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Abstract
With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive,

understand, and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of

dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots, and

advanced surveillance systems. This article provides a survey of human motion trajectory prediction. We review, analyze,

and structure a large selection of work from different communities and propose a taxonomy that categorizes existing

methods based on the motion modeling approach and level of contextual information used. We provide an overview of the

existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further

research.
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1. Introduction

Understanding human motion is a key skill for intelligent
systems to coexist and interact with humans. It involves
aspects in representation, perception, and motion analy-
sis. Prediction plays an important part in human motion
analysis: foreseeing how a scene involving multiple agents
will unfold over time allows to incorporate this knowledge
in a pro-active manner, i.e., allowing for enhanced ways
of active perception, predictive planning, model predic-
tive control, or human–robot interaction. As such, human
motion prediction has received increased attention in recent
years across several communities. Many important appli-
cation domains exist, such as self-driving vehicles, service
robots, and advanced surveillance systems, see Figure 1.

The challenge of making accurate predictions of human
motion arises from the complexity of human behavior and
the variety of its internal and external stimuli. Motion
behavior may be driven by own goal intent, the presence
and actions of surrounding agents, social relations between
agents, social rules and norms, or the environment with its
topology, geometry, affordances, and semantics. Most fac-
tors are not directly observable and need to be inferred from
noisy perceptual cues or modeled from context information.
Furthermore, to be effective in practice, motion prediction
should be robust and operate in real-time.

Human motion comes in many forms: articulated full-
body motion, gestures and facial expressions, or movement

through space by walking, using a mobility device or driv-
ing a vehicle. The scope of this survey is human motion
trajectory prediction. Specifically, we focus on ground-level
2D trajectory prediction for pedestrians and also consider
the literature on cyclists and vehicles. Prediction of video
frames, articulated motion, or human actions or activities is
out of the scope of this work although many of those tasks
rely on the same motion modeling principles and trajectory
prediction methods considered here. Within this scope, we
survey a large selection of works from different commu-
nities and propose a novel taxonomy based on the motion
modeling approaches and the contextual cues. We cate-
gorize the state of the art and discuss typical properties,
advantages and drawbacks of the categories as well as out-
line open challenges for future research. Finally, we raise
three questions.

(Q1) Are the evaluation techniques to measure prediction
performance good enough and follow best practices?
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Fig. 1. Application domains of human motion prediction. Top
left: Will the pedestrian cross? Self-driving vehicles have to
quickly reason about intentions and future locations of other traf-
fic participants, such as pedestrians (illustration from Kooij et al.,
2019). Top right: Advanced traffic surveillance systems can pro-
vide real-time alerts of pending collisions using communication
technology. Bottom left: Advanced surveillance systems analyze
human motion in public spaces for suspicious activity detection or
crowd control (illustration from Zhou et al., 2015). Bottom right:
Robot navigation in densely populated spaces requires accurate
motion prediction of surrounding people to safely and efficiently
move through crowds.

(Q2) Have all prediction methods arrived on the same
performance level and the choice of the modeling
approach does not matter anymore?

(Q3) Is motion prediction solved?

The paper is structured as follows: we present the tax-
onomy in Section 2, review and analyze the literature on
human motion prediction first by the modeling approaches
in Sections 3–5, and then by the contextual cues in Section
6. In Section 7 we review the benchmarking of motion pre-
diction techniques in terms of commonly used performance
metrics and datasets. In Section 8 we discuss the state of
the art with respect to the above three questions and outline
open research challenges. Finally, Section 9 concludes the
paper.

We recommend Sections 1 and 2, Figures 8–10, and
Section 8 as a coarse overview of the motion prediction
methodology for a general reader. A practitioner may find
value in the review of the datasets and metrics in Section
7. Finally, the thorough analysis of the literature in Sections
3–6 is recommended for expert readers.

1.1. Overview and terminology

On the highest level of abstraction, the motion prediction
problem contains the following three elements (Figure 2).

• Stimuli: Internal and external stimuli that determine
motion behavior include the agents’ motion intent and
other directly or indirectly observable influences. Most

Fig. 2. Typical elements of a motion prediction system: internal
and external stimuli that influence motion behavior, the method
itself and the different parametric, non-parametric, or structured
forms of predictions.

prediction methods rely on observed partial trajecto-
ries, or generally, sequences of agent state observa-
tions such as positions, velocities, body joint angles, or
attributes. Often, this is provided by a target tracking
system and it is common to assume correct track iden-
tity over the observation period. Other forms of inputs
include contextual cues from the environment such
as scene geometry, semantics, or cues that relate to
other moving entities in the surrounding. End-to-end
approaches rely on sequences of raw sensor data.

• Modeling approach: Approaches to human motion
prediction differ in the way they represent,
parametrize, learn, and solve the task. This arti-
cle focuses on finding and analyzing useful categories,
hidden similarities, common assumptions, and best
evaluation practices in the growing body of literature.

• Prediction: Different methods produce different para-
metric, non-parametric, or structured forms of predic-
tions such as Gaussians over agent states, probability
distributions over grids, singular or multiple trajectory
samples, or motion patterns using graphical models.

We use the term agent to denote dynamic objects of
interest such as robots, pedestrians, cyclists, cars, or other
human-driven vehicles. The target agent is the dynamic
object for which we make the actual motion prediction.
We assume the agent behavior to be non-erratic and goal-
directed with regard to an optimal or near-optimal expected
outcome. This assumption is typical as the motion predic-
tion problem were much harder or even ill-posed otherwise.
We define a path to be a sequence of ( x, y)-positions and
a trajectory to be a path combined with a timing law or a
velocity profile. We refer to short-term and long-term pre-
diction to characterize prediction horizons of 1–2 s and up
to 20 s ahead, respectively.

Formally, we use st to denote the state of an agent at time
t, ut to denote the action that the agent takes at time t, ot ∈

O to denote the observations of the agent’s state at time t,
and use ζ to denote trajectories. We refer to a history of
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several states, actions, or observations from time t to time
T using subscripts t : T .

1.2. Application domains

Motion prediction is a key task for service robots,
self-driving vehicles, and advanced surveillance systems
(Figure 1).

1.2.1. Service robots. Mobile service robots increasingly
operate in open-ended domestic, industrial, and urban envi-
ronments shared with humans. Anticipating motion of
surrounding agents is an important prerequisite for safe
and efficient motion planning and human–robot interac-
tion. Limited on-board resources for computation and first-
person sensing makes this a challenging task.

1.2.2. Self-driving vehicles. The ability to anticipate
motion of other road users is essential for automated driv-
ing. Similar challenges apply as in the service robot domain,
although they are more pronounced given the higher masses
and velocities of vehicles and the resulting larger harm
that can potentially be inflicted, especially towards vulnera-
ble road users (i.e., pedestrians and cyclists). Furthermore,
vehicles need to operate in rapidly changing, semantically
rich outdoor traffic settings and need hard real-time oper-
ating constraints. Knowledge of the traffic infrastructure
(location of lanes, curbside, traffic signs, traffic lights, other
road markings such as zebra crossings) and the traffic rules
can help in motion prediction.

1.2.3. Surveillance. Visual surveillance of vehicular traf-
fic or human crowds relies on the ability to accurately track
a large number of targets across distributed networks of
stationary cameras. Long-term motion prediction can sup-
port a variety of surveillance tasks such as person retrieval,
perimeter protection, traffic monitoring, crowd manage-
ment, or retail analytics by further reducing the number of
false-positive tracks and track identifier switches, particu-
larly in dense crowds or across non-overlapping fields of
views.

1.3. Related surveys

In this section, we detail related surveys from different
scientific communities, i.e., robotics (Chik et al., 2016;
Kruse et al., 2013; Lasota et al., 2017), intelligent vehi-
cles (Brouwer et al., 2016; Lefèvre et al., 2014; Ridel et al.,
2018), and computer vision (Hirakawa et al., 2018; Morris
and Trivedi, 2008; Murino et al., 2017).

Kruse et al. (2013) provided a survey of approaches
for wheeled mobile robots and categorized human-aware
motion based on comfort, naturalness, and sociability fea-
tures. Motion prediction is seen as part of a human-aware
navigation framework and categorized into reasoning-

based and learning-based approaches. In reasoning-based

methods, predictions are based on simple geometric reason-
ing or dynamic models of the target agent. Learning-based
approaches make predictions via motion patterns that are
learned from observed agent trajectories.

A short survey on frameworks for socially-aware robot
navigation was provided by Chik et al. (2016). The
authors discussed key components of such frameworks
including several planners and human motion prediction
techniques.

Lasota et al. (2017) surveyed the literature on safe
human–robot interaction along the four themes of safety
through control, motion planning, prediction, and psycho-
logical factors. In addition to wheeled robots, they also
include related works on manipulator arms, drones, or self-
driving vehicles. The literature on human motion prediction
is divided into methods based on goal intent or motion

characteristics. Goal intent techniques infer an agent’s goal
and predict a trajectory that the agent is likely to take to
reach that goal. The latter group of approaches does not
rely explicitly on goals and makes use of observations about
how humans move and plan natural paths.

