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Abstract— Early and accurate detection of crossing pedestri-
ans is crucial in automated driving to execute emergency ma-
noeuvres in time. This is a challenging task in urban scenarios
however, where people are often occluded (not visible) behind
objects, e.g. other parked vehicles. In this paper, an occlusion
aware multi-modal sensor fusion system is proposed to address
scenarios with crossing pedestrians behind parked vehicles.
Our proposed method adjusts the detection rate in different
areas based on sensor visibility. We argue that using this
occlusion information can help to evaluate the measurements.
Our experiments on real world data show that fusing radar and
stereo camera for such tasks is beneficial, and that including
occlusion into the model helps to detect pedestrians earlier and
more accurately.

I. INTRODUCTION

Densely populated urban areas are challenging locations
for automated driving. One of the most critical reasons for
that is the high number of Vulnerable Road Users (VRUs):
pedestrians, cyclists, and moped riders. VRUs’ locations
are loosely regulated and they can change their speed and
heading rapidly, which makes their detection and tracking
complicated. At the same time, they are at high risk in
case of a potential collision. E.g., of the approximately 1.3
million road traffic deaths every year, more than half are
VRUs [1]. One particularly dangerous scenario is when a
pedestrian crosses in front of the vehicle: 94% of injured
pedestrians between 2010 and 2013 in the US were hit after
such behaviour [2].

Detecting crossing pedestrians as early as possible is crucial
since it leaves more time to execute emergency braking or
steering. To plan such a manoeuvre, precise location and
trajectory of the VRU is also needed. Thus, a pedestrian
detection system has two aims: early detection and accurate
tracking of the VRU. Intelligent vehicles have several sensors
to cope with this task: cameras [3], [4], [5], LIDARs, [6], and
radars [7], [8], [9] have been used. Fusing different type of
sensors, e.g. radar with camera [10] or LIDAR with camera
[11] can add reliability and redundancy to such systems.

Unfortunately, pedestrian detection is often complicated in
urban scenarios by severe occlusions, e.g. by parked vehicles.
Consider the scene in Figure 1. The ego-vehicle (white) is
passing a parked vehicle (blue). A pedestrian, partly or fully
occluded by the parked vehicle is stepping out onto the road
in front of the approaching ego-vehicle. Such a behaviour
of the VRU is also called darting-out [2]. This situation
is particularly dangerous since neither the driver nor the
pedestrian has clear view of the other road user. The sensors
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Fig. 1: Darting-out scenario: a pedestrian steps out from
behind a parked car (blue), which blocks the line-of-sight
of the ego-vehicle (white). Occlusion free/Occluded area is
marked with A/B. The checkerboard and the camera on the
VRU are only used for ground truth collection.

equipped in the ego-vehicle are also influenced by the parked
car, since it blocks their direct line-of-sight to the VRU as
well. However, the level of this influence is highly dependent
on the sensor type. E.g., a camera may still see the upper part
of the pedestrian behind a small car but cannot see them at all
behind a truck, or a van. Radars, on the other hand, are able
to detect reflections of a pedestrian even in full occlusion via
multi-path propagation [12]. I.e., the reflected radar signal can
‘bounce’ from other parked cars, or the ground underneath the
occluding vehicle. Such indirect reflections are weaker than
direct ones [12]. However, they still could provide valuable
information of a darting-out pedestrian.

Detecting the occluding object (i.e. the parked car, van, or
truck) and estimating its size and position is already addressed
in the literature, e.g. in [13]. This information can be used to
create an occlusion model of the environment which describes
what kind of and how many detections are reasonable to
expect in differently occluded regions of the scene. We argue
that incorporating this occlusion model in a sensor fusion
framework helps to detect darting-out pedestrians earlier and
more accurately, and we show that camera and radar are
suitable choices for such a system.

II. RELATED WORK

Pedestrian detection in intelligent vehicles is a widely
researched topic. An extensive survey on vision based
pedestrian detection can be found in [14]. In recent years,
Convolutional Neural Networks and Deep Learning methods
are often applied for pedestrian detection tasks [15].

