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Abstract— State-of-the-art stixel methods fuse dense stereo
and semantic class information, e.g. from a Convolutional
Neural Network (CNN), into a compact representation of
driveable space, obstacles, and background. However, they do
not explicitly differentiate instances within the same class.
We investigate several ways to augment single-frame stixels
with instance information, which can similarly be extracted
by a CNN from the color input. As a result, our novel
Instance Stixels method efficiently computes stixels that do
account for boundaries of individual objects, and represents
individual instances as grouped stixels that express connectivity.
Experiments on Cityscapes demonstrate that including instance
information into the stixel computation itself, rather than as a
post-processing step, increases Instance AP performance with
approximately the same number of stixels. Qualitative results
confirm that segmentation improves, especially for overlapping
objects of the same class. Additional tests with ground truth
instead of CNN output show that the approach has potential
for even larger gains. Our Instance Stixels software is made
freely available for non-commercial research purposes.

I. INTRODUCTION

Self-driving vehicles require a detailed understanding of
their environment in order to react and avoid obstacles as
well as to find their path towards their final destination. In
particular, stereo vision sensors obtain pixel-wise 3D location
information about the surrounding, providing valuable spatial
information on nearby free space and obstacles. However, as
processing power is a valuable resource, it is essential to find
a compact representation of sensor measurements which is
still capable to provide adequate information about the envi-
ronment [2], [3]. A common approach is to create a dynamic
occupancy grid for sensor fusion [4] and tracking [5], which
provides a top-down grid cell representation of occupied
space surrounding the ego-vehicle. Still, directly aggregating
depth values into an occupancy grid alone would disregard
the rich semantic information from the intensity image, and
the ability to exploit the local neighborhood to filter noise in
the depth image.

A popular alternative in the intelligent vehicles domain is
the “stixel” representation, which exploits the image structure
to reduce disparity artifacts, and is computed efficiently [6].
By grouping pixels into rectangular, column-wise super-
pixels based on the disparity information, stixels reduce
the complexity of the stereo information. Recently, class
label information obtained from deep learning has been
incorporated into the stixel computation and representation,
so-called Semantic Stixels [1]. Yet, they are still a loose
collection of upright “sticks” on an estimated ground plane,
lacking object level information.

1 All authors are with the Intelligent Vehicles Group, TU Delft, The
Netherlands. Primary contact: t.m.hehn@tudelft.nl

Fig. 1: Top: Input RGB image (corresponding disparity im-
age not shown). Middle: Semantic Stixels [1] use a semantic
segmentation CNN to create a compact stixel representation
which accounts for class boundaries (horizontal stixel bor-
ders: white lines, vertical borders: not shown; arbitrary colors
per class). Note that a single stixel sometimes covers multiple
instances, e.g. multiple cars. Bottom: Our novel Instance
Stixels algorithm also accounts for instance boundaries using
additional information learned by a CNN and clusters stixels
into coherent objects (arbitrary colors per instance).

This paper introduces an object level environment repre-
sentation extracted from stereo vision data based on stixels.
Our method improves upon state-of-the-art stixel methods
[1], [7] that only consider semantic class information, by
adding instance information extracted with a convolutional
neural networks (CNN) from the input RGB image. This
provides several benefits. First, by fusing disparity, semantic,
and instance information in the stixel computation, we obtain
better stixels boundaries around objects. Second, the instance
information in each stixel is then used in a post-processing
step to efficiently group stixels into distinct objects, which
facilitates subsequent scene analysis steps.