Lefèvre et al. (2014) surveyed vehicular motion predic-
tion and risk assessment in an automated driving context.
The authors discussed the literature based on the seman-
tics used to define motion and risk and distinguish physics-

based, maneuver-based, and interaction-aware models for
prediction. Physics-based methods predict future trajecto-
ries via forward simulation of a vehicle model, typically
under kinodynamic constraints and uncertainties in ini-
tial states and controls. Maneuver-based methods assume
that vehicle motion is a series of typical motion patterns
(maneuvers) that have been acquired a priori and can be rec-
ognized from observed partial agent trajectories. Intention-
aware methods make joint predictions that account for inter-
vehicle interactions, also considering that such interactions
are regulated by traffic rules.

Brouwer et al. (2016) reviewed and compared pedestrian
motion models for vehicle safety systems. According to the
cues from the environment used as input for motion pre-
diction, the authors distinguished four classes of methods:
dynamics-based models, which only use the target agent’s
motion state; methods that use psychological knowledge

of human behavior in urban environments (e.g., probabili-
ties of acceleration, deceleration, switch of the dynamical
model); methods that use head orientation; and methods
that use a semantic map of the environment. This cate-
gorization was extended by Ridel et al. (2018) to review
pedestrian crossing intention inference techniques.

Morris and Trivedi (2008) surveyed methods for trajec-
tory learning and analysis for visual surveillance. They dis-
cussed similarity metrics, techniques, and models for learn-
ing prototypical motion patterns (called activity paths) and
briefly considered trajectory prediction as a case of online
activity analysis. Murino et al. (2017) discussed group and
crowd motion analysis as a multidisciplinary problem that
combines insights from the social sciences with concepts
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Fig. 3. Overview of the categories in our taxonomy.

from computer vision and pattern recognition. The authors
reviewed several recent methods for tracking and prediction
of human motion in crowds. Hirakawa et al. (2018) sur-
veyed video-based methods for semantic feature extraction
and human trajectory prediction. The literature is divided
based on the motion modeling approach into Bayesian mod-

els, energy minimization methods, deep learning methods,
inverse reinforcement learning (IRL) methods, and other

approaches.
Related to our discussion of the benchmarking practices,

several works survey the datasets of motion trajectories
(Hirakawa et al., 2018; Poiesi and Cavallaro, 2015; Ridel
et al., 2018) and metrics for prediction evaluation (Quehl
et al., 2017). Poiesi and Cavallaro (2015) and Hirakawa
et al. (2018) described several datasets of human trajec-
tories in crowded scenarios, used to study social interac-
tions and evaluate path prediction algorithms. Ridel et al.
(2018) discussed available datasets of pedestrian motion in
urban settings. Quehl et al. (2017) reviewed several trajec-
tory similarity metrics, applicable in the motion prediction
context.

Unlike these surveys, we review and analyze the litera-
ture across multiple application domains and agent types.
Our taxonomy offers a novel way to structure the grow-
ing body of literature, containing the categories proposed
by Kruse et al. (2013), Lasota et al. (2017), and Lefèvre
et al. (2014) and extending them with a systematic catego-
rization of contextual cues. In particular, we argue that the
modeling approach and the contextual cues are two funda-
mentally different aspects underlying the motion prediction
problem and should be considered separate dimensions for
the categorization of methods. This allows, for example, the
distinction of physics-based methods that are unaware of
any external stimuli from methods in the same category that
are highly situational aware accounting for road geometry,
semantics, and the presence of other agents. This is unlike
previous surveys whose categorizations are along a single
dimension based on both different modeling approaches
and increasing levels of contextual awareness.

We extend existing reviews of the benchmarking and
evaluation efforts for motion prediction (Hirakawa et al.,

Fig. 4. Publications trends in the literature reviewed for this
survey, color-coded by modeling approach.

2018; Poiesi and Cavallaro, 2015; Quehl et al., 2017; Ridel
et al., 2018) with additional datasets, probabilistic and
robustness metrics, and a principled analysis of existing
benchmarking practices. Furthermore, we give an up-to-
date discussion of the current state of the art and conclude
with recommendations for promising directions of future
research.

2. Taxonomy

In this section, we describe our taxonomy to decompose
the motion prediction problem based on the modeling
approach and the type of contextual cues, see Figure 3 for
an overview. In Sections 2.1 and 2.2 we detail the categories
and give representative papers as examples of each cate-
gory, and in Section 2.3 we describe the rules for classifying
the methods.

2.1. Modeling approach

The motion modeling category subdivides the prediction
approaches based on how they represent human motion
and formulate the causes thereof. Physics-based methods

define an explicit dynamical model based on Newton’s law
of motion. Pattern-based methods learn motion patterns
from data of observed agent trajectories. Planning-based

methods reason on motion intent of rational agents (see
Figure 5). The categorization can be seen to differ also in
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Fig. 5. Illustration of the basic working principle of the modeling approaches. (a) Physics-based methods project the motion state of the
agent using explicit dynamical models based on Newton’s law of motion. (b) Pattern-based methods learn prototypical trajectories from
observed agent behavior to predict future motion. (c) Planning-based methods include some form of reasoning about the likely goals
and compute possible paths to reach those goals. In order to incorporate internal and external stimuli that influence motion behavior,
approaches can be extended to account for different contextual cues.

the level of cognition typically involved in the prediction
process: physics-based methods follow a reactive sense–
predict scheme, pattern-based methods follow a sense–
learn–predict scheme, and planning-based methods follow a
sense–reason–predict scheme in which agents reason about
intentions and possible ways to the goal.

1. Physics-based methods (sense–predict): motion is pre-
dicted by forward simulating a set of explicitly defined
dynamics equations that follow a physics-inspired
model. Based on the complexity of the model, we
recognize the following subclasses.
1.1. Single-model methods define a single dynamical

motion model (e.g., Aoude et al., 2010; Cos-
cia et al., 2018; Elnagar, 2001; Luber et al.,
2010; Pellegrini et al., 2009; Petrich et al., 2013;
Yamaguchi et al., 2011; Zernetsch et al., 2016).

1.2. Multi-model (MM) methods include a fixed or
on-line adaptive set of multiple dynamics models
and a mechanism to fuse or select the individual
models (e.g., Agamennoni et al., 2012; Althoff
et al., 2008a; Gindele et al., 2010; Kaempchen
et al., 2004; Kooij et al., 2019; Pool et al., 2017).

2. Pattern-based methods (sense–learn–predict) approx-
imate an arbitrary dynamics function from training
data. These approaches are able to discover statistical
behavioral patterns in the observed motion trajectories
and are separated into two categories.

2.1. Sequential methods learn conditional models
over time and recursively apply learned transition
functions for inference (e.g., Alahi et al., 2016;
Aoude et al., 2011; Goldhammer et al., 2014;
Keller and Gavrila, 2014; Kruse and Wahl, 1998;
Kucner et al., 2017; Liao et al., 2003; Vemula
et al., 2017).

2.2. Non-sequential methods directly model the dis-
tribution over full trajectories without tempo-
ral factorization of the dynamics, (e.g., Ben-
newitz et al., 2005; Käfer et al., 2010; Keller
and Gavrila, 2014; Luber et al., 2012; Tay and
Laugier, 2008; Trautman and Krause, 2010; Xiao
et al., 2015).

3. Planning-based methods (sense–reason–predict)
explicitly reason about the agent’s long-term motion
goals and compute policies or path hypotheses that
enable an agent to reach those goals. We classify the
planning-based approaches into two categories.

3.1. Forward planning methods make an explicit
assumption regarding the optimality criteria of
an agent’s motion, using a pre-defined reward
function (e.g., Best and Fitch, 2015; Bruce and
Gordon, 2004; Galceran et al., 2015; Karasev
et al., 2016; Rösmann et al., 2017; Rudenko
et al., 2017; Vasquez, 2016; Xie et al., 2013; Yi
et al., 2016).

3.2. Inverse planning methods estimate the reward
function or action model from observed trajec-
tories using statistical learning techniques (e.g,.
Chung and Huang, 2012; Huang et al., 2016;
Kitani et al., 2012; Kuderer et al., 2012; Lee
et al., 2017; Pfeiffer et al., 2016; Rehder et al.,
2018; Shen et al., 2018; Walker et al., 2014;
Ziebart et al., 2009).

Figure 4 shows the publications trends over recent years,
color-coded by modeling approach. The number of related
works is strongly increasing during the last two years in
particular for the pattern-based methods.

2.2. Contextual cues

We define contextual cues to be all relevant internal and
external stimuli that influence motion behavior and catego-
rize them based on their relation to the target agent, other
agents in the scene and properties of the static environment,
see Figures 6 and 7.

