive a pure interaction-only Q2 even from biased data.
As we have seen, the story changes if Q1 is biased. Even
though Q2 is only provided with the relative coordinates d
and regularized, it approximates the global interaction-free
movement. It can be impossible for the neural network to
deduce whether an action with low probability π(at |st) ∼
exp(Q1(at ,st)) is due to interaction effects (avoid collision)



or simply not modelled by the biased Q1 as there is no
external interaction/ no interaction “label” provided. This
ambiguity is not unique to training the Q2-function directly
but remains if we were to use e.g. inverse reinforcement
learning with a complex reward function (e.g. neural net-
work). Introducing model bias via hand-engineered rewards
that specifically target collisions and nothing else can of
course enable the model to ignore the short-comings of the
biased Q1. Otherwise, we could set Q2 = 0 outside a certain
effective “interaction range” or apply data augmentation such
as including situations where we are convinced - using “com-
mon sense” - that they are interaction-free (e.g. pedestrians
moving away from car) to force Q2 = 0 for those trajectories
or increase the diversity of the data.

VI. CONCLUSIONS

Decomposing the Q-functions into an interaction-free and
interaction-only component is an attractive way to deal with
the generalization challenge of “environment configurations
times interaction configurations”. Experiments using soft-
Q-learning suggest that it is feasible to separate the Q-
functions in this way. Additionally, we find that as long as the
interaction-free Q-function describes human path planning
well, we may expect to learn the interaction Q-function
via gradient descent. Introducing regularization is crucial
for generalization to unseen states and in preventing over-
fitting. Given the shortcomings of current interaction-free
Q-functions available in the literature, we want to improve
these in future work to better describe human behaviour and
thereby extend our proposal to real-world settings.
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