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Abstract—State-of-the-art stixel methods fuse dense stereo
disparity and semantic class information, e.g. from a Convolu-
tional Neural Network (CNN), into a compact representation of
driveable space, obstacles and background. However, they do not
explicitly differentiate instances within the same semantic class.
We investigate several ways to augment single-frame stixels with
instance information, which can be extracted by a CNN from
the RGB image input. As a result, our novel Instance Stixels
method efficiently computes stixels that account for boundaries
of individual objects, and represents instances as grouped stixels
that express connectivity.

Experiments on the Cityscapes dataset demonstrate that in-
cluding instance information into the stixel computation itself,
rather than as a post-processing step, increases the segmentation
performance (i.e. Intersection over Union and Average Precision).
This holds especially for overlapping objects of the same class.
Furthermore, we show the superiority of our approach in
terms of segmentation performance and computational efficiency
compared to combining the separate outputs of Semantic Stixels
and a state-of-the-art pixel-level CNN. We achieve processing
throughput of 28 frames per second on average for 8 pixel wide
stixels on images from the Cityscapes dataset at 1792x784 pixels.
Our Instance Stixels software is made freely available for non-
commercial research purposes.

I. INTRODUCTION

Self-driving vehicles require a detailed understanding of

their environment in order to react and avoid obstacles as

well as to find their path towards their final destination. In

particular, stereo vision sensors obtain pixel-wise 3D location

information about the surrounding, providing valuable spatial

information on nearby free space and obstacles. However,

as processing should be as fast as possible, it is essential

to find a compact and efficiently computable representation

of sensor measurements which is still capable to provide

adequate information about the environment [2], [3]. A com-

mon approach is to create a dynamic occupancy grid for

sensor fusion [4] and tracking [5], which provides a top-

down grid cell representation of occupied space surrounding

the ego-vehicle. Still, directly aggregating depth values into

an occupancy grid alone would disregard the rich semantic

information from the intensity image, and the ability to exploit

the local neighborhood to filter noise in the depth image.

A popular alternative in the intelligent vehicles domain is

the “stixel” representation, which exploits the image structure

to reduce disparity artifacts, and is computed efficiently [6].

By grouping pixels into rectangular, column-wise super-pixels

based on the disparity information, stixels reduce the com-

plexity of the stereo information. Later, class label informa-

tion obtained from deep learning has been incorporated into

the stixel computation and representation, so-called Semantic
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Fig. 1: Top: Input RGB image (corresponding disparity image

not shown). Middle: Semantic Stixels [1] use a semantic

segmentation CNN to create a compact stixel representation

which accounts for class boundaries (stixel borders: white

lines, arbitrary colors per class). Note that a single stixel

sometimes covers multiple instances, e.g. multiple cars. Bot-

tom: Our Instance Stixels algorithm also accounts for instance

boundaries using additional information learned by a CNN

and clusters stixels into coherent objects (arbitrary colors per

instance).

Stixels [1]. Yet, obstacles are still just a loose collection of

upright “sticks” on an estimated ground plane, lacking object

level information. For example, the car stixels in the middle

row of figure 1 do not indicate where one car starts and its

neighboring car ends.

This paper introduces an object level environment repre-

sentation extracted from stereo vision data based on stixels.

Our method improves upon state-of-the-art stixel methods [1],

[7] that only consider semantic class information, by adding

instance information extracted with a convolutional neural

networks (CNN) from the input RGB image. This provides

several benefits: First, we obtain better stixels boundaries

around objects by fusing disparity, semantic, and instance

information in the stixel computation. Second, stixels belong-

ing to an object are connected vertically and horizontally

(see bottom image of figure 1) by clustering them based on

semantic and instance information. Third, the processing is
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Fig. 2: Instance stixel pipeline applied to a RGB and disparity input image pair obtained from a stereo camera. The RGB

image is processed by a Convolutional Neural Network (CNN) to predict offsets to the instance centers (HSV color coded) and

per-pixel semantic class probabilities (visualized as color gradient). The class probabilities are fused with the disparity input

image in the Stixel computation to provide a super-pixel representation of the traffic scene, which unifies Semantics, Depth and

additionally Instance output (left images). In the baseline algorithm (Semantic Stixels + Instance, dashed red arrow) the obtained

stixels are clustered based on the instance offsets to assign stixels to instances (not shown). In contrast, our proposed algorithm

(Instance Stixels, blue arrow) fuses the instance offset information with the other two channels in the Stixel Computation.

Subsequently, stixels are also clustered to form instances, but with improved adherence of stixels to instance boundaries (top

right image, arbitrary colors).

more efficient than computing Semantic Stixels [1] and per-

pixel instance labels separately.

II. RELATED WORK

The idea of stixels, regarding objects as sticks standing

perpendicular on a ground plane, was introduced by [6].

The stixel algorithm has found diverse applications in the

autonomous driving domain. Stixels were used as an integral

part of the pipeline for the Berthe Benz drive [8]. [9] develop

a collision warning system using only stereo-based stixels and

[10] used stixels to detect small unknown objects, such as

lost cargo. The original idea was further extended in [11] to a

multi-layer representation which used a probabilistic approach,

i.e. stixels do not need to be connected to the ground plane

anymore. In the multi-layer representation, stixels segment

the entire image into rectangular super-pixels, classified as

ground, object or sky. Additionally, a dynamic programming

scheme was presented for efficient real-time computation of

stixels. For even faster computation, this dynamic program-

ming scheme was then also implemented for the Graphical

Processing Unit (GPU) by [12]. In [13] stixels were compared

with other super-pixel algorithms as basis for multi-cue scene

labeling.