II. RELATED WORK

The idea of stixels, regarding objects as sticks perpendic-
ular on a ground plane was introduced by [6]. The stixel
algorithm has found diverse application in the autonomous
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Fig. 2: Instance stixel pipeline applied to a RGB and disparity input image pair obtained from a stereo camera. The RGB
image is processed by a Convolutional Neural Network (CNN) to predict offsets to the instance centers (HSV color coded)
and per-pixel semantic class probabilities (visualized as color gradient). The class probabilities are fused with the disparity
input image in the Stixel computation to provide a super-pixel representation of the traffic scene, which unifies Semantics,
Depth and additionally Instance output (left images). In the baseline algorithm (Semantic Stixels + Instance, red arrow)
the obtained stixels are clustered based on the instance offsets to assign stixels to instances (not shown). In contrast, our
proposed algorithm (Instance Stixels, blue arrow) fuses the instance offset information with the other two channels in the
Stixel Computation. Subsequently, stixels are also clustered to form instances, but with improved adherence of stixels to
instance boundaries (top right image, arbitrary colors).

driving domain. [8] used stixels to detect of small unknown
objects, such as lost cargo. In [9] the idea was further
extended to a multi-layer representation using a probabilistic
approach, i.e. stixels do not need to be connected to the
ground plane anymore. In the multi-layer representation,
stixels segment the entire image into rectangular super-pixels,
classified as ground, object or sky. Additionally, a dynamic
programming scheme was presented for efficient real-time
computation of stixels. For even faster computation, this
dynamic programming scheme was then also implemented
on the Graphical Processing Unit (GPU) by [10]. In [11]
stixels were compared with other super-pixel algorithms as
basis for multi-cue scene labeling.

The general stixel framework offers various possibilities
for extension. Driven by the requirements of autonomous
driving, [12] introduced applied a Kalman filter to track
single stixels. Stixel tracking was then further improved
by [13]. Yet, stixels are generally tracked independently
and not as parts of an object. In order to obtain object
information [14], [15], [16], [17] group the Dynamic Stixels
based on shape cues and graph cuts and thus rely on tracking
Stixels over time. Stixels are also applied in semantic scene
segmentation with more general classes than ground, object
and sky. For this purpose, semantic information can be
obtained by using object detectors for suitable classes [18] or
Random Decision Forest classifiers [19] and then including
that information in the Stixel generation process. [1] extend
this idea by incorporating the output of a Fully Convolutional
Neural Network (FCN) in the probabilistic stixel framework.
They named their approach Semantic Stixels. Based on
Semantic Stixels and focusing on non-flat road scenarios,
[7] generalize stixels to also model slanted surfaces, e.g. not
strictly perpendicular to the road anymore, including piece-

wise linear road surfaces.

Meanwhile, many more deep neural network architectures
have been proposed in the computer vision literature to
improve classification and image segmentation tasks. For
instance, Residual Neural Networks [20] facilitate training
of deeper networks by learning residual functions. Dilated
Residual Networks [21] (DRN) improve on this work by
maintaining a higher resolution throughout the fully con-
nected network, while working with the same receptive field.
As a consequence, they are useful for applications that
require spatial reasoning such as object detection or, as in
our case, instance segmentation. Unfortunately, one cannot
treat instance segmentation as a classification problem, as
is done for semantic segmentation. A main reason is that
the number of instances varies per image, which prohibits a
one-to-one mapping of network output channels to instances.
Instead of predicting instance labels directly, [22] trains a
CNN to map each pixels in an image onto a learned low-
dimensional space such that pixels from the same instance
map close together. Object masks are then obtained in post-
processing by assigning pixels to cluster centers in this space.
The Box2Pix method [23] instead uses supervised learning to
map pixels to a specific target space, namely the 2D offsets
from the given pixel towards its instance’s center, which are
found through a bounding box detection branch.

Our objective is to create efficient stixel representations
rather than pixel-accurate instance segmentation in images,
and to avoid overhead of clustering all pixels into instances
before reducing them to a compact representation. Still,
we follow insights from the work on per-pixel instance
segmentation to improve stixel computation, deal with the
unknown number of instances in an image, and enable the
clustering of stixels into instances. The main contributions



are thus summarized as:
• We present Instance Stixels, a method to include in-

stance information into stixels computation, which cre-
ates better stixels, and allows grouping to instance IDs
from a single stereo frame.