1. Cues of the target agent include:

1.1. motion state such as position and possibly veloc-
ity (e.g., Bennewitz et al., 2005; Bera et al.,
2016; Elfring et al., 2014; Ferrer and Sanfeliu,
2014; Karasev et al., 2016; Kitani et al., 2012;
Kooij et al., 2019; Kucner et al., 2017; Kuderer
et al., 2012; Pellegrini et al., 2009; Trautman and
Krause, 2010; Ziebart et al., 2009);
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1.2. articulated pose such as head orientation (e.g.,
Hasan et al., 2018; Kooij et al., 2019, 2014;
Roth et al., 2016; Unhelkar et al., 2015) or full-
body pose (Mínguez et al., 2018; Quintero et al.,
2014);

1.3. semantic attributes such as the age and gender
(Ma et al., 2017), personality (Bera et al., 2017),
and awareness of the robot’s presence (Kooij
et al., 2019; Oli et al., 2013).

2. With respect to the dynamic environment we distin-
guish:

2.1. unaware methods, which compute motion pre-
dictions for the target agent not considering the
presence of other agents (e.g., Bennewitz et al.,
2005; Elnagar, 2001; Elnagar and Gupta, 1998;
Kim et al., 2011; Kucner et al., 2013; Thompson
et al., 2009; Wang et al., 2016; Zhu, 1991);

2.2. individual-aware methods, which account for the
presence of other agents (e.g., Alahi et al., 2016;
Elfring et al., 2014; Ferrer and Sanfeliu, 2014;
Kooij et al., 2019; Kuderer et al., 2012; Luber
et al., 2010; Trautman and Krause, 2010; Vemula
et al., 2017);

2.3. group-aware methods, which account for the
presence of other agents as well as social group-
ing information; this allows agents to be con-
sidered in groups, formations, or convoys that
move differently than independent agents (e.g.,
Karamouzas and Overmars, 2012; Pellegrini
et al., 2010; Qiu and Hu, 2010; Robicquet et al.,
2016; Seitz et al., 2012; Singh et al., 2009;
Yamaguchi et al., 2011).

3. With respect to the static environment we distinguish:

3.1. unaware methods, which assume an open-space
environment (e.g., Bennewitz et al., 2002; Ellis
et al., 2009; Ferguson et al., 2015; Foka and
Trahanias, 2010; Jacobs et al., 2017; Kruse and
Wahl, 1998; Luber et al., 2012; Schneider and
Gavrila, 2013; Unhelkar et al., 2015; Vasquez
et al., 2008);

3.2. obstacle-aware methods, which account for the
presence of individual static obstacles (e.g.,
Alahi et al., 2016; Althoff et al., 2008b; Bera
et al., 2016; Elfring et al., 2014; Ferrer and San-
feliu, 2014; Rehder and Klöden, 2015; Trautman
and Krause, 2010; Vemula et al., 2017);

3.3. map-aware methods, which account for environ-
ment geometry and topology (e.g., Chen et al.,
2017; Chung and Huang, 2010, 2012; Gong
et al., 2011; Henry et al., 2010; Ikeda et al., 2012;
Kooij et al., 2019; Liao et al., 2003; Pfeiffer et al.,
2016; Pool et al., 2017; Rösmann et al., 2017;

Rudenko et al., 2017, 2018b; Vasquez, 2016; Yen
et al., 2008; Ziebart et al., 2009);

3.4. semantics-aware methods, which additionally
account for environment semantics or affor-
dances such as no-go zones, crosswalks, side-
walks, or traffic lights (e.g., Ballan et al., 2016;
Coscia et al., 2018; Karasev et al., 2016; Kitani
et al., 2012; Kuhnt et al., 2016; Lee et al., 2017;
Ma et al., 2017; Rehder et al., 2018; Zheng et al.,
2016).

In the following Sections 3, 4, and 5 we survey the differ-
ent classes of the motion model category. We detail contex-
tual cues categories in Section 6. In each section, we discuss
methods in the order of increasing complexity, considering
inheritance of ideas and grouped by the similarity of the
motion modeling techniques.

2.3. Classification rules

Some of the surveyed papers may not fall univocally into
a single class of our taxonomy, especially those using a
mixture of different approaches, e.g., the work by Ben-
newitz et al. (2005) that combines a non-sequential cluster-
ing approach with sequential hidden Markov model (HMM)
inference. For those borderline cases, we adopt the follow-
ing rules.

(i) We classify methods primarily in the category that best
describes the modeling approach over the inference method,
e.g., for Bennewitz et al. (2005) we give more weight to
the clustering technique used for modeling the usual human
motion behavior.

(ii) Some approaches add sub-components from other cat-
egories in their main modeling approach, e.g., planning-
based approaches using physics-based transition functions
(Rudenko et al., 2018a; van Den Berg et al., 2008), physics-
based methods tuned with learned parameters (Ferrer and
Sanfeliu, 2014), planning-based approaches using IRL to
recover the hidden reward function of human behaviors
(Kitani et al., 2012; Ziebart et al., 2009). We classify such
approaches based on their main modeling method.

(iii) Methods that use behavior cloning (imitation of
human behaviors with supervised learning techniques), i.e.,
learn/recover the motion model directly from data, are clas-
sified as pattern-based approaches (Schmerling et al., 2018;
Zheng et al., 2016). In contrast to that, imitation learning
techniques that reason on policies (e.g., using generative
adversarial imitation learning (GAIL) (Li et al., 2017)) are
classified as planning-based methods.

Furthermore, a single work is categorized into three con-
textual cues’ classes with respect to its perception of the
target agent, static and dynamic contextual cues.
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a b c

Fig. 6. Dynamic environment cues: (a) unaware, (b) individual-aware, (c) group-aware (accounting for social grouping cues, in green).

Fig. 7. Static environment cues: (a) unaware (ignoring any static objects, dashed line), (b) obstacle-aware (accounting for unmodeled
obstacles, dotted line), (c) map-aware (accounting for a topometric environment model avoiding local minima, solid line), (d) semantics-
aware (solid line).

3. Physics-based approaches

Physics-based models generate future human motion con-
sidering a hand-crafted, explicit dynamical model f based
on Newton’s laws of motion. A common form for f is
ṡt = f (st, ut, t) +wt where ut is the (unknown) control input
and wt the process noise. In fact, motion prediction can
be seen as inferring st and ut from various estimated or
observed cues.

A large variety of physics-based models have been devel-
oped in the target tracking and automatic control commu-
nities to describe motion of dynamic objects in ground,
marine, airborne, or space applications, typically used as
building blocks of a recursive Bayesian filter or multiple-
model algorithm. These models differ in the type of motion
they describe such as maneuvering or non-maneuvering
motion in two or three dimensions, and in the complexity of
the target’s kinematic or dynamic model and the complex-
ity of the noise model. See Li and Jilkov (2003, 2010) for a
survey on physics-based motion models for target tracking.

We subdivide physics-based models into (1) single-model

approaches that rely on a single dynamical model f and
(2) MM approaches that involve several modes of dynamics
(see Figure 8).

3.1. Single-model approaches

3.1.1. Early works and basic models. Many approaches to
human motion prediction represent the motion state of tar-
get agents as position, velocity, and acceleration and use
different physics-based models for prediction. Among the
simplest ones are kinematic models without considering
forces that govern the motion. Popular examples include the
constant velocity model (CV) that assumes piecewise con-
stant velocity with white noise acceleration, the constant
acceleration model (CA) that assumes piecewise constant
acceleration with white noise jerk, the coordinated turn
model (CT) that assumes constant turn rate and speed with
white noise linear and white noise turn acceleration or the
more general curvilinear motion model by Best and Norton

(1997). The bicycle model is often used as an approxi-
mation to model the vehicle dynamics (see, e.g., Schubert
et al., 2008).

A large number of works across all application domains
rely on kinematic models for their simplicity and accept-
able performance under mild conditions such as tracking
with little motion uncertainty and short prediction hori-
zons. Examples include Møgelmose et al. (2015) for haz-
ard inference from linear motion predictions of pedestrians
or Elnagar (2001) for Kalman filter-based (KF) prediction
of dynamic obstacles using a constant acceleration model.
Barth and Franke (2008) used the coordinated turn model
for one-step-ahead prediction in an extended Kalman filter
(EKF) to track oncoming vehicles from point clouds gen-
erated by an in-car stereo camera. Batz et al. (2009) used a
variant of the coordinated turn model for one-step motion
prediction of vehicles within an unscented Kalman filter
to detect dangerous situations based on predicted mutual
distances between vehicles.

Dynamic models account for forces which, following
Newton’s laws, are the key descriptor of motion. Such mod-
els can become complex when they describe the physics
of wheels, gearboxes, engines, or friction effects. In addi-
tion to their complexity, forces that govern the motion of
other agents are not directly observable from sensory data.
This makes dynamic models more challenging for motion
prediction. Zernetsch et al. (2016) used a dynamic model
for trajectory prediction of cyclists that contains the driving
force and the resistance forces from acceleration, inclina-
tion, rolling, and air. The authors showed experimentally
that long-term predictions up to 2.5 se ahead are geomet-
rically more accurate when compared with a standard CV
model.

Autoregressive models (ARMs) that, unlike first-order
Markov models, account for the history of states have also
been used for motion prediction. Elnagar and Gupta (1998)
employed a third-order ARM to predict the next posi-
tion and orientation of moving obstacles using maximum-
likelihood estimation of the ARM parameters. Cai et al.
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(2006) used a second-order ARM for single step motion
prediction within a particle filter for visual target tracking
of hockey players. The early work by Zhu (1991) used an
autoregressive moving average model as transition func-
tion of a HMM to predict occupancy probabilities of mov-
ing obstacles over multiple time steps with applications to
predictive planning.