Various camera based pedestrian detection systems explic-
itly address the problem of occlusion. E.g., [4] proposes



to use a set of component-based classifiers. A generative
stochastic neural network model is used to estimate the
posterior probability of pedestrian given its components scores.
[5] uses Gradient Patch and a CNN to learn partial features
and tackle occlusion without any prior knowledge. In [16]
HOG features were used to create an occlusion likelihood
map of the scanning window. Regions with mostly negative
scores are segmented and considered as occluded regions.
[17] used a mixture-of-experts framework to handle partial
occlusion of pedestrians. [18] applied motion based object
detection and pedestrian recognition on stereo camera input
to initiate emergency braking or evasive steering for darting-
out scenarios. However, none of these methods use a global
model of the scene to describe occlusions, which can change
the detection quality or quantity at certain positions (e.g.
no/fewer detections behind cars).

Using radars to detect VRUs is also interesting as they are
more robust to weather and lighting conditions (e.g. rain, snow,
darkness) compared to camera and LIDAR sensors. Several
radar based pedestrian detection systems were described in
the literature. A radar based multi-class classifier system
(including pedestrian and group of pedestrians) was shown
in [19]. [7] and [8] both aim to distinguish pedestrians from
vehicles using features like size and velocity profiles of the
objects using radar. In [20] a radar based pedestrian tracking
is introduced using track-before-detection method and particle
filtering. They also tested their system on tracks where the
VRU enters and leaves an occluded region behind a car. The
radar was able to provide measurements even in the occlusion.
However, the occlusion itself was not considered.

Several sensor fusion methods were published with the aim
of better pedestrian detection. Camera has been combined
with LIDAR [11] using CNNs. A fused system of camera and
radar is introduced in [10] for static indoor applications. All
three sensors were fused in [21] in a multi-class moving
object detection system. In [13], fusion of LIDAR and
radar was used to detect pedestrians in occlusion in a
static experimental setup. They used LIDAR to detect both
unoccluded pedestrians and to map occluding objects to
provide regions of interest for the radar.

Pedestrians are often tracked using some kind of Bayesian
filter, e.g. Kalman Filters (KF) [22]. Another commonly used
method is the Particle Filter [20], [23], which estimates the
posterior distribution using a set of weighted particles. To fit
our use-case (detection and tracking of a pedestrian) a filter
should not only track an object, but also report a detection
confidence that there is an object to track. [23], [24], [25],
[26] give solutions to include this existence probability into
Particle Filters.

Several datasets have been published to help the devel-
opment and testing of autonomous vehicles, e.g. the well-
known KITTI [27] or the recently published Eurocity dataset
[28]. At the time of writing, NuScenes [29] is the only
public automotive dataset to include radar measurements.
Unfortunately, it does not include enough darting-out scenes
for this research.

In conclusion, pedestrian detection was extensively re-
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is the state vector and �B ; �F are the expected detection rates.
The binary flag �k

t denotes if the kth detection zk
t comes from

foreground or background. Discrete/real variables are shown
with square/circle nodes. Observed variables are shaded.

searched using all three main sensors (camera, LIDAR, radar).
However, to the best of our knowledge this is the first research
to propose a fused pedestrian detection system in automotive
setup to include knowledge of occluded areas into the model,
and the first one to explicitly address the previously defined
darting-out scenario using a fusion of stereo camera and radar.

Our contributions are as follows. 1) We propose a generic
occlusion aware multi-sensor Bayesian filter for object
detection and tracking. 2) We apply the proposed filter as
a radar and camera based pedestrian detection and tracking
system on challenging darting-out scenarios, and show that
including occlusion information into our model helps to detect
these occluded pedestrians earlier and more accurately.

III. METHOD

In this section, we will present our occlusion aware sensor
fusion framework. For modeling the state space and transitions
we will follow [23]. A graphical model of the method is shown
at Figure 2. Subscripts are timestamps, superscripts are either
indices or mark background/foreground.

Let the space S be a 2D (lateral and longitudinal) position
and velocity, and a binary flag marking if the tracked object
(e.g. a VRU) exists. Let s be a state vector in S:

S : R2 � R2 � f0; 1g; (1)
s 2 S; s = (x; v; E); (2)

where x and v are the object’s position and velocity vectors
on the ground plane, and E is its the binary presence flag. E
will be used to represent the existence probability. I.e., E=1
means there is a pedestrian in the scene and E=0 means its
absence. We define a Bayesian filter for detection and tracking,
for which we need the prior distribution P (stjZ1:t�1), and
measurement likelihood function P (Ztjst), where Zt is the
set of all sensor detections at timestamp t.