• We investigate two different ways to include the in-
stance information, and show that adding the informa-
tion into the stixel computation itself results in more
accurate instance representations than only using it to
cluster Semantic Stixels.

• Our software for Semantic Stixels and Instance Stixels
is provided as open-source to the scientific community
for non-commercial research purposes.

III. METHODS

This section will first shortly introduce the original dispar-
ity Stixel and Semantic Stixel formulations in subsection III-
A. Subsection III-B then explains how to integrate the
instance information from a trained CNN into the stixel
computation itself for improved stixel segmentation. Finally,
subsection III-C will discuss how the instance information
can be used to cluster stixels belonging to the same object.

The clustering step could be applied to any stixel compu-
tation method. We therefore consider two options:
• Clustering stixels from a standard Semantic Stixels

method [1], such that instance offset information is only
considered here at this final clustering step. This corre-
sponds to the red arrow in Figure 2. In our experiments
we shall refer to this combination as the Semantic
Stixels + Instance method.

• Clustering based on our novel instance-aware stixels
computation from section III-B, see the blue arrow in
Figure 2. We name this combination our novel Instance
Stixels method.

Conceptually, Instance Stixels are a natural extension to
Semantic Stixels as they extend disparity and semantic seg-
mentation information with additional instance information
to compute a compact representation from a stereo image
pair. These stixels also receive an object id which groups
them into instances.

A. Stixels

In the following, an outline of the derivation of the original
Stixels and Semantic Stixels framework is presented. For a
more detailed derivation, see [24] and [1].

1) Disparity Stixels: Following the notation of [24], the
full stixel segmentation of an image is denoted as L =
{Lu|0 ≤ u < w} with w being the total number of
stixel columns in the image. The segmentation of column
u contains Lu = {sn|1 ≤ n ≤ Nu ≤ h} contains at
least one but at most height h stixels sn. A stixel sn =
(vbn, v

t
n, cn, fn(v)) is described by the bottom and top rows,

respectively vbn and vtn, that delimit the stixel. Additionally,
a stixel is associated with a class cn ∈ {g, o, s} (i.e. ground,
object, sky) and a function fn which maps each row of the
image to an estimated disparity value.

The aim is to find the stixel segmentation L which
maximizes the posterior probability of L given an input
measurement (e.g. a disparity image) D. Since each column
u ∈ {0, ..., w− 1} of the image is treated independently, the
MAP objective can then be written as:

arg max
L

w−1∏
u=0

p(Du|Lu)p(Lu). (1)

Here, p(Du|Lu) denotes the column’s likelihood of the
disparity data, and p(Lu) is a prior term [9].

Assuming all rows are equally likely to separate two
stixels, the column likelihood term can be written as product
of individual terms for Nu stixels, Lu = {s1, ..., sNu

}. Since
only disparity values of the rows within each stixel contribute
to its likelihood, those terms can in turn be factorized over
the rows vbn ≤ v ≤ vtn of each stixel n ∈ {1, ..., Nu}. Hence,
the final objective is [24]:

arg max
L

w−1∏
u=0

Nu∏
n=1

vt
n∏

v=vb
n

p(dv|sn, v)p(Lu). (2)

In practice, this objective is written as an energy minimiza-
tion problem by turning the product over probabilities into
a sum of negative log probabilities, which is then solved
efficiently through Dynamic Programming (DP) [24], [10].
DP will evaluate the energy function for many stixel hy-
potheses Lu = {s1, ..., sNu}, which consists of unary terms
Ed(sn) and pairwise energy terms Ep(sn−1, sn). Intuitively,
the unary energy term Ed(sn) describes the disparity ‘error’
within a stixel.

2) Semantic Stixels: The Semantic Stixels method [1]
introduced an additional semantic data term to associate each
stixel with one class label ln ∈ {1, ..., C}. Thus, Semantic
Stixels are characterized by sn = (vbn, v

t
n, cn, fn(v), ln).