The general stixel framework offers various possibilities

for extensions and modifications. For instance, [14] compared

the effects of different methods for initial ground manifold

modeling. Driven by the requirements of autonomous driving,

[15] applied a Kalman filter to track single stixels. Stixel

tracking was then further improved by [16]. Yet, stixels are

generally tracked independently and not as parts of an object.

In order to obtain object information [17], [18], [19], [20]

group the Dynamic Stixels based on shape cues and graph

cuts and thus rely on tracking Stixels over time. Stixels are

also applied in semantic scene segmentation with more general

classes than ground, object and sky. For this purpose, semantic

information can be obtained by using object detectors for

suitable classes [21] or Random Decision Forest classifiers

[22] and then including that information in the Stixel gen-

eration process. [1] extend this idea by incorporating the

output of a Fully Convolutional Neural Network (FCN) in

the probabilistic stixel framework. They named their approach

Semantic Stixels. Based on Semantic Stixels and focusing on

non-flat road scenarios, [7] generalize stixels to also model

slanted surfaces, e.g. not strictly perpendicular to the road

anymore, including piece-wise linear road surfaces.

Meanwhile, many more deep neural network architectures

have been proposed in the computer vision literature to im-

prove classification and image segmentation tasks on per pixel

basis. For instance, Residual Neural Networks [23] facilitate

training of deeper networks by learning residual functions.

Dilated Residual Networks [24] (DRN) improve on this work

by maintaining a higher resolution throughout the fully con-

nected network, while working with the same receptive field.

As a consequence, they are useful for applications that require

spatial reasoning such as object detection or, as in our case,

instance segmentation. In order to enforce consistency between

semantic and instance segmentation, recently the term panoptic

segmentation was introduced in [25] and has led to further

improvement in the field [26]. Unfortunately, one cannot treat

instance segmentation as a classification problem, as is done

for semantic segmentation. A main reason is that the number

of instances varies per image, which prohibits a one-to-one

mapping of network output channels to instances. Instead

of predicting instance labels directly, [27] trains a CNN to



map each pixels in an image onto a learned low-dimensional

space such that pixels from the same instance map close

together. Object masks are then obtained in post-processing by

assigning pixels to cluster centers in this space. [28] instead

use supervised learning to map pixels to a specific target

space, namely the 2D offsets from the given pixel towards

its instance’s center and then rely on clustering all pixels into

instances. The Box2Pix method [29] uses 2D center offset

predictions for instances, but instead of clustering they are

associated with bounding boxes found through a bounding

box detection branch. In order to avoid an additional bounding

box detection branch, [30] learn a clustering bandwidth and

confidence per pixel and thereby speed up the grouping of

pixels to instances.

Our objective is to create efficient stixel representations

rather than pixel-accurate instance segmentation in images,

and to avoid overhead of clustering all pixels into instances

before reducing them to a compact representation. Still, we

follow insights from the work on per-pixel instance segmen-

tation to improve stixel computation, deal with the unknown

number of instances in an image, and enable the clustering

of stixels into instances. Building upon our prior conference

publication [31], the main contributions are thus summarized

as:

• We present Instance Stixels, a method to include instance

information into stixels computation, which creates better

stixels, and allows grouping to instance IDs from a single

stereo frame.

• We investigate three different ways to include the instance

information, and show that adding the information into

the stixel computation itself results in more accurate in-

stance representations than only using it to cluster Seman-

tic Stixels or alternatively assigning Semantic Stixels to

instances using pixel-based methods. Further we compare

the trade-off between computation speed and instance

segmentation performance for these three variations to

showcase the favorable properties of Instance Stixels.

• We investigate the use of a novel regularizer for Instance

Stixels which replaces the former prior term in Stixels.

This simplifies the model and leads to improved instance

segmentation.

• Our entire implementation of the optimized pipeline for

Semantic Stixels and Instance Stixels is provided as open-

source to the scientific community for non-commercial

research purposes.

III. METHODS

This section will first briefly summarize the original dispar-

ity Stixel and Semantic Stixel formulations in subsection III-A.

Subsection III-B then explains how to integrate the instance

information from a trained CNN into the stixel computation it-

self for improved stixel segmentation. Finally, subsection III-C

will discuss how the instance information can be used to

cluster stixels belonging to the same object.

The clustering step could be applied to any stixel computa-

tion method. We therefore consider two options:

• Clustering stixels from a standard Semantic Stixels

method [1], such that instance offset information is only

considered here at this final clustering step. This baseline

approach corresponds to the red arrow in Figure 2. In

our experiments we shall refer to this combination as the

Semantic Stixels + Instance method.

• Clustering based on our novel instance-aware stixels

computation from section III-B, see the blue arrow in

Figure 2. We name this combination our novel Instance

Stixels method.

Conceptually, Instance Stixels are a natural extension to

Semantic Stixels as they extend disparity and semantic seg-

mentation information with additional instance information to

compute a compact representation from a stereo image pair.

These stixels also receive an object id which groups them into

instances.

A. Stixels

In the following, an outline of the derivation of the original

Stixels and Semantic Stixels framework is presented. For a

more detailed derivation, see [32] and [1].

1) Disparity Stixels: Following the notation of [32], the full

stixel segmentation of an image is denoted as L = {Lu|0 ≤
u < W} with W being the total number of stixel columns in

the image. Thus, given a selected stixel width w, it follows

that W = image width

w
. The segmentation of column u contains

Lu = {sn|1 ≤ n ≤ Nu ≤ h} contains at least one but at

most height h stixels sn. A stixel sn = (vbn, v
t
n, cn, fn(v)) is

described by the bottom and top rows, respectively vbn and vtn,

that delimit the stixel. Additionally, a stixel is associated with

a class cn ∈ {g, o, s} (i.e. ground, object, sky) and a function

fn which maps each row of the image to an estimated disparity

value.