A. Prediction step
In this subsection, we derive the prior distribution

P (stjZ1:t�1) for time t. To get this we need the previous
state and state transition P (stjst�1). To handle the temporal



changes in the presence �agE, we introduce two functions
and a parameter to our model. An object stays in the scene
with a probability ofps(st � 1). A new object can appear with
a probability ofpn , and its entering position is distributed
aspe(st ). Using these, we can set the probabilities of theEt

�ag states given the previous statest � 1:

P(Et =1 jEt � 1 =0 ; xt � 1; vt � 1) = pn (3)

P(Et =0 jEt � 1 =0 ; xt � 1; vt � 1) = 1 � pn (4)

P(Et =1 jEt � 1 =1 ; xt � 1; vt � 1) = ps(st � 1) (5)

P(Et =0 jEt � 1 =1 ; xt � 1; vt � 1) = 1 � ps(st � 1): (6)

In case of a present object (Et =1 ) the xt andvt values are
distributed as:

P(xt ; vt jEt =1 ; Et � 1 =0 ; st � 1) = pe(xt ; vt ) (7)

P(xt ; vt jEt =1 ; Et � 1 =1 ; st � 1) = P(xt ; vt jxt � 1; vt � 1):

For this last term, we assume a linear dynamic model with a
normally distributed acceleration noise.

Thus, we can �nally write the full state transition as:

P(st jst � 1) = P(Et jst � 1) � P(xt ; vt jEt ; st � 1): (8)

B. Update step
Now we describe the likelihoodP(Z t jst ). We assume

conditional independence for our sensors, thus the update
step here is described for one sensor. The sensor returnsK t

detections at once:Z t = f z1
t ; : : : zK t

t g: Each detectionzk
t

contains a 2D location. The total number of detections (K t ) is
the sum of foreground (K F

t ) and background (K B
t ) detections:

K t = K B
t + K F

t . We model the number of foreground (true
positive) and background (false positive) detections with two
Poisson distributions. Let us denote the detection's rates
with � B and � F (xt ; Et ) for the background and foreground
detections respectively.K B

t ; K F
t are then distributed as

Poisson distributions parametrized by� B ; � F :

K B
t � Pois(� B ); (9)

K F
t � Pois(� F (xt ; Et )) : (10)

Together, the number of detectionsK t is distributed as:

P(K t jxt ; Et ) � Pois(� B + � F (xt ; Et )) : (11)

Note that the number of true positive (foreground) detections
depends both on the object's presence and location, thus we
can incorporate occlusion information here. E.g., more true
detections are expected if the pedestrian is unoccluded than
if the pedestrian is occluded.

� F (xt ; Et =1) =

(
� unocc if xt 2 A;
� occ if xt 2 B;

(12)

where� unocc ; � occ stand for the expected detection rates in
unoccluded (A), occluded (B) areas respectively (see Figure
1). In a not occlusion aware (naive) �lter,� F is constant and
assumes the unoccluded case:

naive approach:� F (xt ; Et =1) = � unocc ; (13)

as occlusion is not incorporated. Our occlusion aware �lter
(OAF) behaves the same as a naive one in unoccluded cases,
but in occluded positions it adapts its expected rate� F .

Derived from the properties of Poisson distributions, the
number of false and true positive detections givenK t are
distributed as Binomial distributions parametrized by the ratio
of � B and � F . Thus, the probability of a detectionzk

t being
foreground/background is (givenK t number of detections):

P(� k
t =1 jEt ; xt ; K t ) =

� F (xt ; Et )
� F (xt ; Et ) + � B ; (14)

P(� k
t =0 jEt ; xt ; K t ) =

� B

� F (xt ; Et ) + � B ; (15)

where the binary �ag� k
t denotes if thekth detectionzk

t comes
from the tracked object, i.e. is a true positive detection.

