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Abstract— 3D localization of persons from a single image is a
challenging problem, where advances are largely data-driven. In
this paper, we enhance the recently released EuroCity Persons
detection dataset, a large and diverse automotive dataset cover-
ing pedestrians and riders. Previously, only 2D annotations and
image data were provided. We introduce an automatic 3D lifting
procedure by using additional LiDAR distance measurements,
to augment a large part of the reasonable subset of 2D box
annotations with their corresponding 3D point positions (136K
persons in 46K frames of day- and night-time).

The resulting dataset (coined ECP2.5D), now including Li-
DAR data as well as the generated annotations, is made publicly
available for (non-commercial) benchmarking of camera-based
and/or LiDAR 3D object detection methods. We provide base-
line results for 3D localization from single images by extending
the YOLOv3 2D object detector with a distance regression
including uncertainty estimation.

I. INTRODUCTION

The accurate 3D localization of objects, especially of
vulnerable road users like pedestrians and riders, is essential
for the safety of self-driving vehicles. Recently, there has
been great interest in monocular 3D object detection, as
seen by the numerous publications over the last years [1]–
[13]. Cameras are still a lot cheaper than LiDAR sensors,
usually have a higher resolution and are important because
of redundancy. Lately, many computer vision tasks like scene
segmentation [14] and 2D detection [15]–[17] have been
boosted by deep learning.

However, the performance of monocular 3D detection still
lags behind the LiDAR methods mainly because the problem
is ill-posed due to missing depth information in a 2D image.
Therefore, the commonly used KITTI 3D benchmark [18]
is still lead by LiDAR based approaches. The amount of
persons in comparison to vehicles is considerably low in
the KITTI benchmark and thus many monocular detection
methods focus on the detection of the latter.

The EuroCity Persons (ECP) dataset [19] focuses on
persons in urban scenarios and is one of the most diverse
automotive datasets collected in 31 cities of 12 countries (see.
Fig. 1). We introduce a label lifting procedure to generate
2.5D annotations by enriching the already present accurate
2D boxes by their corresponding distance measurements
recorded with a HDL-64E Velodyne. After egomotion cor-
rection and projection of the point clouds into the image,
the corresponding point cluster for every 2D bounding box
is found by applying several filters and constraints (see. Fig.
1). We apply this lifting procedure to all annotations in the
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Fig. 1: The ECP dataset [19] has been recorded in 31 cities of
12 European countries (top). We present an automatic label
lifting for the provided 2D box annotations, by finding the
corresponding point cloud cluster to infer the 3D box center
position (bottom).

reasonable subset as defined in [19]. As not all objects are
covered by LiDAR measurements, this works for 97% of the
annotations. The 3D position of each object is defined by the
mean distance of all points contained in the assigned cluster
and the 2D bounding box.

KITTI and recent 3D datasets like [20] are annotated with
3D bounding boxes. The detection problem is defined by
estimating the nine degrees of freedom: three box extent
values, three values for the box center and three rotation
angles. The KITTI 3D object detection benchmark simplifies
the problem by setting two rotation angles to zero. Some
monocular methods [21] and [6]–[8] solve this task by
estimating the metrical extents of the object and using
geometric constraints to infer its 3D box based on its 2D
bounding box location. The estimated box is then matched
based on a 3D intersection over union (IoU). A high 3D IoU
is hard to achieve for monocular object detection and persons
in particular, as a small translation offset may result in no
overlap at all [12]. In contrast to estimating a full 3D box,
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TABLE I: Overview of publicly available 3D person de-
tection datasets recorded in an automotive setting, offering
LIDAR point cloud and camera data.