The aim is to find the best stixel segmentation L∗ given a

measurement (e.g. a disparity image) D, i.e. it maximizes the

posterior probability

L∗ = argmax
L

p(L|D). (1)

According to Bayes’ rule, this can be rewritten as

p(L|D) =
p(D|L)p(L)

p(D)
. (2)

Here, the normalization factor p(D), constant in L, can be

discarded in the maximization task. Since each column u ∈
{0, ...,W −1} of the image is treated independently, the MAP

objective can further be simplified:

L∗ = argmax
L

W−1
∏

u=0

p(Du|Lu)p(Lu). (3)

Here, p(Du|Lu) denotes the column’s likelihood of the dis-

parity data, and p(Lu) is a prior term modeling the pairwise

interaction of vertically adjacent stixels. This is explained in

more detail in [11].

Assuming all rows are equally likely to separate two stixels,

the column likelihood term can be written as product of



individual terms for Nu stixels, Lu = {s1, ..., sNu
}. Since

only disparity values of the rows within each stixel contribute

to its likelihood, those terms can in turn be factorized over the

rows vbn ≤ v ≤ vtn of each stixel n ∈ {1, ..., Nu}. Hence, the

final objective is [32]:

L∗ = argmax
L

W−1
∏

u=0

Nu
∏

n=1

vt
n

∏

v=vb
n

p(dv|sn, v)p(Lu). (4)

Here the term p(dv|sn, v) includes different disparity models

per geometric class. For sky stixels this model is simple:

fsky(v) = 0. The disparity of object stixels is assumed

to be normally distributed around the mean stixel dispar-

ity fobject,n(v) = 1
vt
n+1−vb

n

∑vt
n

v′=vb
n

dv . Furthermore, ground

stixels rely on a previous estimation of the ground plane

parameters α (the slope) and vhorizon (horizon estimate in

the image), which can be obtained for example from v-

disparity [33]. The assumed disparity model for ground stixels

fground(v) = α(vhorizon − v) is then linear and the same for

all columns. For details, we refer to [12].

In practice, the MAP problem (equation 4) is written as an

energy minimization problem by turning the product over prob-

abilities into a sum of negative log probabilities, which is then

solved efficiently through Dynamic Programming (DP) [32],

[12]. DP will efficiently minimize the energy function

E(Lu) =

Nu
∑

n=1

Ep(sn−1, sn) + Ed(sn) (5)

for many stixel hypotheses Lu = {s1, ..., sNu
}, which

consists of unary terms Ed(sn) and pairwise energy terms

Ep(sn−1, sn). Intuitively, the unary energy term Ed(sn) de-

scribes the disparity deviation of the disparity models de-

scribed above. The pairwise term for n = 1 reads Ep(s0, s1)
and is a special case since s0 is not defined. In all other cases,

this pairwise term only evaluates the plausibility of a given

stixel segmentation. Note that this in particular means that this

pairwise term is independent of the disparity data. We have

omitted these details here for simplicity [32].

2) Semantic Stixels: The Semantic Stixels method [1] in-

troduced an additional semantic data term to associate each

stixel with one class label ln ∈ {1, ..., C}. Thus, Semantic

Stixels are characterized by sn = (vbn, v
t
n, cn, fn(v), ln). First,

a semantic segmentation CNN is trained on RGB images with

annotated per-pixel class labels. Then, when testing on a test

image, the softmax outputs σ(p, l) for all semantic classes

l of all pixels p are kept (note that in a standard seman-

tic segmentation task, only the class label of the strongest

softmax output would be kept). The unary data term Ed(sn)
of the original disparity stixel computation is then replaced

by Eu(sn) = Ed(sn) + ωlEl(sn), thereby adding semantic

information from the network activations,

El(sn) = −
∑

p∈Pn

log σ(p, ln). (6)

Here Pn are all pixels in stixel sn, and ωl a weight factor.

B. Instance Stixels

Instance Stixels expand the idea of Semantic Stixels by

additionally training a CNN to output a 2D estimation of the

position of the instance center for each pixel. This estimation

is predicted in image coordinates, as proposed in [29], [28].

More specifically, the CNN predicts 2D offsets Ωp ∈ R
2

(i.e. x and y direction) per pixel, which are relative to the

pixel’s location in the image. As a consequence, for all pixels

p belonging to the same instance j, adding their ground truth

offset Ω̂p to the pixel location (xp, yp) will result in the same

instance center location

µ̂j = Ω̂p + (xp, yp). (7)

We refer to such a network as the Offset CNN and an example

of its output is visualized in figure 2. The ground truth instance

centers are defined as the center of mass of the ground

truth instance masks. Note that instances are commonly only

considered for certain semantic classes, e.g. cars, pedestrians

and bicycles. Let I ⊂ N denote said set of instance relevant

classes. For all other classes, the target offset is (0, 0).
Instance Stixels incorporate the Offset CNN prediction into

the stixel computation. Let µp denote the instance center

estimate obtained from the CNN for some pixel p, and

µ̄n =
∑

p∈Pn
µp the mean over all pixels in an instance stixel

sn = (vbn, v
t
n, cn, fn(v), ln, µ̄n). We model the instance term

depending on the center estimates of the pixels and the mean

instance center of the current stixel hypothesis sn:

Ei(sn) =

{

∑

p∈Pn
||µp − µ̄n||

2
2, if ln ∈ I

∑

p∈Pn
||µp − (xp, yp)||

2
2, otherwise.

(8)

In other words, for instance classes, the instance term favors

stixels which combine pixels that consistently point to the

same instance center. For non-instance classes, i.e. ln /∈ I,

offsets Ωp = µp − (xp, yp) deviating from zero contribute to

the instance energy term. Without this, classes with instance

information would generally have higher energy and thus be

less likely than the non-instance classes.