First, a semantic segmentation CNN is trained on RGB
images with annotated per-pixel class labels. Then, when
testing on a test image, the softmax outputs σ(p, l) for all
semantic classes l of all pixels p are kept (note that in a
standard semantic segmentation task, only the class label
of the strongest softmax output would be kept). The unary
data term Ed(sn) of the original disparity stixel computation
is then replaced by Eu(sn) = Ed(sn) + ωlEl(sn), thereby
adding semantic information from the network activations,

El(sn) = −
∑
p∈Pn

log σ(p, ln). (3)

Here Pn are all pixels in stixel sn, and ωl a weight factor.

B. Instance Stixels

Instance Stixels expand the idea of Semantic Stixels by
additionally training a CNN to output a 2D estimation of the
position of the instance center for each pixel. This estimation
is predicted in image coordinates, as proposed in the Box2Pix
method [23]. More specifically, the CNN predicts 2D offsets
Ωp ∈ R2 (i.e. x and y direction) per pixel, which are relative
to the pixel’s location in the image. As a consequence, for
all pixels p belonging to the same instance j, adding their



ground truth offset Ω̂p to the pixel location (xp, yp) will end
up at the same instance center µ̂j :

µ̂j = Ω̂p + (xp, yp). (4)

We refer to such as a network as the Offset CNN, and an
example of its output and ground truth training data are
visualized in figures 3c and 3d. The ground truth instance
centers are defined as the center of mass of the ground
truth instance masks. Note that instances are commonly only
considered for certain semantic classes, e.g. cars, pedestrians
and bicycles. For all other classes, the target offset is (0, 0).

Instance Stixels then incorporate the Offset CNN output
into the stixel computation. Let µp denote the instance center
estimate obtained from the CNN for some pixel p, and µ̄n =∑

p∈Pn
µp the mean over all pixels in an instance stixel

sn = (vbn, v
t
n, cn, fn(v), ln, µ̄n). Furthermore, let I ⊂ N

denote the set of classes for which stixels need to be assigned
to instances. We model the instance term depending on the
center estimates of the pixels and the mean instance center
of the current stixel hypothesis sn:

Ei(sn) =

{∑
p∈Pn

||µp − µ̄n||22, if ln ∈ I∑
p∈Pn

||µp − (xp, yp)||22, otherwise.
(5)

In other words, for instance classes, the instance term favors
stixels which cover an area that consistently points to the
same instance center. For non-instance classes, i.e. classes
not in I, offsets deviating from zero contribute to the instance
energy. Without this, classes with instance information would
generally have higher energy and thus be less likely than the
non-instance classes.

With the instance energy term, the unary energy becomes

Eu(sn) = ωdEd(sn) + ωsEs(sn) + ωiEi(sn). (6)

This also introduces weights ωd and ωi for the disparity and
instance terms for more control on the segmentation.

A useful side effect is that each instance stixel already
has a mean estimate of its instance center pixel coordinates,
which will be used when clustering stixels into objects,
which will be discussed in Section III-C.

C. Clustering stixels with instance information

We now describe how output from an Offset CNN can
be used in a post-processing step to cluster stixels. Note the
favorable computational complexity of grouping a low num-
ber of stixels rather than individual pixels as in conventional
instance segmentation tasks.

First, the per-pixel offsets from the Offset CNN are
aggregated into a per-stixel offset estimate by averaging the
CNN’s predictions over the pixels in the stixel (this is already
done for Instance Stixels, as noted in Section III-B). Hence,
each stixel is equipped with an estimate of its instance center
in 2D image coordinates, as well as a semantic class label.