Dataset KITTI
[18]

nuScenes
[22]

Argoverse
[23]

Waymo
[20]

ECP2.5D
(ours)

# Countries 1 2 1 1 12
# Cities 1 2 2 2 30
# Imgs 15k 34k 350k 800k 46k
# Peds 9.4k 222k 132k 2.8M 123k
# Riders 3.3k 24k 11k 67k 13k
# Seasons 1 - 1 - 4
Weather dry dry,

rain
dry dry,

rain
dry,
rain

Unblurred 3 7 7 7 3

[13] only considers the 3D localization problem with three
degrees of freedom, namely the x, y and z coordinates of the
3D box. Assuming the projected 3D box center coincides
with the 2D box center for pedestrians, only the 2D box
itself and the distance has to be estimated to calculate the
3D object center. Thus, in the following we use the term
3D localization for the problem of estimating an object’s 3D
point position.

We extend the YOLOv3 [15] 2D object detector to regress
the distance directly for RGB-images as input. This approach
is similar to methods like [10]–[12] and serves as a baseline
on our dataset. Instead of estimating the Euclidean distance
as in [13] we estimate the distance along the z-axis in the
optical camera frame as an equivalent surrogate. As in [12],
[13] our network estimates uncertainties of the regressed
distance values.

II. RELATED WORK

a) 3D datasets: Over the last decade, several datasets
have been published to enable the development of detec-
tion algorithms in an automotive setting. The pioneering
KITTI dataset [24] offers multi-modal sensor data, including
camera and LiDAR, with corresponding 2D and 3D object
annotations [18]. However, the comparably small number of
samples (∼9400 pedestrians) limits the progress in research
areas with a high data demand. Lately, several automotive
datasets have been published, trying to fill this shortcoming
by offering a greater number of 3D annotations [20], [22],
[23], along with the raw sensor readings (point cloud, cam-
era). A comparison is given in Tab. I. Most datasets involve
human annotations performed directly in the point clouds
[20], [22], [23].

In comparison to the above mentioned datasets, the ECP
dataset [19] currently only provides 2D annotations. Still,
ECP is a large dataset, which offers unblurred images of
challenging urban scenarios and has a high geographic
diversity being recorded in cities all over Europe. Hence,
the extension of ECP to 3D would be beneficial for the
research community, e.g.: as shown in [25], where our 2.5D
annotations have been utilized to generate approximate 3D
bounding boxes used for LiDAR based detection.

b) Monocular 3D detection methods: A lot of research
has been put into 3D object detection from LiDAR point
clouds or stereo-based RGBD images. Here, we focus on
recent work on monocular 3D object detection. [2], [3] use
fully convolutional networks to regain pixel-wise depth in-
formation for the complete image and apply neural networks
on RGBD. [1] argues that convolutions on a d-channel is
sub-optimal and converts estimated depth maps from mono
or stereo to a LiDAR point cloud to apply LiDAR based
detection methods. [4], [5] also transform the feature space
before final detection. [4] detects objects in a bird-eye view
image generated with inverse perspective mapping, while [5]
integrates an orthographic feature transform into its network.

Other works extend RGB based 2D object detectors for
3D detection. [21] presumes that the projected 3D box tightly
fits into the 2D detection of an extended MS-CNN network
[17] resulting in several geometric constraints. Adding the
additional regression values for the extent and rotation angles
for each object the 3D box can be inferred by solving an
overconstrained equation system. Small errors in the 2D
location regression may result in large errors for the 3D IoU.
Therefore [6]–[8] optimize performance by leveraging the
strict geometric constraint.

There is also a group of methods that directly estimate the
3D position. [9] builds upon the region proposal network in-
troduced by Faster R-CNN [16]. The authors use 2D anchor
boxes with 3D properties calculated on the dataset statistics.
For each anchor the 3D box is regressed relatively to its 3D
properties. [11] regresses 3D bounding boxes in a multistage
approach using 2D boxes as input for a feature pooling. They
mention that pixel-wise depth estimation often neglects small
objects, and therefore prefer depth estimation on an instance
level. [10] also directly regresses 2D and 3D bounding boxes.
As the combined loss for all regressed values might be
hard to train, they introduce a disentangling to optimize the
values separately. [12] regresses 26 values as a surrogate of
the 3D box. One of these values is the Euclidean distance
of the 3D box center. The authors compare results for
homoscedastic and heteroscedastic loss formulations whose
theoretical foundations are described in [26]. In the latter
they get an uncertainty per regression value. They also note
that the 3D IoU is very challenging for monocular detection
methods. [13] focuses on pedestrians estimating distances
based on skeleton points as input. Assuming the projected
3D position coincides with the 2D box center, the distance is
sufficient to solve the 3D localization. Furthermore, they pro-
vide epistemic and aleatoric uncertainties for the estimated
distance as an important information for autonomous driving.