Physics-based models are used for motion prediction by
recursively applying the dynamics model f to the current
state of the target agent. So far, with the exception of Zhu
(1991), the works described above make only one-step-
ahead predictions and ignore contextual cues from the envi-
ronment. To account for context, the dynamics model f can
be extended by additional forces, model parameters, or state
constraints as discussed hereafter.

3.1.2. Models with map-based contextual cues. A number
of approaches extend physics-based models to account for
information from a map, particularly for the task of tracking
ground vehicles on roads. The methods developed to this
end differ in how road constraints are derived and incorpo-
rated into the state estimation problem, see the survey by
Simon (2010). Yang and Blasch (2008), for example, used
a regular KF and project the unconstrained state estimate
onto the constrained surface for tracking on-road ground
vehicles with a surveillance radar. Yang et al. (2005) used
the technique to reduce the system model parametrization
to the constrained surface. They reduced vehicle motion to
a 1D curvilinear road representation for filtering. Batkovic
et al. (2018) predicted pedestrian motion along a graph with
straight line edges centered on sidewalks and crosswalks.
Using a unicycle model and a control approach to keep the
predictions along the edges, they evaluated long-term pre-
dictions up to 10 s ahead. When there are several possible
turns at a node, i.e., at bifurcations, predictions are propa-
gated along all outgoing edges. Another class of techniques
uses the road information as pseudo-measurements, pur-
sued, e.g., by Petrich et al. (2013) who used a kinematic
bicycle model for f and pseudo-measurements from the
centerlines of lanes to predict future vehicle trajectories sev-
eral seconds ahead. When there are several possible turns,
e.g., at intersections, the approach generates new motion
hypothesis for each relevant lane by using an EKF.

When agents move freely, e.g., do not comply with road
constraints, we need different ways to represent free space
and account for map information. To this end, several
authors proposed grid-based (Coscia et al., 2018; Luber
et al., 2011; Rehder and Klöden, 2015) and more gen-
eral graph-based space discretizations (Aoude et al., 2010;
Koschi et al., 2018). Luber et al. (2011) used 2D laser data
to track people from a mobile robot and learn a so-called
spatial affordance map, a grid-based spatial Poisson pro-
cess from which a walkable area map of the environment
can be derived. They predict future trajectories of peo-
ple during lengthy occlusion events using an auxiliary PF
with look-ahead particles obtained by forward-simulation

of the curvilinear motion model proposed by Best and Nor-
ton (1997). In this way, long-term predictions (up to 50
steps ahead) stay focused on high-probability regions with
the result of improved tracking performance. Rehder and
Klöden (2015) also chose a regular grid to represent the
belief about pedestrian locations in a linear road scenario.
They proposed a variant of a Bayesian histogram filter to
achieve map-aware predictions 3 seconds ahead by com-
bining forward propagation of an unicycle pedestrian model
from the start and in backward direction from the goal with
prior place-dependent knowledge of motion learned from
previously observed trajectories. Similarly, Coscia et al.
(2018) used polars grids, centered at the currently predicted
agent position to represent four different local influences:
a CV motion model, prior motion knowledge learned from
data, semantic map annotations such as “road” or “grass,”
and direction to goal. The next velocity is then obtained
from the normalized product of the four polar distribu-
tions and forward propagated for long-term prediction of
pedestrians and cyclists in urban scenarios. Like Rehder
and Klöden (2015), no planning is involved and the learned
prior knowledge is place-dependent. Koschi et al. (2018)
exploited information on road segments connectivity and
semantic regions to compute reachability-based predictions
of pedestrians, similarly to Rehder and Klöden (2015). The
authors formalized several relevant traffic rules, e.g., pedes-
trian crossing permission on the green light, as additional
motion constraints. Aoude et al. (2010) grew a tree of future
trajectories for each target agent using a closed-loop rapidly
exploring random trees (RRT) algorithm that samples the
controls of a bicycle motion model (Kuwata et al., 2009)
avoiding obstacles in the map. Based on agent’s recognized
intentions using a support vector machine (SVM) classi-
fier and features from observed trajectories, they bias the
tree growth towards areas that are more likely for the agent
to enter and determine the best evasive maneuver for the
ego-vehicle to minimize threat at intersection scenarios.
A reachibility-based model, such as Rehder and Klöden
(2015), Koschi et al. (2018), and Aoude et al. (2010), is
illustrated in Figure 8(b).

So far, we discussed extensions to physics-based motion
models that embed different types of map information.
All those works, however, consider only a single tar-
get agent and neglect local interactions between mul-
tiple agents. Hereafter, we discuss methods that add
social situation awareness, predicting several target agents
jointly.

3.1.3. Models with dynamic environment cues. There are
several ways to incorporate local agent interaction models
into physics-based approaches for prediction, one popular
example being the social force (SF) model by Helbing and
Molnar (1995), see Figure 8 (c). Developed for the purpose
of crowd analysis and egress research, the model superim-
poses attractive forces from a goal with repulsive forces
from other agents and obstacles. Several works extend
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Fig. 8. Examples of the physics-based approaches: (a) a method with a single dynamical model, (b) a reachability-based method, which
accounts for all possible transitions from the given motion state, (c) an attraction–repulsion approach, which accounts for dynamic
environment cues, (d) a MM method with several modes of dynamics and the DBN switching mechanism.

the dynamics model f to include social forces, e.g., for
improved short-term prediction for pedestrian tracking in
2D laser data (Luber et al., 2010) or image data (Pellegrini
et al., 2009).

Elfring et al. (2014) combined the HMM-based goal esti-
mation method introduced by Vasquez et al. (2008) with
the basic SF-based human motion prediction by Luber et al.
(2010). For intention estimation, the observed people tra-
jectories are summarized in a sparse topological map of
the environment. Each node of the map encodes a state–
destination pair, and the goal inference using the observed
trajectory is carried out in a maximum-likelihood manner.
Ferrer and Sanfeliu (2014) estimated the interaction param-
eters of the SF for each two people in the scene individ-
ually. For this purpose, several behaviors (i.e., sets of SF
parameters) are learned offline, and the observed interac-
tion between any two people is associated to the closest
“behavior.” The approach by Oli et al. (2013) defined the
robot operating in social spaces as an interacting agent,
affected by the social forces. Each human was flagged as
either aware or unaware of the robot, which defined the
repulsive force the robot exerts on that person. Such aware-
ness was inferred using visual cues (gaze direction and past
trajectory).

In order to achieve more realistic behaviors, several
extensions to the social force model have been proposed.
Yan et al. (2014) presented a model that embeds social
relationships in the linear combination of predefined basic
social effects (attraction, repulsion, and non-interaction).
The motion predictor maintains several hypothesis over the
social modes, in which the pedestrians are involved. Pre-
dictive collision avoidance behavior of the SF agents is
introduced by Karamouzas et al. (2009) and Zanlungo et al.
(2011). In particular, Karamouzas et al. (2009) modeled
each agent to adapt their route as early as possible, trying
to minimize the amount of interactions with others and the
energy required to solve these interactions. To this end an
evasion force, that depends on the predicted point of colli-
sion and the distance to it, is applied to each agent. Updates
to the SF model to consider also group motion have been
proposed by Moussaïd et al. (2010) and Farina et al. (2017).

Other agent interaction models, not based on the social
forces, for example for road vehicles, have also been used.
An interactive kinematic motion model for vehicles on a
single lane has been proposed by Treiber et al. (2000)

to predict the longitudinal motion of a target vehicle in
the presence of preceding vehicles. The model, called the
intelligent driver model (IDM), was used, e.g., by Liebner
et al. (2013) for driver intent inference at urban intersec-
tions. Hoermann et al. (2017) learned the driving style of
preceding vehicles by on-line estimating the IDM param-
eters using particle filtering and near- and far-range radar
observations. Prediction of longitudinal motion of preced-
ing vehicles, in the experiments up to 10 seconds ahead, is
then obtained by forward propagation of the model.

Several approaches exploit the reciprocal velocity obsta-

cles (RVO) model (van den Berg et al., 2008) for jointly pre-
dicting human motions. Kim et al. (2015) used the ensemble
KF technique together with the expectation–maximization
(EM) algorithm to estimate and improve the human motion
model (i.e., RVO parameters). Bera et al. (2016) proposed a
method that dynamically estimates parameters of the RVO
function for each pedestrian, moving in a crowd, namely
current and preferred velocities per agent and global motion
characteristics such as entry points and movement features.
A follow-up work (Bera et al., 2017) also introduced online
estimation of personality traits. Each pedestrian’s behavior
is characterized as a weighted combination of six personal-
ity traits (aggressive, assertive, shy, active, tense, and impul-
sive) based on the observations, thus defining parameters of
the RVO model for this person.