With the instance energy term, the unary energy becomes

Eu(sn) = ωdEd(sn) + ωsEs(sn) + ωiEi(sn). (9)

This also introduces weights ωd and ωi for the disparity and

instance terms for more control on the segmentation.

A useful side effect is that each instance stixel receives a

mean estimate of its instance center pixel coordinates, which

will be used when clustering stixels into objects, discussed in

Section III-C.

C. Clustering stixels with instance information

We now describe how output from an Offset CNN can

be used in a post-processing step to cluster stixels. Note the

favorable computational complexity of grouping a low number

of stixels rather than individual pixels as in conventional

instance segmentation tasks, e.g. 2000 stixels vs. 1.4M pixels.

First, the per-pixel offsets from the Offset CNN are aggre-

gated into a per-stixel offset estimate by averaging the CNN’s



predictions over the pixels in the stixel (this is already done

for Instance Stixels, as noted in Section III-B). Hence, each

stixel is equipped with an estimate of its instance center in 2D

image coordinates, as well as a semantic class label.

Then, the estimated instance centers and semantic class

prediction are used to group stixels to form instances. Sep-

arately for each semantic class, we aim to find clusters in

the estimated instance centers. Note that this condition on

the semantic class also qualifies Instance Stixels for panoptic

segmentation. The final clustering is done using the DBSCAN

algorithm [34] as it estimates the number of clusters (i.e.

instances) and performs well when the data has dense clusters.

DBSCAN has only two parameters: the maximum distance

between neighboring data points ε and the minimum size, as

in cardinality, γ of the neighborhood of a data point in order

to consider this point a core point. Additionally, we introduce

a size filter parameter which prevents stixels that are smaller

(i.e. cover less rows) than ρ to be considered a core point. This

modification prevents small stixels, which lie on the border of

two instances, to merge those instances together. Nevertheless,

they are assigned to one of those adjacent instances during the

clustering procedure.

D. Unary Regularization

The original Stixel MAP formulation considers a prior term

p(Lu) (equation 4) which models pairwise interactions of

vertically adjacent stixels. The prior term contains detailed

models of the expected segmentation. For example, it models

the probability of a ground stixel to be found below a sky

stixel and vice versa. In the end, the modelled probabilities

are usually estimated heuristically.

At the same time, this prior term acts as a regularizer.

Without this regularization effect, the resulting stixels tend to

be very small simply to fit the data terms as well as possible.

In an extreme case with stixels of a width of 1 pixel, this

would lead to stixels of also height equal to 1 pixel, which

means in the end that each stixel corresponds to a single pixel.

Consequently, the stixel segmentation would not be any more

compact than the pixel-wise representation.

We argue that this modeling of pairwise interactions is

especially useful for disparity-based stixels, since there more

detailed semantic information is missing. Instance Stixels

however do extract semantic and instance information from

the RGB images and thus this modeling may be unnecessary.

Therefore, we propose to replace this prior term by a simple

unary regularization term

Ep(sn) =
wR

vtn + 1− vbn
(10)

which penalizes small stixels. The regularization constant wR

is the only parameter that needs to be determined and is

comparable to the different weighting factors of the data terms.

IV. IMPLEMENTATION

We provide an open source Instance Stixels implementation

which has been optimized for computational performance on

the Cityscapes dataset [35]. As input it requires the RGB

and disparity image of a scene and outputs a set of stixels

comprising information about 3D position, semantic class and

instance label. Note that in general, Instance Stixels may also

operate only on the RGB image without relying on an disparity

image and as a result do not compute the depth of a stixel.

The first step in the Instance Stixel pipeline as depicted

in figure 2 is the CNN which predicts for each pixel the

probability of each semantic class and the 2D instance center

offset vectors in pixels. On Cityscapes this results in an

output depth of 19 + 2 = 21 channels in total. Any standard

semantic segmentation network architecture could be used as

the basis for the Semantic Segmentation and Offset CNN by

increasing the output depth by 2 channels and training those

to predict instance offset vectors. In our implementation, we

use Dilated Residual Networks [24] (DRN) as our underlying

architecture due to their favorable properties for these tasks,

as discussed in Section II. Furthermore, we exploit the fact

that, unlike the general method presented in that paper, our

implementation is computes stixels of a fixed width of 8 pixels

and remove any upsampling layers in the DRN architecture.

The implementation of the DRN is largely based on the

PyTorch [36] code provided by the authors of [24]. In order to

optimize CNN inference for efficiency, we make use of mixed

precision capabilities of NVIDIA Volta GPUs using the Apex

utilities [37] without loss of accuracy.

The second step in the pipeline consists of the actual

stixel computation. For this purpose, we extended the open-

source disparity Stixel CUDA-implementation introduced in

[12]. Amongst other features, such as the computation of

Semantic Stixels according to [1] and handling of invalid

disparity measurements, our extension comprises the Instance

Stixels presented here. Techniques to optimize for efficiency,

such as the use of prefix sums (aka. cumulative sums), have

been adapted and reused from the original implementation.

[12] provides a detailed explanation of those ideas.

Lastly, the stixels are clustered based on the mean instance

center estimate. To this end, we utilize the GPU-based DB-

SCAN implementation of cuML [38] and customize it to

include the size filter ρ described in section III-C.

In summary, all components are implemented on the GPU

which reduces the effective number of required host-device

copy operations to two, namely copying the RGB and disparity

images to device memory and retrieving the resulting stixel

segmentation from device memory. The source code of our

implementation is available online1.