c) Contributions: First, we introduce the ECP2.5D
dataset, which will be publicly available for non-commercial
scientific usea. We publish the 2.5D annotations generated
by our proposed uplifting method and egomotion corrected
point cloud data for the images of ECP. Futhermore, the
corresponding camera parameters as well as the LiDAR to
camera transformations are released, to enable training and

ahttps://eurocity-dataset.tudelft.nl/



Fig. 2: Overview of our 3D lifting procedure. Inputs are 2D bounding box annotations and 3D point clouds (left column).
The LiDAR points are egomotion corrected and projected into the image (middle column bottom). For every bounding box
only points within the bounding box supported by the scene segmentation (middle column top) are potential candidates.
After applying additional constraints the final point clusters per bounding box are found using a clustering step (right).

evaluation of LiDAR and camera+LiDAR based approaches.
Second, we provide baseline results for monocular vision-
based 3D person localization on this new dataset. As baseline
we use a YOLOv3 detector extended by distance regression
and uncertainty weighting.

III. ECP2.5D DATASET

In the following the ECP2.5D dataset is introduced. After
describing the recording setup, the proposed label lifting
process is presented, which is used to extract the 3D position.

A. Sensor Setup and Data Basis

The vehicle sensor setup used to record the ECP dataset
included a Velodyne HDL-64E LiDAR scanner, a GPS/INS
system, and the front-facing camera. The camera data has
already been published in [19]. To enable fusion of the
different sensor data, a GPS-based time synchronization
approach is employed. In addition, all sensors are calibrated
intrinsically and extrinsically (translation and rotation to
common axis). Given the continuous measurement process
of the LiDAR, the points within one 360◦ scan can be
distorted due to the egomotion of the vehicle. Furthermore,
there is a time offset between each 360◦ LiDAR scan and
camera measurements, as the sensors are not simultaneously
triggered. To address both issues, the temporally closest
point cloud for each image is compensated by the kinematic
information between the measurement time of each point
and the image trigger time. This results in one point cloud
for each image, which apart from other dynamic objects is
consistent in a world frame (i.e. no distortion due to the
vehicle motion) and is projected onto the image capture time.

To combine the 3D LiDAR information with the anno-
tation information present in the unrectified image, each
LiDAR point needs to be projected into the image. Each
3D-LiDAR point given by pl = [xl, yl, zl], is transformed to
the 3D camera coordinate system pc = [xc, yc, zc] with the
homogeneous transformation matrix Tl→c, obtained by the
extrinsic calibration. By applying the basic pinhole model
each pc is projected to rectified image coordinates p̃ =

[ũ, ṽ]. The final position p = [u, v] in the unrectified image
is achieved by unrectifying p̃ using the intrinsic camera
parameters. The complete projection chain is thus given by:

pl
Tl→c−−−→ pc

Pinhole−−−−→ p̃
unrectify−−−−→ p. (1)

Note, due to the parallax caused by the different sensor
mounting positions, the projected LiDAR point p was not
necessarily caused by the same physical object as depicted
by the image at pixel [u, v].

B. Label Lifting

The goal is to get the 3D position of a 2D bounding box
annotation in the camera coordinate system. To this end we
use the egomotion compensated and projected LiDAR points
to identify point clusters representing the annotated person.
The exact details are as follows.