Other approaches instead compute joint motion predic-
tions based on the time of possible collision between pairs
of agents. Paris et al. (2007) proposed a method for mod-
eling predictive collision avoidance behavior in simulated
scenarios. For each pedestrian current velocities of their
neighbors are extrapolated in the 3D ( x, y, t) space, and
all actions that result in collision with dynamic and static
obstacles are excluded. A similar problem was addressed by
Pettré et al. (2009), who evaluated real people trajectories
in an interactive experiment and designed a predictive col-
lision avoidance approach, capable of reproducing realistic
joint maneuvers, such as giving way and passing first.

Other methods propose to compute joint motion pre-
diction based on the expected point of closest approach
between pedestrians. The first such approach was proposed
by Pellegrini et al. (2009) called linear trajectory avoid-

ance (LTA): the method first computes the expected point
of closest approach between different agents, and then uses
it as driving force to perform avoidance between the agents.
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Based on the LTA, Yamaguchi et al. (2011) formulated a
human motion prediction approach as an energy minimiza-
tion problem. The energy function considers different prop-
erties of people motion: damping, speed, direction, attrac-
tion, being in a group, avoiding collisions. The approach of
Yamaguchi et al. was further improved by Robicquet et al.
(2016) by considering several different sets of the energy
functional parameters, learned from the training data. Each
set of parameters represents a distinct behavior (navigation
style of the agent).

Local interaction modeling methods, as well as
approaches for predicting motion in crowds, usually benefit
from detecting and considering groups of people who walk
together. For example, Pellegrini et al. (2010) proposed an
approach to model joint trajectories of people, taking group
relations into account. The proposed framework operates in
two steps: first, it generates possible trajectory hypotheses
for each person, then it selects the best hypothesis that max-
imize a likelihood function, taking into account social fac-
tors, while at the same time estimating group membership.
People and relations are modeled with conditional random
fields (CRFs). Choi and Savarese (2010) proposed an inter-
action model that incorporates linear motion assumption,
repulsion of nearby people and group coherence via syn-
chronization of velocities. Further group motion models
(e.g., Karamouzas and Overmars, 2012; Qiu and Hu, 2010;
Seitz et al., 2012; Singh et al., 2009), developed in the sim-
ulation and visualization communities, typically addresses
the groups cohesion with additional forces to attract mem-
bers to each other, assigning leader’s and follower’s roles or
imposing certain group formation.

A recent reachability-based pedestrian occupancy predic-
tion method, presented by Zechel et al. (2019), accounts
both for dynamic objects and semantics of the static envi-
ronment. The authors first used a physical model to deter-
mine reachable locations of a person, and then reduced
the area based on the intersections with static environ-
ment and presence probabilities of other dynamic agents.
Similarly, Luo and Cai (2019) computed future agents pre-
dictions based on an optimization approach that handles
physical constraints, i.e., kinematics and geometry of the
agents, and behavioral constraints, i.e., intention, attention,
and responsibility.

3.2. Multi-model approaches

Complex agent motion is poorly described by a single
dynamical model f . Although the incorporation of map
information and influences from multiple agents render
such approaches more flexible, they remain inherently lim-
ited. A common approach to modeling general motion of
maneuvering targets is the definition and fusion of different
prototypical motion modes, each described by a different
dynamic regime f . Modes may be linear movements, turn
maneuvers, or sudden accelerations, that, over time, form
sequences able to describe complex motion behavior. Since

the motion modes of other agents are not directly observ-
able, we need techniques to represent and reason about
motion mode uncertainty. The primary approach to this end
are MM methods (Li and Jilkov, 2005) and hybrid estima-
tion (Hofbaur and Williams, 2004). MM methods maintain
a hybrid system state ξ =( x, s) that augments the continu-
ous valued x by a discrete-valued modal state s. Following
Li and Jilkov (2005), MM methods generally consist of four
elements: a fixed or on-line adaptive model set, a strategy
to deal with the discrete-valued uncertainties (e.g., model
sequences under a Markov or semi-Markov assumption),
a recursive estimation scheme to deal with the continuous
valued components conditioned on the model, and a mech-
anism to generate the overall best estimate from a fusion
or selection of the individual filters. For prediction, MM
methods are used in several ways, to represent more com-
plex motion, to incorporate context information from other
agents and context information from the map. A naive MM
approach, presented by Pool et al. (2017), predicted future
motion of cyclists using a uniform mixture of five linear
dynamic systems (LDSs) dynamics-based motion strate-
gies: go on straight, turn 45◦ or 90◦ left or right. The prob-
ability of each strategy is set to zero if the predicted path
does not comply with the road topology in the place of
prediction.

The interactive multiple model filter (IMM) is a widely
used inference technique applied on MM models with
numerous applications in tracking (Mazor et al., 1998) and
predictions. For instance, Kaempchen et al. (2004) pro-
posed a method for future vehicle states estimation that
switches between constant acceleration and simplified bicy-
cle dynamical models. Uncertainty in the next transition
is explicitly modeled with Gaussian noise. Schneider and
Gavrila (2013) introduce an IMM for pedestrian trajec-
tory prediction that combines several basic motion mod-
els (constant velocity, constant acceleration, and constant
turn). In addition, Schulz and Stiefelhagen (2015) proposed
a method for predicting the future path of a pedestrian
using an IMM framework with constant velocity, constant
position, and coordinated turn models. In this work, model
transitions are controlled by an intention recognition sys-
tem based on latent-dynamic conditional random fields:
based on the features of the person’s dynamics (position
and velocity) and situational awareness (head orientation),
intention is classified as crossing, stopping, or going in
the same direction. Joint vehicle trajectory estimation also
using IMMs is considered by Kuhnt et al. (2015, 2016) in
a method which adopts pre-defined environment geometry
to estimate possible routes of each individual vehicle. Con-
textual interaction constraints are embedded in a Bayesian
network that estimates the evolution of the traffic situation.

Other examples of IMMs techniques are variable-
structure IMMs for ground vehicles (Kirubarajan et al.,
2000; Noe and Collins, 2000; Pannetier et al., 2005; Shea
et al., 2000) to account for road constraints. In a recent
work, Xie et al. (2018) combined a kinematics-based
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constant turn rate and acceleration model with IMM-based
lane keeping and changing maneuvers mixing. The method
is aware of road geometry and produces results for a varying
prediction horizon.

An alternative approach to hybrid estimation problems
are dynamic Bayesian networks (DBNs), which inherit the
broad variety of modeling schemes and large corpus of
exact and approximate inference and learning techniques
from probabilistic graphical models (Koller et al., 2009).
An example of a DBN-based MM approach is given in
Figure 8(d). The seminal work of Pentland and Liu (1999)
introduced an approach to model human behaviors by cou-
pling a set of dynamic systems (i.e., a bank of KFs) with an
HMM, which is a special case of the DBNs. The authors
introduce a dynamic Markov system that infers human
future behaviors, a set of macro-actions described by a set
of KFs, based on measured dynamic quantities (i.e., accel-
eration, torque). The approach was used to accurately cat-
egorize human driving actions. Agamennoni et al. (2012)
jointly modeled the agent dynamics and situational context
using a DBN. The vehicular dynamics is described by a
bicycle model whereas the context is defined by a weighted
feature function to account, e.g., for closeness between
agents or place-dependent information from a map. The
model resembles a switched Bayesian filter, but considers
a more general conditioning of the switch transitions and
the case of multiple agents. The authors applied the model
for the task of long-term multi-vehicle trajectory prediction
of mining vehicles, useful for instance during GPS outages.
Kooij et al. (2014) proposed a context-aware path predic-
tion method for pedestrians intending to laterally cross a
street, that makes use of switching linear dynamical systems
(SLDSs) to model maneuvering pedestrians that alternate
between motion models (e.g., walking straight, stopping).
The approach adopts a DBN to infer the next pedestrian
movements based on the SLDS model. The latent (context)
variables relate to pedestrian awareness of an oncoming
vehicle (head orientation), the distance to the curbside and
the situation criticality. Kooij et al. (2019) extended this
work to cover a cyclist turning scenario. In another exten-
sion of Kooij et al. (2014), Roth et al. (2016) used a second
context-based SLDS to model the “braking” and “driving”
behaviors of the ego-vehicle. The two SLDS sub-graphs for
modeling pedestrian and vehicle paths are combined into
a joint DBN, where the situation criticality latent state is
shared. Gu et al. (2016) proposed a DBN-based motion
model with a particle filter inference to estimate future posi-
tion, velocity, and crossing intention of a pedestrian. During
inference the approach considers standing, walking, and
running motion modes of pedestrians. Gindele et al. (2010)
jointly modeled future trajectories of vehicles with a DBN,
describing the local context of the interaction between mul-
tiple drivers with a set of numerical features. These features
were used to classify the current situation of each driver and
reason on available behaviors, such as “follow,” “sheer in,”
or “overtake,” represented as Bézier curves. Blaiotta (2019)

also proposed a DBN for pedestrian prediction with two
motion modes (walking and standing), contextual aware-
ness flag for the oncoming vehicle and social force-based
motion dynamics for pedestrians.