V. EXPERIMENTS

A. Dataset, metrics and pre-processing

The computation of stixels require a RGB camera image

and the corresponding disparity image obtained from a stereo

camera setup. We use the Cityscapes dataset [35] for our

experiments, as it consists of challenging traffic scenarios.

Further, it provides ground truth annotations for semantic and

1Code available at https://github.com/tudelft-iv/instance-stixels

https://github.com/tudelft-iv/instance-stixels


instance segmentation. The performance on these two tasks is

evaluated using the standard Cityscapes metrics [35].

Semantic segmentation performance is measured by the

Intersection-over-Union (IoU) = TP
TP+FP+FN

, where TP, FP,

and FN denote the number of true positives, false positives

and false negatives over all pixels in the dataset split. An

instance mask is considered correct if the overlap with its

ground truth mask surpasses a specific threshold. The Average

Precision (AP) corresponds to an average over the precision for

multiple thresholds. Average Precision (AP50%) only considers

an overlap of at least 50% as true positive. The metric also

allows to provide confidence score for each instance mask. We

did not make use of this option and always set the confidence

score to 1 for all compared algorithms.

The disparity images provided in the Cityscapes dataset

exhibit noisy regions introduced due to bad disparity mea-

surements at the vertical image edges and the hood of the

car. Inaccurate disparity data may harm the performance of

disparity based Stixels. Although Semantic Stixels are already

more robust due to the second modality, we aim to suppress

such effects. Therefore, we crop all images symmetrically (top:

120px, bottom: 120px, left: 128px, right: 128px) to ensure

that our experiments are not influenced by disparity errors.

Following [1], we are using the official validation as test set.

Therefore, we split the official training set into a separate

training subtrain and validation set subtrainval (validation

cities: Hanover, Krefeld, Stuttgart).

B. Training the CNN

The CNN takes an RGB image as input and predicts the

semantic class probabilities and two channels for the offset

vectors. Thus, it is a single CNN that provides the output

of the Semantic Segmentation and Offset CNN, which were

discussed separately in section III. For training, we construct

a loss that allows us to steer the focus between consistency

and accuracy of the prediction. Here, we consider a prediction

consistent when all pixels of a ground truth instance mask

point towards the same 2D position, i.e. all predictions for

the instance center (equation 7) are the same. Offset accuracy

is directly measured by the deviation of each single pixel

from the center of mass of the ground truth instance mask.

We argue that, for the predicted offsets, consistency is more

important than accuracy. This is best illustrated by an example:

consider a single instance in an image and all predicted

offsets of that instance do not point to the center of mass

of the instance, but instead to a different single point. As

a result, this prediction would be consistent, as all offsets

point to the same point, and at the same inaccurate as that

point does not match the ground truth instance mask’s center

of mass. Despite the fact that this single point is not the

training target, the clustering on this inaccurate, but consistent

prediction would work perfectly since all the pixels of the

instance are mapped to a single point and thus form a distinct

cluster. This observation holds for both the instance-aware

stixel computation and the clustering. Nevertheless, enforcing

a certain degree of accuracy avoids trivial solutions such as

all pixel offsets in the image point to the same single point

which would render clustering impossible.

Let j ∈ J denote all ground truth instance masks in an

image, Pj all pixels of that mask and PB all background pixels

which are not part of any instance mask. For all pixels p the

CNN predicts an offset Ωp and using equation 7 the predicted

center µp can be computed. Further, µ̄j = 1
|Pj |

∑

p∈Pj
µp

denotes the corresponding mean of the predicted centers and

µ̂j the center of mass of the ground truth instance mask. Our

offset loss

LO =
∑

j∈J





αa

|Pj |1

∑

p∈Pj

||µp − µ̂j ||1 +
αc

|Pj |

∑

p∈Pj

(µp − µ̄j)
2





+
αa

|PB |

∑

p∈PB

||Ωp||1 (11)

thus comprises a consistency term based on µ̄j , an accuracy

term based on µ̂j and a background term. The weights αa and

αc provide the means to find a favorable trade-off between

those terms. The full loss L = LO + LS further includes

a semantic loss LS , namely a 2D cross-entropy semantic

segmentation loss, on the the first 19 semantic output channels.

It is important to note that the output (not the input) of

the CNN is downscaled by a factor 8. We also downscale

the ground truth output by that factor for training. The reason

for this is that upscaling, unless nearest neighbor upscaling

is used, introduces interpolation errors that result in a smooth

transition of the offset vectors between two instances. As a

consequence, this would also result in an interpolation of the

predicted means of two neighboring instances at pixels close to

the borders, which in the end yields worse clustering results.

To overcome this issue, we use nearest neighbor upscaling

when passing the predicted images to the Stixel algorithms.

The loss of resolution is compensated by the fact that our

Stixels work at a resolution of width 8.

In practice, we found that training the drn d 38 architecture

with αa = αc = 1e − 4 and the drn d 22 architecture with

αa = 1e− 5 and αc = 1e− 4 worked well. We minimize the

loss function using the Adam optimization [39] (learning rate

of 0.001, β1 = 0.9 and β2 = 0.999). Further, we apply zero

mean, unit variance normalization based on the training data

to the input data and use horizontal flipping to augment our

training data. The networks were trained for 500 epochs and

with a batch size of 20 images. From these 500 epochs, we

chose the best performing model for each architecture based

on the semantic IoU on the validation set.

C. Hyperparameter optimization

The stixel algorithms we evaluate offer several hyperparam-

eters that require tuning: the weighting of the data terms for

the Stixel computation ωd, ωs and ωi, as well as the DB-

SCAN parameters ǫ, γ and ρ. The stixel framework provides

more parameters from which we set the stixel width to 8

pixels throughout our experiments. Remaining parameters are

set based on recommendations from [32] and [12]. For the

Pixelwise baseline we only need to tune ǫ and γ. Additionally,



(a) Instance performance vs. frames per second. (b) Semantic performance vs. frames per second.