For each person annotation defined by its bounding box
(u∗1, v

∗
1 , u
∗
2, v
∗
2): first, an initial point set is created containing

all LiDAR points pli with a corresponding projection pi inside
the bounding box. Where i < n and n is the number of
all LiDAR points within a 360◦ scan. Second, we use the
height distribution of persons as prior knowledge. For each
point pc we verify if it could have been reflected/caused by
a person. Using a pinhole camera model we can relate an
object’s height in pixels ∆ṽ to its real height ∆yc by

∆ṽ

f̃
=

∆yc

zc
, (2)

with f̃ being the focal length and zc the z coordinate.
Hereby we assume that the object is standing upright and
the 3D points defining upper and lower boundary of the
2D box share the same zc coordinate. Given the distance
of the point zc and the pixel height ∆ṽ of the rectified
bounding box, we calculate the potential object height ∆yc

in metres according to Eq. (2). This height is expected to
be in the range of [∆ycmin,∆y

c
max], with ∆ycmin = 0.7 m

and ∆ycmax = 2.0 m. The lower bound is given by the 0.1%
quantile of the height distribution of 18 months old girls [27],



while the upper bound is given by the 99.9% quantile of the
height distribution of adult men [28]. All points resulting
in object heights outside of this range are expected to be
caused by noise (e.g.: background or occlusions), and are
thus removed from the person’s points set.

Third, using a scene segmentation method [14] trained
on CityScapes [29], we assign the predicted class at the
projected image position pi to each LiDAR point. All LiDAR
points which do not support the bounding box class (pedes-
trian or rider) are excluded from the set of points associated
to the current bounding box.

Finally, point clusters are extracted from the filtered point
sets. Objects with overlapping bounding boxes are grouped
together. For each group the filtered point sets are united and
processed jointly, to prevent assigning one point to multiple
objects. An extended version of the constrained k-means
clustering algorithm [30] is employed to find k point cluster
for the point set of every object group, with k being the
size of the group. In [30] the original k-means clustering is
extended by a set of must link and cannot link point tuples.
For our approach we utilize solely the cannot link set to
prevent that points which cannot belong to the same object as
they lie within different bounding boxes end up in the same
cluster. Furthermore, points with a distance greater than 1.5m
cannot be caused by the same person and are thus also added
to the cannot link set. In the original version the algorithm
fails as soon as a point cannot be assigned to any cluster.
To avoid that, we extend the algorithm by introducing an
outlier class for all points without a fitting cluster. We set the
number of initial clusters to k, but allow a cluster generation
during the first iterations of the algorithm (to account for
additional depth modes e.g. caused by occlusions, those
points have not been filtered by the previous steps). For the
final cluster to object assignment, the objects are sorted by
their occlusion level and base point v∗2 in image coordinates.
Thus, non-occluded, closer objects - assuming a flat world
- are processed first. For each object the cluster with the
highest number of points within its bounding box is chosen.
Clusters are only assigned to objects once. The final 3D
position is defined by the intersection point of the ray of sight
through the 2D bounding box center with the x-y-plane at
the mean distance z̄c of all points within the assigned cluster.

If not mentioned otherwise, the distance is always defined
by the distance value along the z-axis, which is orthogonal
to the image plane. Our baseline model described in Sec.
IV-B is trained using z̄c as groundtruth. For an overview of
the label lifting see Fig. 2.

C. Dataset Statistics, Label Quality, Small Persons Subset

TABLE II: Comparison of the night, day and combined
ECP2.5D datasets (numbers are rounded).

ECP2.5D # Countries # Cities # Imgs # Peds # Riders

Night 6 7 7k 22k 1k
Day 12 30 39k 101k 11k

Total 12 30 46k 123k 13k

Since challenging occlusion scenarios are out of scope
of our lifting procedure, we only apply it to the reasonable
subset of the ECP dataset, i.e. pedestrians of at least 40 pixels
height and less than 40% occlusion. Using these prerequisites
the uplifting procedure is applied to a total of 140729 2D
person annotations, resulting in 136096 annotations which
can be enriched with 3D distance information. These anno-
tations form the ECP2.5D dataset. We employ the same train,
validation, and test splits as in [19], namely 60−10−30. The
labels of the test split will not be published. The numbers
for the night and day subset are shown in Table II.