Then, the estimated instance centers and semantic class
prediction are used to group stixels to form instances. Sep-
arately for each semantic class, we aim to find clusters in
the estimated instance centers. For this purpose, we resort

to the DBSCAN clustering algorithm [25] as it estimates
the number of clusters (i.e. instances) and performs well
when the data has dense clusters. DBSCAN has only two
parameters: the maximum distance between neighboring data
points ε and the minimum size γ of the neighborhood of
a data point in order to consider this point a core point.
Additionally, we introduce a size filter parameter which
prevents stixels that are smaller (i.e. cover less rows) than ρ
to be considered a core point.

IV. IMPLEMENTATION

To develop and test our ideas, we extended the open-source
disparity Stixel CUDA-implementation introduced in [10].
Our extensions implement both the computation of Semantic
Stixels according to [1], as well as the Instance Stixel method
presented here. Further, handling of invalid disparity mea-
surements was implemented. This implementation reduces
the input image before the stixel optimization to a column
image. I.e. the stixel optimization is based only on the mean
value of a row of the column. As a consequence, a row in a
column is only considered as invalid disparity measurement,
if all pixels in that row are invalid.

Finally, we note that any semantic segmentation network
architecture could be used for Semantic Segmentation and
Offset CNN. We use Dilated Residual Networks [21] (DRN)
as our underlying architecture in our implementation, as they
have favorable properties for these tasks, as discussed in
Section II. The implementation of the DRN is largely based
on the PyTorch [26] code provided by the authors of [21].
The source code is available online 1.

V. EXPERIMENTS

A. Dataset, metrics and pre-processing
The computation of stixels requires RGB camera images

and the corresponding disparity images obtained from a
stereo camera setup. We use the Cityscapes dataset [27]
for our experiments, as it consists of challenging traffic
scenarios. Further, it provides ground truth annotations for
semantic and instance segmentation. The performance on
these two tasks is evaluated using the standard Cityscapes
metrics described in the corresponding paper [27].

Semantic segmentation performance is measured by the
intersection-over-union (IoU) = TP

TP+FP+FN , where TP, FP,
and FN denote the number of true positives, false positives
and false negatives over all pixels in the dataset split. An
instance mask is considered correct as the overlap with
its ground truth mask surpasses a specific threshold. The
Average Precision (AP) corresponds to an average over the
precision for multiple thresholds. Average Precision (AP50%)
only considers an overlap of at least 50% as true positive.
The metric also allows to provide confidence score for each
instance mask. We did not make use of this option and always
set the confidence score to 1 for all compared algorithms.

The disparity images provided in the Cityscapes dataset
exhibit noisy regions introduced due to bad disparity mea-
surements at the vertical image edges and the hood of the car.

1https://github.com/tudelft-iv/instance-stixels

https://github.com/tudelft-iv/instance-stixels


Inaccurate disparity data may harm the performance of dis-
parity based Stixels. Although Semantic Stixels are already
more robust due to the second modality, we aim to suppress
such effects. Therefore, we crop all images symmetrically
(top: 120px, bottom: 120px, left: 128px, right: 128px) to
ensure that our experiments are not influenced by disparity
errors. Following [1], we are using the official validation
as test set. Therefore, we split the official training set into
a separate training subtrain and validation set subtrainval
(validation cities: Hanover, Krefeld, Stuttgart).

B. Training the Offset CNN

As shown in [23], semantic segmentation networks can
be trained to simultaneously predict class-wise probabilities
and instance offsets (described in section III-C). To focus
our experiments on the influence of the offset prediction,
we use a separate Dilated Residual Network [21] with the
same architecture (drn d 22), which was already trained on
Cityscapes for semantic segmentation. It achieves compet-
itive performance on the Cityscapes validation set (66.8%
IoU).

The offset CNN is based on the aforementioned pre-
trained semantic segmentation network. We only replace the
last convolutional layer which outputs a channel for each
class by a convolutional layer that outputs our two offset
channels. The network is then trained with a common Mean
Squared Error loss function

1

|P|
∑
p∈P
||Ωp − Ω̂p||22, (7)

where P denotes the set of all pixels in a single image,
Ωp the CNN 2D output and Ω̂p the ground truth offset. We
minimize the loss function using the Adam optimization [28].