Fig. 3: Trade-off between segmentation performance and processing speed. Each data point represents the average performance

of an algorithm on the Cityscapes validation set (all classes, cropped to 1792x784 pixels). The colors indicate different CNN

architectures (drn d 22 or drn d 38), the symbols differentiate the base algorithm to obtain the instances (triangle: Instance

Stixels, square: Semantic Stixels + Instance, circle: Semantic Stixels + UPSNet, cross: Pixelwise. If the symbol is filled with

color, the unary regularization term was used instead of the pairwise energy term in the stixel computation (section III-D).

CNN Unary
regularization

AP [%] AP50 [%] IoU [%] cat IoU [%] FPS Avg. number
of stixels

Pixelwise drn d 38 - 12.5± 0.3* 25.3± 0.7* 68.2 85.0 0.5 1404928**

SS+I drn d 22 - 11.3 25.4 64.1 80.2 27.5 2095
SS+I drn d 22 X 11.3 25.7 64.6 81.8 28.2 1765
SS+I drn d 38 - 14.7 30.3 66.6 80.8 22.0 1270

SS+I drn d 38 X 15.3 31.6 66.5 81.3 22.1 4795
SS+UPS drn d 22 - 12.7 28.5 64.1 80.2 5.3 2095
SS+UPS drn d 38 - 14.1 30.8 66.6 80.8 5.1 1270

IS drn d 22 - 11.8 26.3 63.8 79.9 27.7 1384
IS drn d 22 X 12.6 26.8 64.3 81.1 28.1 2673
IS drn d 38 - 15.8 31.1 66.4 80.5 22.0 1421
IS drn d 38 X 16.3 32.4 66.9 81.9 22.2 2278

TABLE I: Performance of the Pixelwise baseline and different variations of stixel algorithms that provide instance segmentation

(rows) with respect to various metrics (columns). Results are computed on the Cityscapes validation set (all classes, cropped

to 1792x784 pixels). Best results per metric are highlighted in boldface. * The results of the Pixelwise baseline were averaged

over three runs and are reported with the corresponding standard deviation. All other algorithms are consistent over multiple

runs. ** The resulting segmentation is represented as 1792 · 784 = 1404928 pixels, since no stixels are involved here.

in this baseline the large number of data points requires the

clustering algorithm to process the data in batches which leads

to non-deterministic results.

The parameter tuning is performed using Bayesian opti-

mization [40] on the subtrainval validation set for 100 iter-

ations. The score is computed as Semantic IoU+1.5·Instance

AP. We weighted Instance AP higher as this is our main focus.

The optimization is performed separately for each algorithm

unless noted otherwise.

D. Comparison of algorithmic variations

To analyze the capabilities of our proposed method, we

vary four different aspects of computing stixels with instance

information.

1) Pixelwise: In this baseline setup, the pipeline as shown

in figure 2 is run entirely without stixels, by removing

the Stixel Computation. The semantic class is determined

according to the largest class probabilities. During the

clustering step, pixels of the same semantic class are

clustered based on their predicted instance centers.

2) SS+UPS: Represents the combination of state-of-the-art

methods to augment stixels with instance information.

Based on a separate instance segmentation method, a

stixel is assigned to an instance by majority vote of the

pixel-level prediction. For this purpose, we utilize the

following state-of-the-art methods: a pretrained instance

segmentation method called UPSNet [26] and Semantic

Stixels [1]. On pixel-level, UPSNet achieves AP perfor-



mance of 33.1% on the cropped validation set.

3) Semantic Stixels + Instance vs. Instance Stixels (SS+I

vs. IS): Corresponds to setting ωi = 0, which resembles

Semantic Stixels [1]), versus ωi > 0 in the stixels

computation (see equation 9).

4) Pairwise vs. unary: Describes whether the stixel com-

putation takes the pairwise term into account or instead

regularizes the height of a stixel based on the unary

regularization term as described in section III-D.

5) drn d 22 vs. drn d 38: Denotes the different base ar-

chitectures of the Dilated Residual Network [24] used

to predict semantic probabilities and instance offsets.

The architecture drn d 38 is deeper and requires more

memory.

Due to the fact that our subtrainval set overlaps with the

training set of the UPSNet, we cannot use the subtrainval set

for hyperparameter tuning. Hence, we use the same weights for

the Semantic Stixels of SS+UPS as the corresponding SS+I.

1) Processing speed vs. Segmentation Performance: In the

following we compare the different stixel methods for in-

stance segmentation regarding the trade-off of segmentation

performance and processing speed. The main indicators for

segmentation performance are the instance AP and the se-

mantic IoU as described in section V-A. Processing speed is

measured as the number of frames the pipeline can process

per second. Here, to compute the frames per second we

average the processing time of the frames in the validation

set, which takes into account the processing time of all three

modules (CNN, Stixel Computation and Clustering, see figure

2), but neglects data loading and visualization. All frames are

processed sequentially on a NVIDIA Titan V GPU.

Figure 3 illustrates the trade-off between processing speed

and instance as well as semantic performance in a com-

pact manner. Table I extends the figure by providing further

segmentation metrics and also the complexity of the image

representation as the average number of stixels per frame on

the official Cityscapes validation set.