To validate the quality of the generated 3D positions the
object center for all uplifted objects on a randomly selected
subset is manually annotated. We define an uplifted 2.5D
annotation as error if the calculated object center differs more
than a pre-defined threshold εm from the manually labeled
one. The manual annotations used for the quality assessment
have been performed independently by two experienced
labelers on a subset of 90 random frames, containing a
total of 337 uplifted objects. For the distance threshold
εm = 0.35 this results in an error of 4, 2%, with no
significant difference between the two labelers. The errors are
caused by sensor parallax, imprecise semantic masks, wrong
cluster generation, or an erroneous 2D label. The differences
between the automatic and manual annotations are depicted
in Fig. 3.

We use Eq. (2) to approximate the height for each object
based on its pixel height and the annotated distance. The
resulting distribution and other statistics are shown in Fig.
3. The mean height of persons in our dataset is 1.68 m.
Children and other small persons are rare. Because of the
strong dataset bias regarding person heights, it is especially
interesting to evaluate methods for smaller persons to verify
the network does not overfit on a certain height. This
could easily happen especially with methods that depend
on geometric constraints and estimate the object dimensions
as [21]. As a wrong distance label also results in a wrong
height estimate, some small persons according to the height
statistics are in fact caused by label errors. Therefore, we
manually validate for pedestrians up to a distance of 40 m
and an height estimate below 1.3 m, if their distance estimate
is correct. This results in a subset of 196 small pedestrians
within the day test set, which we refer to as the small subset.

IV. METHODOLOGY

Similar to [13], as the projected 3D position p̄c coincides
with the center of the 2D bounding box, only the 2D box
and the distance along the z-axis of the camera coordinate
system has to be estimated for 3D localization. Doing so,
the 3D position is estimated by taking the camera ray
through the rectified bounding box center with a length
depending on the estimated distance. We adopt this problem
formulation. First, we revisit YOLOv3 [15] which is used
as our underlying 2D object detector. Similar to [31] we
take care that all losses match a probabilistic log-likelihood
formulation to make use of task uncertainty weighting as
proposed in [26]. In [12] a zero mean Gaussian is used to
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Fig. 3: Frequencies of lifted persons within our ECP2.5D dataset depending on the measured distance (left) and estimated
height (middle). On the right the results of our manual quality check is depicted in dependence of the 2D object height.

model the heteroscedastic uncertainty in the regression of
the 26 surrogates for the 3D bounding box, of which one
is the distance to the 3D box center. We also use a normal
distribution based regression loss to estimate the distance
and uncertainty along the z-axis. The extended YOLOv3
method serves as baseline on ECP2.5D. Finally, we introduce
the metrics applied for evaluation of 2D detection, distance
estimation and 3D localization.

A. Single stage detection with task uncertainty weighting

YOLOv3 extends the Darknet53 architecture and predicts
bounding boxes based on three feature layers, that are
downscaled by a factor of 8, 16 and 32 respectively. Each cell
within these feature layers encodes prior boxes of different
aspect ratios that are centered within the cell. Given an input
image x our convolutional neural network f parameterized
with w predicts four coordinate offsets fwloc(x) and c class
scores fwcls(x) per prior box p. In contrast to [15] we skip
the objectness classification and directly regress the four
bounding box edges as in [32]. The class likelihood is
calculated by

p(y|fwcls(x)) = softmax(fwcls(x)). (3)