Techniques derived by the stochastic reachability anal-
ysis theory (Althoff, 2010) form another class of hybrid
approaches to compute human motion prediction. In gen-
eral, those methods model agents as hybrid systems (with
multiple modes) and infer agents’ future motions by com-
puting stochastic reachable sets. The approach by Althoff
et al. (2008b) generates the stochastic reachable sets for
interacting traffic participants using Markov chains, where
each chain approximates the behavior of a single agent.
Each vehicle has its own dynamics with many modes (e.g.,
acceleration, deceleration, standstill, speed limit), and its
goal is assumed to be known. Althoff et al. (2013) further
extended Althoff et al. (2008b) with the over-approximative
estimation of the occupancy sets. The method is particularly
framed for hybrid dynamics (mixed discrete and contin-
uous) where computing the exact reachability sets could
be computationally unfeasible. To overcome this issue, the
method proposes to intersect different occupancy sets for
different abstractions of the dynamical model. The work
by Bansal et al. (2019) also used a reachability approach
for solving the prediction problem for MM systems. The
approach rather than using a probability distribution over
human next actions, it uses a deterministic set of allowable
human actions. This reduces the complexity of the predictor
and allows for an easy certification process.

4. Pattern-based approaches

In contrast to the physics-based approaches that use explic-
itly defined, parametrized functions of motion dynamics,
pattern-based approaches learn the latter from data, fol-
lowing the sense–learn–predict paradigm. These methods
learn human motion behaviors by fitting different function
approximators (i.e., neural networks, HMMs, Gaussian pro-
cesses (GPs)) to data. Many of those methods were intro-
duced by the machine learning and computer vision com-
munities (i.e., for behavior cloning and video surveillance
applications), and later applied in robotics and autonomous
navigation settings.

In our taxonomy we classify pattern-based approaches
into two categories, based on the type of function approxi-
mator used.

(1) Sequential methods typically learn conditional models,
where it is assumed that the state (e.g., position, velocity) at
one time instance is conditionally dependent on some suf-
ficient statistic of the full history of past states. Many of
the proposed methods are Markov models, where an N th-
order Markov model assumes that a limited state history
of N time steps is a sufficient representation of the entire
state history. Similarly to many physics-based approaches,
sequential methods aim to learn a one-step predictor st+1 =

f (st−n:t), where the state st+1 is the one step prediction
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Fig. 9. Examples of the pattern-based approaches: (a) grid-based local transitions learning method, (b) sequential location-independent
transition model, which accounts for cues from the dynamic environment, (c) higher-order sequential Markov model, (d) clustering of
full trajectories, (e) location-independent method, which learns long-term transition sequences, i.e., maneuvers.

and the sequence of states st−n:t is the sufficient statistic
of the history. In order to predict a sequence of state tran-
sitions (i.e., a trajectory), consecutive one-step predictions
are made to compose a single long-term trajectory.

(2) Non-sequential methods directly model the distribution
over full trajectories without imposing a factorization of
the dynamics (i.e., Markov assumption) as with sequential
models.

4.1. Sequential models

Sequential models are built on the assumption that the
motion of intelligent agents can be described with causally
conditional models over time. Similarly to the physics-
based methods, transition function of sequential models
has Markovian property, i.e., information on the future
motion is confined in the current state of the agent. Dif-
ferently, the function, often non-parametric (e.g., GPs, vec-
tor fields), is learned from statistical observations, and its
parameters cannot be directly interpreted as for many of the
physics-based methods.

4.1.1. Local transition patterns, Learning local motion
patterns, such as probabilities of transitions between cells
on a grid map (Figure 9(a)), is a simple, commonly used
technique for making sequential predictions (Ballan et al.,
2016; Kruse and Wahl, 1998; Kucner et al., 2013; Molina
et al., 2018; Tadokoro et al., 1993; Thompson et al., 2009;
Wang et al., 2015, 2016).

Early examples of local motion patterns include the
works of Tadokoro et al. (1993) and Kruse and Wahl
(1998). Kruse and Wahl (1998) built two transition models:
a stochastic grid where usual motion patterns of dynamic
obstacles are stored, and stochastic trajectory prediction
modeled with Poisson processes. Tadokoro et al. (1993)
included empirical biases to account for context features of
the cells in the regions where the observations are sparse,
e.g., increasing the probability to move away from the wall,
stop near a bookshelf or decrease walking speed at the
crossing. More recently, Thompson et al. (2009) expanded
the local motion patterns model by accounting for further
transitions for several steps into the future. Their method
maps the motion state of the person to a series of local
patches, describing where the person might be in the future.

In addition to the current motion state, the learned patterns
are also conditioned on the final goal or the topological
sub-goal in the environment. Wang et al. (2015) modeled
local transition probabilities with an input–output HMM.
Transition in each cell is conditioned both on the direc-
tion of cell entrance and the global starting point of the
person’s movement. Jacobs et al. (2017) used nonlinear
estimation of pedestrian dynamics with the learned vec-
tor fields to improve the linear velocity projection model.
Ballan et al. (2016) proposed a DBN method to predict not-
interacting human motion based on statistical properties of
human behavior. To this end a transferable navigation grid-
map is learned. It encodes functional properties of the envi-
ronment (i.e., direction and speed of the targets, crossing
frequency for each patch, identification of routing points).
Molina et al. (2018) addressed periodic temporal variations
in the learned transition patterns, e.g., based on the time of
the day.

In contrast to the discrete transition patterns discussed
so far, several authors modeled the transition dynamics as
a continuous function of the agent’s motion state, using
GPs and their mixtures (Ellis et al., 2009; Ferguson et al.,
2015; Joseph et al., 2011; Kucner et al., 2017). Ellis et al.
(2009) modeled trajectory data in the observed environ-
ment by regressing relative motion against current posi-
tion. Predictions were generated using a sequential Monte
Carlo sampling method. Joseph et al. (2011) modeled the
multi-modal mobility patterns as a mixture of GPs with
a Dirichlet process prior over mixture weights. Ferguson
et al. (2015) further extended the work of Joseph et al.
(2011) by including a change-point detection and clustering
algorithm that enables quick detection of changes in intent
and on-line learning of motion patterns not seen in prior
training data. Kucner et al. (2017) model multimodal distri-
butions with a Gaussian mixture model (GMM) in the joint
velocity–orientation space.

Apart from the commonly used grid cells, local transi-
tion patterns can be learned using a higher-level abstraction
of the workspace, such as a graph of sub-goals or transi-
tion points (Han et al., 2019; Ikeda et al., 2012), map of
connected position–velocity points Kalayeh et al. (2015),
Voronoi diagram (Liao et al., 2003), instantaneous topolog-
ical map (ITM) (Vasquez et al., 2009), and semantic-aware
ITM (Vasishta et al., 2018). More flexible representation



Rudenko et al. 13

of the workspace topology is achieved this way. Combin-
ing the merits of local and global motion patterns (i.e.,
sequential and non-sequential models), Chen et al. (2016)
modeled trajectories in the environment with a set of over-
complete basis vectors. The method breaks down trajecto-
ries into a small number of representative partial motion
patterns, where each partial pattern consists of a series of
local transitions. A follow-up work by Habibi et al. (2018)
incorporated semantic features from the environment (rela-
tive distance to curbside and the traffic lights signals) in the
learning process, improving prediction accuracy and gen-
eralization to similar environments. Han et al. (2019) pro-
posed a method to explicitly learn transition points between
the local patterns.

4.1.2. Location-independent behavioral patterns. Unlike
the local transition patterns, which are learned and applied
for prediction only in a particular environment, location-

independent patterns are used for predicting transitions of
an agent in the general free space (Aoude et al., 2011; Foka
and Trahanias, 2002; Quintero et al., 2014; Shalev-Shwartz
et al., 2016; Tran and Firl, 2014) (see Figure 9(b)).

Several authors (e.g., Foka and Trahanias, 2002; Shalev-
Shwartz et al., 2016) used location-invariant one-step
prediction as a part of collision avoidance framework
using neural networks. Aoude et al. (2011) extended their
physics-based approach (Aoude et al., 2010) by introducing
location-independent GP-based motion patterns that guide
the RRT-Reach to grow probabilistically weighted feasi-
ble paths of the surrounding vehicles. Tran and Firl (2014)
modeled location-independent motion patterns of vehicles
by applying spatial normalization to the trajectories in the
learning set. Cartesian coordinates are turned into the rela-
tive coordinate system of the road intersection, based on the
topology of the lanes.

Keller and Gavrila (2014) used optical flow features
derived from a detected pedestrian bounding box to predict
future motion. Quintero et al. (2014) instead extracted full-
body articulated pose. In both works, body motion dynam-
ics for walking and stopping are learned using GPs with
dynamic model (GPDM) in a compact low-dimensional
latent space. Mínguez et al. (2018) extended the work of
Quintero et al. (2014) by considering standing and starting
activities as well. A first-order HMM is used to model the
transition between the activities.