In terms of segmentation performance, the illustrations show

that the choice of the network architecture of the CNN,

indicated by the color of the points, has the most prominent

effect (green: drn d 38 and blue: drn d 22). For both seg-

mentation metrics, even the best algorithm based on drn d 22

performing worse than the worst stixel algorithm based on

drn d 38. Within the same architecture however, Instance

Stixels (IS) generally perform better than Semantic Stixels +

Instance (SS+I) in terms of instance AP, but not always in

terms of semantic IoU. Further, for both algorithms (IS and

SS+I), using the unary regularization term (filled symbols) sur-

passes its pairwise counterpart (non-filled symbols) or at least

remains on par. Interestingly, the CNN architecture choice

also affects the comparison in instance AP of Instance Stixels

and Semantic Stixels + UPSNet (SS+UPS). For drn d 22, IS

22 with unary regularization achieves similar instance AP as

SS+UPS 22. For drn d 38, SS+UPS obtains worst instance

AP of all stixel methods. The semantic IoU of SS+UPS

is limited by its SS+I counterpart by construction. Overall,

Instance Stixels based on the drn d 38 architecture and using

the unary regularization outperforms all other stixel-based

algorithms in both segmentation metrics. Only the Pixelwise

algorithm surpasses this performance in the semantic IoU, but

not the instance AP. The same observations generally also hold

for the extended instance and semantic segmentation metrics

AP50% and the category IoU [35] as listed in table I.

To a certain degree, segmentation performance comes at

a trade-off regarding processing speed. Notably, the speed is

mainly determined by the choice of the CNN as well. The

Pixelwise pipeline is by far the slowest algorithm for these

tasks at only 0.5 frames per second. Stixel methods based

on drn d 38 are favorable compared to methods relying on

UPSNet, but not as fast as methods based on drn d 22.

Among the same architecture the differences in processing

speed are only minor and are listed in table I. Additional

analysis showed that the processing speed is steady over all

frames, regardless of the number of instances or stixels in an

image. The complexity of the segmentation, quantified by the

average number of stixels per frame, varies between algorithms

exhibiting no obvious correlation. Among the Instance Stixels

the highest average number stixels per frame is at most 2673.

2) Qualitative analysis: The consequences of the different

algorithm variations as described in section V-D are depicted

in figure 4 when applied on an real traffic scene image from

the subtrainval set. Figures 4a and 4b show the input data.

Instance segmentation results in the left column (4 (c),(e),(g)

and (i)) based on the drn d 22 architecture show in general

more errors than in the right column (4 (d),(f),(h) and (j))

which is based on the drn d 38 architecture. Especially figures

(g),(i) and (j) show several stixels which overlap two instances.

Figure 5 visualizes the full results (3D position, semantic

and instance segmentation) of Instance Stixels (drn d 38,

unary regularization) on three scenes (columns). Based on the

input RGB images (top row), the CNN predicts the offset

vectors (center rows). The offset vectors are visualized in

HSV color space, where the hue indicates the direction and

the saturation the magnitude of the offsets. The fourth row

shows the segmentation of the scenes. The overlaid colors

illustrate the semantic class per pixel, whereas the white

contours around objects mark the borders of instances. The

bottom row shows top down views of the scene based on

the per stixel disparity information and location within the

input image. In these illustrations the road and the sidewalk

are illustrated as polygons. Their boundaries are based on the

ground plane estimation. Sky stixels are discarded and non-

instance stixels are drawn as circles. Their radius indicates the

size of the respective stixel in the image. Stixels of the same

instance are connected by a line. Per column, we only connect

the stixel that are closest to the ego-vehicle. As a result of our

instance segmentation, we can also filter outliers. Specifically,

we do not include stixels that are further than 3 meters away

from the mean top down position of the instance. Also, we

removed the stixel artefacts of the Mercedes-Benz Star from

the top down view based on their position in the image.



(a) Input: Original image. (b) Input: Disparity image.

(c) Instance Stixels 22, unary regularization (ours). (d) Instance Stixels 38, unary regularization (ours).

(e) Instance Stixels 22 (ours). (f) Instance Stixels 38 (ours).

(g) Semantic Stixels + Instance 22, unary regularization (baseline). (h) Semantic Stixels + Instance 38, unary regularization (baseline).

(i) Semantic Stixels + Instance 22 (baseline). (j) Semantic Stixels + Instance 38 (baseline).

Fig. 4: Qualitative analysis of instance segmentation results from Semantic Stixels + Instance (baseline) and Instance Stixels

(proposed algorithm) using different architectures as well as comparing the pairwise energy term and the unary regularization.

Figure (a) and (b): The input RGB and disparity image. Below, the left column shows instance segmentation results obtained

using the drn d 22 architecture as basis for the CNN. Likewise, the right column Instances are indicated by arbitrary colors.

White areas denote stixels that cannot be assigned to specific instances, but their predicted semantic class is an instance class.

Black areas indicate that the predicted semantic class is not an instance class.



(a) Input RGB image. (b) Input RGB image. (c) Input RGB image.

(d) Input disparity image. (e) Input disparity image. (f) Input disparity image.

(g) Intermediate offset prediction. (h) Intermediate offset prediction. (i) Intermediate offset prediction.

(j) Instance Stixels, unary regularization. (k) Instance Stixels, unary regularization. (l) Instance Stixels, unary regularization.

(m) Instance Stixels 38, unary regularization. (n) Instance Stixels 38, unary regularization. (o) Instance Stixels 38, unary regularization.

Fig. 5: Illustration of stixel segmentations including spatial top down view of the scene. Each column is a separate scene,

the top two rows show the corresponding inputs, the center row shows the offsets predicted by the CNN and the bottom two

rows visualize the output of Instance Stixels (drn d 38, unary regularization). In the third row from the top, the overlaid

color indicates the semantic class of a stixel, whereas the white contour around objects indicate the segmented instances. The

last row shows the top view of the scene. Instances are visualized as lines, road and sidewalk stixels are plotted as polygons

based on the obtained ground plane estimation. Stixels of class sky are discarded in this illustration. All remaining stixels (e.g.

buildings and poles) as points and their radius indicates the stixels size.