Similar to [31] we model the regressed bounding box val-
ues to follow a multivariate normal distribution. We use a
diagonal covariance matrix with identical entries σloc and
minimize the negative log-likelihood, which results in a L2
loss Lloc(w). Regarding classification we apply a standard
cross-entropy loss Lcls(w), which is the log-likelihood of the
probability function in Eq. (3). Our detection losses match
the regression and classification losses described in [26], so
we can use task uncertainty weighting for the total loss

L(w) =
1

σ2
cls

Lcls(w) + log σcls +
1

2σ2
loc

Lloc(w) + log σloc

(4)
with the aleatoric, homoscedastic uncertainty weights σloc
and σcls optimized during training. During training all person
samples those bounding boxes have an IoU > 0.5 with a
prior box are associated as positive training targets. Prior
boxes with no associated sample only contribute to the
classification loss.

B. Distance regression with heteroscedastic uncertainty

Regarding the ill-posed distance estimation of persons we
use a heteroscedastic uncertainty (similar to [12], [13]), as it

highly depends on the input data. If the context information
is low, e.g. there are barely objects of known sizes in the
surrounding of the person, the uncertainty is expected to be
higher. Hence, apart from regressing the distance µz in the
optical camera frame, we also predict the uncertainty σ2

z as
direct output of the model. In total, the network estimates two
additional values fwz (x) = (µz, σ

2
z) per prior box p. Similar

to the localization in the previous section, the likelihood of
the distance yz is modelled as a normal distribution:

p(yz|fwz (x)) = N (µz, σ
2
z), (5)

and we minimize the negative log likelihood loss for a given
groundtruth distance z̄c:

Lz(w) = − log p(z̄c|fwz (x)) ∝ 1

2σ2
z

‖z̄c−µz‖+log σz. (6)

For the joint network we add all three losses with an
additional manual weight λz for the distance loss. For prior
boxes without an associated sample or without an associated
distance label the distance loss is zero.

C. Metrics

The 2D detection performance on ECP2.5D is evaluated
using the standard LAMR metric as in [19]. It is the geo-
metric mean of the miss-rate for ten logarithmically scaled
false-positives-per-image (fppi) reference values. We pass
on the 3D IoU based matching criterion, that is used by
the KITTI benchmark [18], since it is hard to fulfill by
monocular 3D detection methods, as mentioned in Sec II.
[12] and [13] apply the average localization precision (ALP)
metric proposed in [33]. There, predictions and groundtruth
objects are matched on an absolute distance threshold of one
or two metres. As we expect a linearly increasing distance
error in dependence of the groundtruth distance z̄c, we apply
a relative error metric for distance evaluation. We evaluate
the predicted distance µz for all detections at a fppi of 1.0.
The relative distance error is defined by

ez(z̄
c, µz) =

|z̄c − µz|
z̄c

, (7)

and is calculated for each matched detection ground-truth
pair (z̄c, µz) in the set of all n matches Ω. The mean relative
error (MRE) is given by

MRE =
1

n

∑
(z̄c,µz)∈Ω

ez(z̄
c, µz). (8)



Fig. 4: Qualitative results of our proposed approach. Top row: Input image, detected pedestrians (blue) and ground-truth
annotations (green). Middle row: point clusters per person (green), estimated distance (teal upright ellipsoid) and uncertainty
for each detection (teal covariance ellipse). Bottom row: Distance estimations of the fixed height baseline, visualized as
magenta cylinders. The selected object is shown in red in all rows.

For evaluation of the 3D localization for a groundtruth
position p̄c and its estimate p̂c we use the relative 3D error

e3D =
‖p̄c − p̂c‖
‖p̄c‖

. (9)

In addition, we calculate a joint metric called LAMR3D.
There, predictions and test samples only match if their rela-
tive error e3D is below a threshold of 0.1 or 0.2. Everything
else, including the 2D IoU matching criterion for an IoU
threshold of 0.5, is identical to the definition of the LAMR.