Several location-independent methods learned socially
aware models of local interactions (Antonini et al., 2006;
Vemula et al., 2017). Antonini et al. (2006) adapted the dis-
crete choice model from econometrics studies to predict
local transitions of individuals, given the intended direc-
tion, current velocity, locations of obstacles, and other peo-
ple nearby. Vemula et al. (2017) reformulated the non-
sequential joint human motion prediction approach by
Trautman and Krause (2010), discussed in Section 4.2,
as sequential inference with GPs. They modeled the local

motion of each agent conditioned on relative positions of
other people in the surroundings and the person’s goal.

4.1.3. Complex long-term dependencies. Several recent
sequential methods use neural networks for time series
prediction, i.e., assuming a higher-order Markov prop-
erty (Alahi et al., 2016; Bartoli et al., 2018; Goldhammer
et al., 2014; Jain et al., 2016; Schmerling et al., 2018;
Sumpter and Bulpitt, 2000; Sun et al., 2018; Varshneya
and Srinivasaraghavan, 2017; Vemula et al., 2018; Zheng
et al., 2016), see Figure 9(c). Such time series-based mod-
els are making a natural transition between the first-order
Markovian methods (e.g., local transition patterns) and
non-sequential techniques (e.g., clustering-based). An early
method, presented by Sumpter and Bulpitt (2000), learned
long-term spatiotemporal motion patterns from visual input
in a known environment. The simple neural network archi-
tecture, based on natural language processing networks,
quantizes partial trajectories in location/shape-space: the
symbol network categorizes the object shape and locations
at any time, and the context network categorizes the order
in which they appear. Goldhammer et al. (2014) learned
usual human motion patterns using an artificial neural net-
work (ANN) with the multilayer perceptron architecture.
This method was adapted to predict motion of cyclists by
Zernetsch et al. (2016).

Recurrent neural networks (RNNs) for sequence learn-
ing, and long short-term memory (LSTM) networks in par-
ticular, have recently become a widely popular modeling
approach for predicting human (Alahi et al., 2016; Bartoli
et al., 2018; Sadeghian et al., 2019; Saleh et al., 2018b;
Sun et al., 2018; Varshneya and Srinivasaraghavan, 2017;
Vemula et al., 2018), vehicle (Altché and de La Fortelle,
2017; Ding et al., 2019; Kim et al., 2017; Park et al.,
2018), and cyclist (Pool et al., 2019) motion. Alahi et al.
(2016) was the first to propose a Social-LSTM model to
predict joint trajectories in continuous spaces. Each per-
son is modeled by an individual LSTM. Since humans are
influenced by nearby people, LSTMs are connected in the
social pooling system, sharing information from the hid-
den state of the LSTMs with the neighboring pedestrians.
The work of Bartoli et al. (2018) extended the Social-
LSTM, explicitly modeling human–space interactions by
defining a “context-aware” pooling layer, which considers
the static objects in the neighborhood of a person. Varsh-
neya and Srinivasaraghavan (2017) used a spatial matching
network (SMN), first introduced by Huang et al. (2016)
(discussed in Section 5.2), that models the spatial context of
the surrounding environment, predicting the probability of
the subject stepping on a particular patch. Sun et al. (2018)
used LSTM to learn environment- and time-specific human
activity patterns in the target environment from long-term
observations, i.e., covering several weeks. The state of the
person is extended to include contextual information, i.e.,
the time of the day when the person is observed. Pfeiffer
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et al. (2018) coupled obstacle-awareness with an efficient
representation of the surrounding dynamic agents using
a 1D vector in polar angle space. Bisagno et al. (2018)
added group coherence information in the social pooling
layer. Saleh et al. predicted trajectories of pedestrians (Saleh
et al., 2018b) and cyclists (Saleh et al., 2018a), adapting the
LSTM architecture for the perspective of a moving vehicle.
Numerous other implementations of the LSTM-based pre-
dictors offer various improvements, such as increased gen-
eralizability to new and crowded environments (Shi et al.,
2019; Xue et al., 2019), considering the immediate (Zhang
et al., 2019) or long-term (Xue et al., 2017) intention of
the agents, augmenting the state of the person with the
head pose (Hasan et al., 2018) or adding a better pool-
ing mechanism with relative importance of each person in
the vicinity of the target agent (Fernando et al., 2018; Pei
et al., 2019; Xu et al., 2018). Huynh and Alaghband (2019)
applied LSTM-based trajectory prediction in combination
with local transition patterns, learned on the fly in a par-
ticular scene. Non-linear motion, historically observed in
a coarse grid cell of the environment, informs the LSTM
predictor.

Several authors used LSTMs to estimate kinodynamic
motion of vehicles, combining the benefits of the physics-
based and the pattern-based methods (Deo and Trivedi,
2018; Raipuria et al., 2018). Raipuria et al. (2018) aug-
mented the LSTM model with the road infrastructure indi-
cators, expressed in the curvilinear coordinate system, to
better predict motion in curved road segments. Deo and
Trivedi (2018) proposed an interaction-aware multiple-
LSTM model to compute stochastic maneuver-dependent
predictions of a vehicle, and augment it with an LSTM-
based maneuver classification and mixing mechanism.

Other approaches used RNN as models of spatiotemporal
graphs for problems that require both spatial and temporal
reasoning (Dai et al., 2019; Eiffert and Sukkarieh, 2019;
Huang et al., 2019; Ivanovic and Pavone, 2019; Jain et al.,
2016; Vemula et al., 2018). Jain et al. (2016) proposed an
approach for training sequence prediction models on arbi-
trary high-level spatiotemporal graphs, whose nodes and
edges are represented by RNNs. The resulting graph is a
feed-forward, fully differentiable, and jointly trainable RNN
mixture. Vemula et al. (2018) applied this method to jointly
predict transitions in human crowds.

RNN abilities for prediction of time-series is also com-
bined with different neural networks architectures (Choi
and Savarese, 2010; Li et al., 2019; Schmerling et al., 2018;
Zhan et al., 2018; Zheng et al., 2016). Schmerling et al.
(2018) considered a traffic weaving scenario and propose
a conditional variational autoencoder (CVAE) with RNN
subcomponents to model interactive human driver behav-
iors. The CVAE characterizes a multi-modal distribution
over human actions at each time step conditioned on inter-
action history, as well as future robot action choices. Zheng
et al. (2016) described a hierarchical policy approach that
automatically reasons about both long-term and short-term

goals. The model uses recurrent convolutional neural net-
works (CNNs) to make predictions for macro-goals (inter-
mediate goals) and micro-actions (relative motion), which
are trained independently by supervised learning, com-
bined by an attention module, and finally jointly fine-tuned.
Zhan et al. (2018) extended this approach using variational
RNNs. Choi et al. (2019) used spatial–temporal graphs in
combination with CVAE. The spatial–temporal graphs are
used to model the relational influence among predicted
agents. Conditions of the CVAE are represented by esti-
mated intentions. In addition, Li et al. (2019) proposed a
hierarchical architecture where an upper level (based on
variational RNN) provides predictions of discrete coordi-
nation activities between agents and a lower level generates
actual geometric predictions (using a conditional genera-
tive adversarial network (GAN)). The probabilistic frame-
work called multiple futures predictor (MFP) (Tang and
Salakhutdinov, 2019) models joint behavior of an arbi-
trary number of agents via a dynamic attention-based state
encoder for capturing relationships between agents, a set
of stochastic, discrete latent variables per agent to allow for
multi-modal future behavior, as well as interactive and step-
wise parallel rollouts with agent-specific RNNs to model
future interactions. Furthermore, there model allows to
make hypothetical rollouts under assumptions of behavior
for a particular agent.

Several recent works (Jain et al., 2019; Radwan et al.,
2018; Rhinehart et al., 2019; Ridel et al., 2019; Srikanth
et al., 2019; van der Heiden et al., 2019; Xue et al.,
2018; Zhao et al., 2019) combined the benefits of sequen-
tial (e.g., RNN-based) and convolutional approaches for
modeling jointly the spatial and temporal relations of the
observed agents’ motion. Xue et al. (2018) introduced a
hierarchical LSTM model, which combines inputs on three
scales: trajectory of the person, social neighborhood and
features of the global scene layout, extracted with a CNN.
Zhao et al. (2019) proposed the multi-agent tensor fusion
encoding, which fused contextual image of the environ-
ment with sequential trajectories of agents, thus retaining
spatial relation between features of the environment and
capturing interaction between the agents. This method is
applied to both pedestrian and vehicles. In addition, Rhine-
hart et al. (2019) presented a prediction scheme for multi-
agents that combines CNNs with a generative model based
on RNNs. Moreover, the approach conditions the predic-
tions on inferred intentions of the agents. Srikanth et al.
(2019) proposed a novel input representation for learning
vehicle dynamics, which includes semantics images, depth
information, and other agents’ positions. This input is pro-
jected into top-down view and fed into the autoregressive
convolutional LSTM model to learn temporal dynamics.
LSTMs have been also used to predict sequence of future
human movements based on a learned reward map (Saleh
et al., 2019).

Recently, many authors have applied the GAN archi-
tecture to achieve multi-modality in the prediction output
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(Amirian et al., 2019; Gupta et al., 2018; Kosaraju et al.,
2019). For instance, Gupta et al. (2018) extended the Social-
LSTM by using GANs and a novel variety loss that encour-
ages the generative network to produce diverse multi-modal
predictions. Kosaraju et al. (2019) use graph attention net-
work in combination with the GAN architecture to bet-
ter capture relative importance of surrounding agents and
semantic features of the environment.