It is important to note that the output of the CNN is
downscaled by a factor 8. We also downscale the ground
truth by that factor for training. The reason for this is that
upscaling, unless nearest neighbor upscaling is used, intro-
duces interpolation errors that result in a smooth transition of
the offset vectors between two instances. As a consequence,
this would also result in an interpolation of the predicted
means of two neighboring instances at pixels close to the
borders, which in the end yields worse clustering results. To
overcome this issue, we use nearest neighbor upscaling when
passing the predicted images to the Stixel algorithms. The
loss of resolution is compensated by the fact that our Stixels
work at a resolution of width 8.

C. Hyperparameter optimization

The algorithms we evaluate offer several hyperparameters
that require tuning: the weighting of the data terms for the
Stixel computation ωd, ωs and ωi, as well as the DBSCAN
parameters ε, γ and ρ. The stixel framework provides more
parameters from which we set the stixel width to 8 pixels
throughout our experiments. Remaining parameters are set
based on recommendations from [24] and [10].

The parameter tuning is performed using Bayesian opti-
mization [29], [30] on the subtrainval validation set for 100

Algorithm SS+I IS SS+I IS IS IS
GT offsets - - - - X X
GT assignment - - X X - X
Semantic IoU [%] 65.2 65.2 65.2 65.2 67.6 67.6
Instance AP [%] 10.4 11.4 18.6 20.2 24.9 34.6
Instance AP50% [%] 20.2 21.8 41.7 43.1 39.6 57.2
Avg. # of Stixels 1346 1375 1346 1375 2331 2331

TABLE I: Quantitative evaluation of Semantic Stixels +
Instance (SS+I, baseline) and Instance Stixels (IS, our pro-
posed algorithm) on the Cityscapes validation set. Both al-
gorithms are evaluated regarding semantic intersection-over-
union (IoU), instance average precision (AP) and average
number of stixels (best results in boldface, see section V-A).
To further assess the potential of the algorithms, ground truth
information is incorporated at different levels (i.e. offset and
assignment, see section V-D). Note that only the results of
Semantic Stixels + Instance with ground truth assignment
are shown as they represent the upper limit of the baseline
for the different ground truth variations.

iterations. The cost is computed as IoU+1.5·Instance AP. We
weighted Instance AP higher as this is our main focus. The
optimization is performed separately for each experiment that
requires clustering. The experiments that assign instances
based on ground truth masks are performed using the same
stixel weights that were found using clustering.

D. Comparison of algorithmic variations

In order to analyze the capabilities of our proposed
method, we vary three different aspects of the proposed
methods that can be combined arbitrarily:

1) Semantic Stixels + Instance v. Instance Stixels: Corre-
sponds to setting ωi = 0 , which resembles Semantic
Stixels [1]), or ωi > 0 in the stixels computation (see
equation 6), respectively.

2) Clustering v. GT assignment: Each stixel is assigned to
an instance either by applying DBSCAN on the mean
estimated center per stixel or using the ground truth
(GT) instance masks. For GT assignment, a stixel is
assigned to the corresponding instance if the ground
truth mask covers more than 10% of the stixel.

3) Predicted offsets v. GT offsets: the offsets used for gen-
erating stixels and for clustering are either predicted
by the CNN or computed from the ground truth (GT)
instance masks. Note: this does not affect the semantic
predictions of the CNN which always remain the same.