V. EXPERIMENTS

We build upon the YOLOv3 tensorflow implementation
provided by [31] for our experiments. As in [19] nine
prior box sizes are calculated with the dimension clustering
proposed in [15] on the training split of the ECP dataset
and distributed on the three output layers. Hence, we get
the same prior box recall as in [19], which is about 100%
for an IoU of 0.5. The networks are trained to discriminate
pedestrians and riders. Still, we focus on the evaluation of the
former as pedestrians are a lot more frequent. Flipping and a
crop and scale augmentation have been used in all trainings.
Predictions are filtered in 2D with a greedy non-maximum
suppression parametrized with an IoU threshold of 0.5. We
used an enhanced debayering for the images of ECP, that
improved the visual appearance but did not show an influence
on detection performance for our YOLOv3 implementation.
Experiments are run and evaluated on day-time data only.

A. Base 2D detection model

First, we train a base 2D detection model (named Base)
on the ECP training dataset to be used for initialization
of our joint model on ECP2.5D. The Darknet53 part of
our adapted YOLOv3 network - using the detection losses
and task-uncertainty weighting described in Sec. IV-A -
is initialized with weights optimized for classification on

ImageNet [34]. The network is trained for 800,000 iterations
with an initial learning rate of 1e-5, which is decreased
by a factor of 0.1 after 300,000 and 600,000 iterations. A
focal loss (see [35]) weighting with γ = 2.0 instead of
the standard cross entropy loss is used, as it improves the
detection performance. The best performing model with the
lowest LAMR on the reasonable scenario on the validation
subset is selected and evaluated on the ECP test dataset.
It reaches a LAMR of 7.0 in contrast to 8.5 as shown in
[19], where the Darknet implementation of [15] was used.
In Tab. III the LAMR of 6.2 is lower on ECP2.5D. This
difference occurs as ECP2.5D only contains 97% of the
objects of the ECP reasonable scenario. Instances of the ECP
dataset that are not lifted and thereby not part of the ECP2.5D
annotations still serve as ignore instances during evaluation.

B. Joint detection and distance estimation

For the training of our distance model (named L2) on
ECP2.5D we add randomly initialized convolutional layers
for the two distance outputs described in Sec. IV-B. All
other layers are initialized with the base detection model.
Due to numerical stability, we predict log σ2

z instead of σ2
z

as in [31]. At the beginning of the training the L2 loss
for metric distances in metres is higher than for the other
losses. Therefore, we adapt the bias values of the uncertainty
estimation in the last convolutional layer. The manual loss
weight λz is set to 0.5. All layers of the joint model including
those of the Darknet-53 base network are optimized for
another 550,000 iterations on the training split of ECP2.5D.
Not uplifted instances of ECP still contribute to the detection
losses. The initial learning rate is set to 1e-5 and reduced by a
factor of 0.1 after 300,000 and 500,000 iterations. The results
for the joint model generating 2D predictions including the
distance estimations are shown in Tab. III. Similar to [13]
we also compare results for a fixed height baseline (named
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Fig. 5: Boxplots for absolute (top) and relative (bottom)
distance error in dependence of groundtruth distance.

L2fixed). Hereby, for each bounding box prediction of L2 we
calculate the distance based on the pixel height and the mean
pedestrian height of 1.68 m measured in our dataset (see Fig.
3) using Eq. (2). The distance metric MRE is calculated for
the true positives of the complete test dataset (MREc) and
the small subset (MREs) at a fppi of 1.0.

TABLE III: Detection and distance estimation results for
pedestrians of the ECP2.5D day test subset. All values are
given in percentage points.