Now we have to de�ne the likelihood functionP(zk
t j� k

t ; xt )
for true positive(� k

t =1) and false positive cases(� k
t =0) . We

assume that true positive detections are distributed around the
object's positionxt described by some distributionL(zk

t jxt ),
and that false detections are distributed as described by some
distributionD(zk

t ):

P(zk
t jxt ; � k

t =1) = L(zk
t jxt ); (16)

P(zk
t j� k

t =0) = D(zk
t ): (17)

Hence the whole likelihood of one measurement is given:

P(zk
t jEt ; xt ; K t )= P(zk

t jxt ; � k
t =1) �P(� k

t =1 jEt ; xt ; K t )

+ P(zk
t j� k

t =0) �P(� k
t =0 jEt ; xt ; K t ):

(18)
We assume that allK t detections are conditionally in-

dependent givenxt and Et , thus we can update with them
individually using (11):

P(Z t jst ) =
K tY

k=1

P(zk
t jEt ; xt ; K t ) � P(K t jEt ; xt ): (19)

Existence probability of a pedestrian in the scene given all
measurement is then:

P(Et jZ 1:t ) =
ZZ

P(st jZ 1:t )dxt dvt : (20)

IV. IMPLEMENTATION

In this section, we discuss the implementation of the
proposed framework in our experiments.

A. Particle �ltering
For inference, we use a particle �lter to represent the

posterior distribution in our model with a set of samples (i.e.
particles), because it is straightforward to include occlusion
information. I.e., particles in occluded areas are handled
differently than those in unoccluded areas.

To include existence probability into the �lter, we will
follow [23]. The method is brie�y explained in this paragraph.
From N particles the �rst one (index 0) is assigned to all the
hypotheses with non-present pedestrian, called the negative
particle. The remainingN � 1 = Ns particles (called the



positive ones) represent the case of a present pedestrian:

Et =0 ! w(0)
t ; (21)

Et =1 ! (s( i )
t ; w( i )

t ) for i = 1 : : : Ns: (22)

wheres( i )
t is the state of thei th particle, andw( i )

t is its as-
signed weight. Thus, the probability of a non-present/present
pedestrian given all detection is the normalized weight of the
�rst particle/summed weights of all remaining, see (20):

P(Et =0 jZ 1:t ) = w(0)
t ; P(Et =1 jZ 1:t ) =

N sX

i =1

w( i )
t : (23)

To obtain the estimated state of the pedestrian, we use the
weighted average of the particles along the hypothesis space.
1) Initialization

Particles' positions are initialized uniformly across the
Region of Interest (ROI). Their velocity is drawn from
normal distribution around walking pace, and their direction
is uniformly drawn from an angular region between� 22:5°,
where0° is the direction perpendicular to the movement of
the ego-vehicle.
2) Predict step

The input of the prediction step areNs uniformly weighted
particles representing the present pedestrian, and one particle
representing theEt =0 hypothesis. First, we estimate the next
weight of the �rst particle as the following.

P(Et =0 jZ 1:t � 1) � ŵ(0)
t =

wnp

wnp + wp
(24)

wherewp; wnp are the cumulative weights of present, and
not present predicted states using equations (3) - (6):

wp = ( pn )w(0)
t � 1 +

N sX

1

(ps(s( i )
t ))w( i )

t � 1; (25)

wnp = (1 � pn )w(0)
t � 1 +

N sX

1

(1 � ps(s( i )
t ))w( i )

t � 1: (26)

Afterwards, we sampleNs new positive particles, each is
either a mutation of an existing particle moved by the dynamic
model, or a completely new (entering) one(7). An existing
particle stays in the scene with probabilityps(s( i )

t ), or is
replaced by a new one with probability of1 � ps(s( i )

t ):

s( i )
t � 1 !

(
ŝt

( i ) � P(st js
( i )
t � 1) if moved particle,

ŝt
( i ) � pe(st ) if new particle.

(27)

All positive particles weights are normed and set uniformly:

ŵ( i )
t =

1 � ŵ(0)
t

Ns
for i = 1 : : : Ns: (28)

3) Update step
Particles are updated by new detections based on (19):

w( i )
t / ŵ( i )

t � P(Z t jŝt
( i ) ): (29)

After the update, all weights are normalized. To avoid sample
degeneracy, we resample the positive particles if the Effective
Sample Size (ESS) drops below a threshold as in e.g. [30].