1) Quantitative evaluation: Table I lists the results of
different variations (as described in section V-D) of stixel
algorithms, with respect to possible use of GT (cf. first two
table rows). The first and second columns relate to our base
line and the proposed method; they show that adding the
instance term (equation 6) does not harm semantic perfor-
mance, but increases instance AP performance by 9.6%. Note
that the average number of stixels does not increase signif-
icantly, which would indicate over-segmentation. Assigning
the instance IDs based on the ground truth instance masks
(third and fourth column) gives insight on the clustering



performance. When compared to the algorithms without any
ground truth added, one can observe a significant improve-
ment. The last two columns should be compared to the sec-
ond and forth column to understand which performance may
be achieved by improving the predictions of the Offset CNN.
When replacing the Offset CNN predictions by ground truth,
the Instance performance improves for both clustering and
ground truth assignment. Notably, using ground truth offsets
also improves the semantic performance which is reasonable
as offsets provide another clue to distinguish instance and
non-instance classes. The increase in the average number of
stixels, however, indicates over-segmentation. Including the
average number of stixels in the parameters optimization may
reduce this effect.

The key insights of the above results are that adding the
instance term to the stixel computation boosts instance pre-
cision without weakening semantic performance. Further, we
see that both, the Offset CNN and clustering, may improve
the overall result. Interestingly, although given ground truth
offset input, there is still a considerable gap to assigning
stixels based on ground truth instance masks.

2) Qualitative analysis: The consequences of the different
algorithm variations as described in section V-D are depicted
in figure 3 when applied on validation images of real traffic
situations. Figures 3a and 3b show the input data. Based
on the RGB image 3a, the Offset CNN predicts offsets as
illustrated in figure 3c. Upon inspection of the corresponding
ground truth offsets shown in figure 3d some incorrect
predictions may be still be discovered. In figures 3e-3j we
contrast the influence of the different algorithms. Specifically,
figures 3e, 3g and 3i show the algorithms that rely on
ground truth masks for instance assignment. Figures 3f,
3h and 3j depict the respective result based on clustering
assignment. Here, especially for small instances far away,
it can be observed that the clustering fails distinguishing
them. Comparing 3f and 3h demonstrates the effectiveness
of Instance Stixels for partly occluded instances.

Figure 4 again contrasts the results of Semantic Stixels
+ Instance information compared to Instance Stixels in a
real traffic scene. In particular, inspection of the top down
views, figures 4e and 4f, shows that the improved coherence
with the instance boundaries also reduces the noise in depth
estimation. The top-down view also shows how Instance
Stixels express objects as polygons, rather than unconnected
points as outputted by other single-frame stixel methods
[9], [1], [7]. This could benefit subsequent uses of the
representation, such object tracking or fusion in a rasterized
occupancy grid.

VI. CONCLUSIONS

This paper introduced Instance Stixels, which improve
stixel segmentation by considering instance information from
a CNN, and performing a subsequent stixel clustering step
using the averaged instance information within each stixel.
Our experiments showed the benefit of including the instance
information already in the segmentation step, as opposed
to only cluster stixels from Semantic Stixels. Quantitative

results support the qualitative analysis as they show that
Instance Stixels adhere better to object boundaries. This
leads to almost 10% increase in Instance AP (from 10.4%
to 11.4%) compared to clustering only, without significantly
increasing the number of stixels. Further experiments using
ground truth instance information in both the stixel compu-
tation, and the clustering, showed that the approach has the
potential for even larger gains.
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“Fusion of laser and radar sensor data with a sequential monte carlo
bayesian occupancy filter,” in IEEE Intelligent Vehicles Symposium
(IV), 2015, pp. 1074–1081.

[5] R. Danescu, F. Oniga, and S. Nedevschi, “Modeling and tracking
the driving environment with a particle-based occupancy grid,” IEEE
Trans. on Intelligent Transportation Systems, vol. 12, no. 4, pp. 1331–
1342, 2011.

[6] H. Badino, U. Franke, and D. Pfeiffer, “The stixel world - a compact
medium level representation of the 3d-world,” in Proc. of the 31st
DAGM Symposium on Pattern Recognition. Berlin, Heidelberg:
Springer-Verlag, 2009, pp. 51–60.