Model LAMR MREc MREs

Base 6.2 - -
L2 6.8 5.9 15.7
L2fixed - 7.1 47.1

The 2D detection performance represented by LAMR of
L2 is reduced by 0.6 in comparison to the Base model.
In contrast to [26] our multitask training with weighting of
the three tasks based on their uncertainty does not improve
results of the single tasks. The L2 MREc score of 5.9%
is 1.2% better in comparison to the fixed size baseline.
Apparently, the network not only relies on a fixed size
assumption to estimate distances. This is further backed by
the presented MREs results. The L2 distance performance
for small persons is worse than the performance on the
full ECP2.5 dataset, but still significantly better than the
fixed size baseline. As small persons are rare cases also
in our training dataset, this is a very challenging subset.
In Fig. 4 we show qualitative results including instances
of the small persons subset. The first sample (left column)
includes several persons at varying distances. Our method
estimates the distance (and hereby the 3D location) of most
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Fig. 6: Boxplots for estimated uncertainty value sigma
depending on distance (top) and the predicted class score
(bottom).

of the persons with good accuracy. While the fixed size
baseline by design is accurate for average sized pedestrians,
it leads to large errors in particular for children. Our network
correctly estimates the distance of both children in the first
two samples with a low uncertainty. This could be facilitated
as they walk right next to other persons. In the third sample
the child is partly occluded by the pillar and not in the
proximity of another person or objects of known sizes. While
the estimated distance is too small, the network gives a
higher uncertainty for this challenging scenario. Similar, the
uncertainties for the two occluded pedestrians in the last
sample are higher than those of the non occluded ones at the
same distance. The analysis of the absolute distance error in
dependence of the groundtruth distance in Fig. 5 shows a
nearly linear correlation. This confirms our expectation for
monocular distance estimation and the hypothesis that an
absolute matching threshold as in ALP might be inappropri-
ate, due to the high dependency on the data distribution.
We analyse the uncertainty output log σ2

z of the network
in Fig. 6. The higher the groundtruth distance, the greater
the estimated uncertainty (first boxplot), which reflects the
greater absolute distance error for higher distances. Note that
in our loss formulation in Eq. (6) we model the distribution
for an absolute distance estimation. A relative/normalized

TABLE IV: 3D localization results for pedestrians of the
ECP2.5D day test subset. All values are given in percentage.

Model LAMR3D/0.1 LAMR3D/0.2 MRE3D/c MRE3D/s

L2 37.3 13.1 5.9 15.7
L2fixed 51.2 15.9 7.1 47.1



distance estimation formulation would most likely result in
constant uncertainty values. The second boxplot shows a
lower distance uncertainty for higher classification scores.
This might be due to the fact that challenging instances
regarding discrimination (e.g. occluded pedestrians) are also
more challenging for the distance estimation.

C. Evaluation of 3D localization

Using the camera ray through the bounding box center
of each detection according to the estimated distance, we
get an estimate p̂c for the 3D position of the object. We
evaluate the MRE for the e3D instead of ez (see Sec. IV-C).
Results are shown in Tab. IV. The resulting numbers for the
3D localization are identical with the distance estimation in
Tab. III, as for an accurate 2D bounding box regression the
accuracy of the 3D localization only depends on the distance
estimate. The LAMR3D values are significantly greater than
for the 2D LAMR in Tab. III, because of a large number
of 3D estimates that do not fulfil the matching criterion in
particular for a low matching threshold of 0.1.

VI. CONCLUSION

We have presented our new ECP2.5D dataset, which
provides 360◦ LiDAR point clouds as well as 2.5D an-
notations for 97% of all objects in the reasonable subset
of the ECP detection dataset. By publishing this dataset
we hope to facilitate advances in the field of monocular,
LiDAR, and camera+LiDAR based 3D person localization.
We have extended the YOLOv3 2D object detector by
a distance regression including uncertainty estimation to
serve as a first baseline. The second baseline using a fixed
size assumption is outperformed by the network. It is left
for future work to apply attention analysis techniques on
ECP2.5D to better understand the influence of a person’s
surrounding for monocular distance estimation, as well as
investigate the generalization capabilities of the presented
baseline on other datasets. Finally, using the extracted point
cloud clusters, the 2D extent and the orientation information
already present in the ECP dataset, enclosing 3D bounding
boxes could be generated automatically. This would facilitate
the comparison with other 3D object detection approaches.
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