VI. DISCUSSION

Results presented in section V-D show that adding the in-

stance term, that distinguishes IS and SS+I, increases instance

AP. Minor drawbacks in terms of semantic IoU may be due to

hyperparameter optimization which values instance AP more

than semantic IoU. Despite the increased instance AP, the

segmentation for far away objects (e.g. the truck in the left-

hand part of figure 4a) and tightly overlapping objects (e.g.

pedestrians in the left-hand part figure 5a) remain challenging.

Overall, the choice of the CNN appears to be more important

to the segmentation than the effect of the instance term. No-

tably, using a state-of-the-art pixelwise instance segmentation

CNN, such as UPSNet [26], and combining it with Semantic

Stixels falls behind significantly in terms of processing speed.

UPSNet requires on average 0.15 seconds of processing time

per frame which on its own yields only 6.6 frames per second.

Compared to the pixelwise UPSNet result, the instance AP of

SS + UPSNet has decreased by more than 50%. A drop in

overall accuracy is likely, since the stixels group pixels along

predefined coarse column borders and thus inherently decrease

the granularity of the prediction. Further, SS do not consider

the instance term introduced for IS, thus stixels may overlap

two different instances. UPSNet cannot change this afterwards

which leads to worse performance. Lastly, a pixelwise cluster-

ing approach shows weak instance segmentation performance

at a runtime of 0.5 FPS that is dominated by the clustering

algorithm suffering from the large amount of points.

The benefits of a purely stixels-based instance segmentation

method however is not only observed in processing speed, but

also in term of segmentation complexity. Pixelwise methods

result in more than 1.4 million independent predictions. Our

Instance Stixels on average require between 1384 and 2673

stixels per frame to describe the same amount of pixels.

This means Instance Stixels reduce the complexity of the

representation by factors between 525.6× - 1015.1×.

Aside from image segmentation, Instance Stixels provide

position estimates in 3D space. As a result, top down views

of a scene can be extracted, similar to a grid map. In contrast

to a grid map, our representation is continuous and does not

discretize 3D space. In this top down representation, imperfect

disparity measurements, become apparent, for example in that

the back of cars do not appear as straight lines. Further, it

also show the inaccuracies of the ground plane and horizon

estimation, which is here based on v-disparity [33]. In the

stixel model, stixels above the horizon cannot be classified

as ground. This leads to artefacts as seen on the road behind

the two cars in figure 5j. As the ground plane estimation is

crude, the polygons of the road stixels overlap sometimes with

stixels of obstacles. Combining Instance Stixels with LiDAR

measurements as shown in [41] may improve both, the depth

estimation and the ground plane estimation. As this is an

orthogonal approach, not related to instance segmentation, we

made use of our object based representation to for example

filter outliers in the depth measurements of a single object.

The rich information about both, the static and dynamic sur-

rounding, contained in Instance Stixels can benefit subsequent

utilization in an autonomous driving pipeline. For example,

Instance Stixels provide a rich and efficient representation for

path planning, object tracking, and mapping.

VII. CONCLUSIONS

This paper introduced Instance Stixels to improve stixel

segmentation by considering instance information from a

CNN, and performing a subsequent stixel clustering step. Our

experiments showed multiple benefits of including the instance

information already in the segmentation step, opposed to only

clustering Semantic Stixels. First, quantitative and qualitative

analysis show that Instance Stixels adhere better to object

boundaries. Second, Instance Stixels provide more accurate

instance segmentation than Semantic Stixels augmented with

instance information from a pixel-level instance segmentation

network. Third, Instance stixels still preserve the favorable

stixel characteristics in terms of compactness of the segmen-

tation representation (on average less than 2673 stixels per

image) and computational efficiency (up to 28 FPS at a resolu-

tion of 1792x784). In future work, the integration of additional

sensor modalities as shown in [41] and temporal information

to enforce consistency are potential research directions.
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[20] F. Erbs, A. Witte, T. Scharwächter, R. Mester, and U. Franke, “Spider-
based stixel object segmentation,” in IEEE Intelligent Vehicles Sympo-

sium, 2014, pp. 906–911.

[21] M. Cordts, L. Schneider, M. Enzweiler, U. Franke, and S. Roth, “Object-
level priors for stixel generation,” in German Conference on Pattern

Recognition. Springer, 2014, pp. 172–183.

[22] T. Scharwächter and U. Franke, “Low-level fusion of color, texture and
depth for robust road scene understanding,” in IEEE Intelligent Vehicles

Symposium, June 2015, pp. 599–604.

[23] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in IEEE Conference on Computer Vision and Pattern

Recognition, June 2016.

[24] F. Yu, V. Koltun, and T. Funkhouser, “Dilated residual networks,” in
Computer Vision and Pattern Recognition), 2017.

[25] A. Kirillov, K. He, R. Girshick, C. Rother, and P. Dollar, “Panoptic
segmentation,” in IEEE Conference on Computer Vision and Pattern

Recognition, June 2019.

[26] Y. Xiong, R. Liao, H. Zhao, R. Hu, M. Bai, E. Yumer, and R. Urtasun,
“Upsnet: A unified panoptic segmentation network,” in Computer Vision

and Pattern Recognition, 2019.

[27] B. De Brabandere, D. Neven, and L. Van Gool, “Semantic instance
segmentation with a discriminative loss function,” in Deep Learning for

Robotic Vision, workshop at CVPR 2017. CVPR, 2017, pp. 1–2.

[28] A. Kendall, Y. Gal, and R. Cipolla, “Multi-task learning using uncer-
tainty to weigh losses for scene geometry and semantics,” in IEEE

Conference on Computer Vision and Pattern Recognition, 2018.
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