[7] D. Hernandez-Juarez, L. Schneider, A. Espinosa, D. Vázquez, A. M.
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(a) Input: Original image. (b) Input: Disparity image.

(c) CNN output: Predicted offsets. (d) Ground Truth (GT) offsets.

(e) Semantic stixels + Instances: Predicted offsets, GT assignment. (f) Semantic stixels + Instances: Predicted offsets, clustered.

(g) Instance stixels: Predicted offsets, GT assignment. (h) Instance stixels: Predicted offsets, clustered. Proposed method, no
GT.

(i) Instance stixels: GT offsets, GT assignment. (j) Instance stixels: GT offsets, clustered.

Fig. 3: Qualitative analysis of Semantic Stixels + Instance (baseline) and Instance Stixels (proposed algorithm). Figure (a)
and (b): The input RGB and disparity image. Figure (c) and (d): The output of the Offset CNN and the corresponding
ground truth. The direction and magnitude of the offset are indicated using HSV colorspace. Figures (e) to (j): Illustration of
the instance segmentation of the baseline and our proposed method including different ground truth information (see section
V-D, table I). Instances are indicated by arbitrary colors. White areas denote stixels that cannot be assigned to specific
instances, but may be part of an instance due to their predicted semantic class. Left/right: GT assignment v. clustering. (e)
and (f): baseline. (g) and (h): our proposed algorithm. (i) and (j): our proposed algorithm using GT offsets.



(a) Input RGB image. (b) Input disparity image.

(c) Semantic Stixels + Instance. (d) Instance Stixels.
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(e) Semantic Stixels + Instance: Top down view.
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(f) Instance Stixels: Top down view.

Fig. 4: Qualitative comparison of Semantic Stixels + Instance (baseline) and Instance Stixels (our proposed algorithm) with
respect to depth estimation. (a) and (b): Input RGB and disparity image. (c) and (d): Instance segmentations resulting from
the two algorithms. In our proposed algorithm, the stixels match the shape of the car in the image center better than in the
baseline segmentation. (e) and (f): Top down views based on disparity estimation from stixels. Given the disparity, the 3D
position of each stixel is computed and only the lateral and longitudinal position from the camera is plotted. Only stixels
which are considered core points of an instance in the DBSCAN clustering are shown and connected. No ground truth was
used. The longitudinal position estimation of our proposed algorithm is more stable than of the baseline.
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[23] J. Uhrig, E. Rehder, B. Fröhlich, U. Franke, and T. Brox, “Box2pix:
Single-shot instance segmentation by assigning pixels to object boxes,”
in IEEE Intelligent Vehicles Symposium (IV), 2018.

[24] D. Pfeiffer, “The stixel world,” Ph.D. dissertation, Humboldt-
Universität zu Berlin, 2012.

[25] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al., “A density-based
algorithm for discovering clusters in large spatial databases with
noise.” in Kdd, vol. 96, no. 34, 1996, pp. 226–231.

[26] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,
Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differen-
tiation in pytorch,” in NIPS-W, 2017.

[27] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benen-
son, U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset for
semantic urban scene understanding,” in Proc. of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2016.

[28] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimiza-
tion,” in Proc. 3rd Int. Conf. Learn. Representations, 2014.

[29] J. Mockus, V. Tiesis, and A. Zilinskas, The application of Bayesian
methods for seeking the extremum, 09 1978, vol. 2, pp. 117–129.

[30] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian op-
timization of machine learning algorithms,” in Advances in neural
information processing systems, 2012, pp. 2951–2959.


	Introduction
	Related work
	Methods
	Stixels
	Disparity Stixels
	Semantic Stixels

	Instance Stixels
	Clustering stixels with instance information

	Implementation
	Experiments
	Dataset, metrics and pre-processing
	Training the Offset CNN
	Hyperparameter optimization
	Comparison of algorithmic variations
	Quantitative evaluation
	Qualitative analysis


	Conclusions
	References