Parameter Short description In our experiments

ps (s( i )
t ) Probability for a particle to stay 0:95=0:0, in/out ROI

pn Probability of an entering pedestrian 0:2
� unocc Exp. # of detections (occluded) sensor speci�c
� occ Exp. # of detections (unoccluded) sensor speci�c
� B Exp. # of false detections sensor speci�c
D (zk

t ) Exp. distribution of noise Uniform in the ROI
L (zk

t jxt ) Exp. distribution of true detections N (zk
t jxt ; � s )

� s Covariance matrix of true detections sensor speci�c

TABLE I: List of model parameters and functions chosen by
the user in the framework. See text for sensor speci�c values.

Our framework can be `tuned' by the following parameters
and functions. The functionps(s( i )

t ) returns that how likely
it is for that particle's hypothesis to stay in the scene.pn is
the chance of an entering pedestrian. Their ratio tunes how
sceptical is the system about the presence of a pedestrian.
D (zk

t ); L (zk
t jx) tune the expected spatial distribution of false,

true positive detections. The parameter� B gives the assumed
rate of false positive detections. Finally,� unocc ; � occ are
the expected rates of occurring true positive detections in
unoccluded, occluded areas respectively. The ratio of these
tunes how sceptical is the system about a measurement at
that position in the �rst place. For a short conclusion of these
parameters see Table I.

B. Sensors
Plausible values for the different� and � s values were

chosen after examining the dataset. A ROI of5 m � 15 m �
3 m was applied in front of the vehicle.

Our vision based detection's input is a stereo camera
(1936� 1216 px) mounted behind the windshield of the
research vehicle. Detections are fetched from the Single
Shot Multibox Detector (SSD) [31]. Depth is estimated by
projecting the bounding boxes into the stereo point cloud
computed by the Semi-Global Matching algorithm (SGM)
[32], and taking the median distance of the points inside
them. For camera, we used� unocc = 1 as SSD is reliable at
this range in unoccluded regions.� occ was set to0:1 in case
of partial occlusion scenes, and0 for fully occluded ones, as
no visual clue is expected if the view is fully blocked. Few
false positives occurred in the ROI, thus� B was set to0:05.
SSD is also used to compute occluded regions. Objects from
car, bus, truck,andvan classes are considered as occlusions.
Using the projection described before, their 3D positions are
calculated. Areas behind them are marked as occluded as
shown on Figure 1 and Figure 3.

Our radar sensor is a Continental 400 mounted behind the
front bumper. It outputs a list of re�ections, each consisting
of a 2D position, a Radar Cross Section (RCS) value, and
a relative speed to the ego-vehicle. In a preprocessing step
we used the RCS and speed values (after compensating for
ego-motion) to �lter the re�ections. We expect� unocc =
1:5 detections for unoccluded positions, as often multiple
re�ections are received from the same pedestrian. Behind
occlusions (vehicles), we still assume� unocc = 0 :3 re�ections
because of the multi-path propagation described earlier. An
average of� B = 0 :1 false positive re�ections was expected.



V. DATASET

Our dataset consists of 83 recordings. Each contains one
pedestrian stepping out from behind a vehicle. See Figure 3
for an example sequence. In total, nine different occluding
vehicles were used, of which four were passenger cars (partial
occlusion) and �ve were vans (full occlusion), see Table II.
Three persons, with different heights, cloths and body type,
acted as pedestrians in our dataset. To record the position of
the pedestrian we mounted an additional camera to the chest.
A calibration board was placed in the �eld of view the car
and pedestrian cameras as on Figure 1. 6-DoF positions of the
sensors relative to the board were obtained by off-the-shelf
pose estimation methods.

Cars Vans Total

moving 19 27 48
standing 23 12 35

Total 42 39 83

TABLE II: Number of sequences of each type in the dataset.

VI. EXPERIMENTS

In the experiments we evaluated how the fusion of the
two sensors performs compared to the individual sensors
in aspects from Section I. Firstly, in subsection VI-A we
examine the change of the probability existence over time.
Secondly, in subsection VI-B, we discuss the spatial accuracy
of the methods. We tested the following four methods:camera,
radar, naive fusionand OAF fusion. The �rst three are naive
�lters using camera/radar/both sensors to update, see(13).
The fourth method is the proposed occlusion aware fusion.
All methods run with a processing speed of� 10 Hz using
1000 particles in an (un-optimized) Matlab environment on a
high-end PC.

As stated by Eq.(13), OAF fusionworks identically to
the naive one in unoccluded positions. To validate this, we
simulated a scene without any occlusions or detections, on
which the existence probabilities reported byOAF fusion
andnaive fusionmethods both converged to the exact same
value (0:021). This means that comparing the methods is
only reasonable when occlusions occur, thus this section will
focus on occluded scenes only. Sequences of the dataset were
aligned temporally by marking the last moment where the
ground truth position is in the occluded region asT0 = 0 .

A. Existence probability
We executed the methods on all sequences and recorded

the probability outputs as in equation(20). Sub�gure 4a
and Sub�gure 4b show the results from the fully (vans) and
partially occluded (cars) scenes.

The results show that detection in car scenarios happens
sooner than in the cases of vans by0:25-0:5 seconds. This
is expected for the camera, as in contrast to vans, partial
visual detections (e.g. head above the car) occur. In case of
radar this was surprising, as the height of a vehicle has no
trivial effects on the radar signal. This shift may be caused
by the length of the vehicles: vans tend to be longer than

cars, which can in�uence the propagation below the vehicle.
In general, including radar (Naive/OAF fusion) helped to

detect the pedestrian earlier in both cases, i.e. any chosen
threshold of probability is reached sooner by theOAF fusion
than any other method. E.g., on car scenarios, the threshold
of 0:8 is reached byOAF fusion0:3 seconds earlier than the
cameraand0:12 seconds earlier than thenaive fusion.

Advantages of occlusion awareness are seen by comparing
naive and OAF fusions. OAF fusionreports a higher prob-
ability of a present pedestrian than thenaive fusionat all
timestamps at which the pedestrian is occluded (T < 0). The
reason for this is two fold. Firstly,OAF fusion`acknowledges'
that parts of the scenes are occluded and cannot be measured,
causing uncertainty. That is, lack of detections from these
areas are not considered as evidence for the lack of a
pedestrian in contrast tonaive fusion. Instead, particles behind
occlusion gets higher weights compared to the unoccluded
particles to represent this uncertainty. This results in higher a
priori awareness even before any detections occur. Secondly,
detections received from these regions are valued more than
in the naive one, as the number of received detections �ts
the expectations better in Eq.(14). As a consequence, the
likelihoods are higher for the same detections than in thenaive
fusion(19). In contrast, thenaive fusionreports the lowest
probability at the beginning of the tracks. This is expected as
it receives more evidence for a non-present pedestrian than
the two sensors individually, and ignores the uncertainty of
occluded regions. In the unoccluded area both fusion yields
very similar probabilities as expected, caused by (13).

B. Spatial accuracy
Spatial error is calculated as the Euclidean distance of the

ground truth and the estimated position. Sub�gures 4c and 4d
present the results from the fully and partially occluded scenes.
Errors are high at the beginning as no detections occured yet,
and particles are distributed uniformly, see Sub�gure 3a.

Including radar into the system improves the accuracy
while the pedestrian is still occluded. The average error of
the radar converges faster than thecamera. Naive fusion
yields smaller errors thanradar, but not drastically. This is
reasonable, as most detections in the occluded area come
from the radar.

OAF fusion(see Figure 3) outperforms all other methods
and reach its minimal error the fastest. The reason for this
is two-fold. Firstly, the occlusion awareness means the �lter
acknowledges that occluded areas are not possible or hard
to observe. However, it can measure that the pedestrian is
not in the unoccluded area, see Sub�gure 3a. This results
in particles in the occluded region having higher weights,
and thus, being resampled more often than particles in the
open area. The estimated position (the weighted average of
the particles) is drifted in the direction of the occlusion. We
argue that this is a valid prior, as the area where the particles
converge is the expected entrance point of the pedestrian.
Secondly, it values detections received from occluded regions
more than thenaive fusion(explained in Subsection VI-A).

All methods converge to a low (� 30 cm) spatial error after
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