4.2. Non-sequential models

Learning motion patterns in complex environments requires
the model to generalize across non-uniform, context-
dependent behaviors. Specifying causal constraints, e.g.,
through the Markovian assumption for the sequential mod-
els and additionally the particular functional form for the
physics-based methods, might be too restrictive for these
situations. Alternatively, instead of focusing on the local
transitions of the system, non-sequential approaches aim
to directly learn a distribution over long-term trajectories,
that the observed agent may follow in the future, i.e., learn
a set of full motion patterns from data.

Most basic non-sequential approaches are based on clus-
tering the observed trajectories, which creates a set of long-
term motion patterns (Bennewitz et al., 2005, 2002; Bera
et al., 2016, 2017; Chen et al., 2008). IN this way the global
structure of the workspace is imposed on top of a sequen-
tial model. Clustering-based approaches are illustrated in
Figure 9(d). Bennewitz et al. (2005, 2002) cluster recorded
trajectories of humans into global motion patterns using the
EM algorithm and build an HMM model for each clus-
ter. For prediction, the method compares the observed track
with the learned motion patterns, and reasons about which
patterns best explain it. Uncertainty is handled by proba-
bilistic mixing of the most likely patterns. Similarly, Zhou
et al. (2015) modeled the global motion patterns in a crowd
with linear dynamic systems using EM for parameters esti-
mation. Several authors (Makris and Ellis, 2002; Piciarelli
et al., 2005) proposed graph structures to efficiently cap-
ture the branching of trajectory clusters. Chen et al. (2008)
proposed a method for dynamic clustering of the observed
trajectories, assuming that the set of complete motion pat-
terns may not be available at the time of prediction, e.g.,
in new environments. Sung et al. (2012) proposed to repre-
sent the agent’s states as short trajectories rather than static
positions. This higher level of abstraction provides greater
flexibility to represent not only position, but also velocity
and intention. Suraj et al. (2018) directly used a large-scale
database of observed trajectories (up to 10 million) to esti-
mate the future positions of a vehicle given only its posi-
tion, rotation, and velocity. Combining the concepts of local
motion patterns and clustering, Carvalho et al. (2019) rep-
resent each cluster with a piece-wise linear vector field over
an arbitrary state-space mesh.

Several approaches use GPs or mixture models as cluster
centroids representation (Kim et al., 2011; Tay and Laugier,

2008; Yoo et al., 2016). Tay and Laugier (2008) introduced
an approach to predict motion of a dynamic object in known
scenes based on GMMs and GPs. Kim et al. (2011) mod-
eled continuous dense flow fields from a sparse set of vector
sequences. Yoo et al. (2016) proposed to learn most com-
mon patterns in the scene and their co-occurrence tendency
using topic mixture and GMMs. Observed trajectories were
clustered into several groups of typical patterns that occur at
the same time with high probability. Given a set of observed
trajectories, prediction was performed considering the dom-
inant pattern group. Makansi et al. (2019) presented a mix-
ture density network architecture, which generates multiple
hypotheses of future position in fixed interval 1t and then
fits a mixture of Gaussian or Laplace distributions to these
hypothesis.

Clustering-based methods, discussed so far, generalize
statistical information in a particular environment. In com-
parison, location-invariant methods, based on matching the
observed partial trajectory to a set of prototypical trajec-
tories, can be used in arbitrary free space (Hermes et al.,
2009; Keller et al., 2011; Xiao et al., 2015), see Figure
9(e). Hermes et al. (2009) predicted trajectories of vehicles
by comparing the observed track to a set of motion pat-
terns, clustered with a rotationally invariant distance met-
ric. In their probabilistic hierarchical trajectory matching
(PHTM) approach, Keller et al. (2011) proposed a proba-
bilistic search tree of sample human trajectory snippets to
find the corresponding matching sub-sequence. Xiao et al.
(2015) decomposed the set of sample trajectories into pre-
defined motion classes, such as wandering or stopping,
rotating and aligning them to start from the same point
and have the longest span along the same axis. In contrast,
skipping the clustering step, Nikhil and Tran Morris (2018)
proposed a simple method to map the input trajectory of
fixed length to the full future trajectory using a CNN.

For interaction-aware non-sequential motion prediction,
several authors considered the case with two interacting
agents (Käfer et al., 2010; Luber et al., 2012). Käfer et al.
(2010) proposed a method for joint pairwise vehicle trajec-
tory estimation at intersections. Comparing the observed
motion pattern with those stored in a motion database,
several prospective future trajectories were extracted inde-
pendently for each vehicle. The probability of each pair
of possible future trajectories was then estimated. Luber
et al. (2012) modeled joint pairwise interactions between
two people using social information. The authors learned a
set of dynamic motion prototypes from observations of rel-
ative motion behavior of humans in public spaces. An unsu-
pervised clustering technique determines the most likely
future paths of two humans approaching a point of social
interaction.

In contrast to multi-agent clustering, Trautman and
Krause (2010) used GPs for making single-agent trajectory
predictions. Then, an interaction potential re-weights the
set of trajectories based on how close people are located to
each other at every moment. A follow-up work (Trautman
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et al., 2013) incorporated goal information into the model:
the goal position is added as a training point into the GP.
Another approach by Su et al. (2017) used a social-aware
LSTM-based crowd descriptor, which was later integrated
into the deep GP to predict a complete distribution over
future trajectories of all people.

Recently, several approaches for non-sequential predic-
tion of vehicle motion using CNNs were presented (Cui
et al., 2019; Djuric et al., 2018; Hong et al., 2019). An
uncertainty-aware CNN-based vehicle motion prediction
approach was presented by Djuric et al. (2018). The authors
used a high-definition map image with projected prior
motion of the target vehicle and full surrounding context
as an input to the CNN, which produced the short-term
trajectory of the target vehicle. The approach is extended
by Cui et al. (2019) to inferring multi-modal predictions.
Hong et al. (2019) proposed two methods for output rep-
resentation using multi-modal regression with uncertainty
or stacks of grid-map crops. Chai et al. (2019) used a
fixed set of state-sequence “anchor” trajectories (clustered
from training data), which correspond to possible modes
of future behavior, as input to a CNN for mid-level scene
features inference, and predict a discrete distribution over
these anchors. For each anchor, the method regresses offsets
from anchor waypoints along with uncertainties, yielding a
Gaussian mixture at each time step.

5. Planning-based approaches

Planning-based approaches solve a sequential decision-
making problem by reasoning about the future to infer
a model of agent’s motion. These approaches follow the
sense–reason–act paradigm introduced earlier in Section
2. Unlike the previous two modeling approaches, the
planning-based approach incorporates the concept of a
rational agent when modeling human motions. By plac-
ing an assumption of rationality on the human, the models
used to represent human motion must take into account the
impact of current actions on the future as part of its model.
As a result, much of the work covered in this section used
objective functions that minimize some notion of the total
cost of a sequence of actions (motions), and not just the cost
of one action in isolation.

Here we classify planning-based approaches into two
sub-categories, depicted in Figure 10. Forward planning-

based approaches (Section 5.1) use a pre-defined cost func-
tion to predict human motion, and inverse planning-based

approaches (Section 5.2) infer the cost (or policy) function
from observations of human behavior and then use that cost
(or policy) function to predict human motion.

5.1. Forward planning approaches

5.1.1. Motion and path planning methods. To make basic
goal-informed predictions, several methods use optimal

motion and path planning techniques with a hand-crafted
cost-function (Bruce and Gordon, 2004; Gong et al., 2011;
Vasishta et al., 2017; Xie et al., 2013; Yi et al., 2016).
Bruce and Gordon (2004) proposed to use a path planning
algorithm to infer how a person would move towards des-
tinations in the environment. Predictions were performed
using a set of learned goals. Gong et al. (2011) used mul-
tiple long-term goal-directed path hypotheses from dif-
ferent homotopy classes, generated with a modified A*
algorithm (Bhattacharya et al., 2010). Xie et al. (2013)
described a Dijkstra-based approach to predict human tran-
sitions across dark energy fields generated from video data.
Every goal location generates an attractive dark matter

Gaussian force field, whereas every non-walkable loca-
tion generates a repulsive one. The dark matter functional
objects, the map and the goals are inferred on-line using
a Monte Carlo Markov chain technique. For predicting
human motion in a crowd, Yi et al. (2016) introduced an
energy map to model the traveling difficulty of each loca-
tion in the scene, accounting for obstacles layout, moving
people, and stationary groups. The energy map is personal-
ized for each observed agent, and the fast marching method
(FMM) (Sethian, 1996) was used to predict the person’s
path. Vasishta et al. (2017) used A* search over the potential
cost-map function for pedestrian trajectory prediction, aim-
ing to recognize illegal crossing intention of the observed
agent. The potential field accounts for semantic properties
of the urban environment.

Other methods model the probabilities of future motion
based on cost-to-go value estimates (Best and Fitch, 2015;
Karasev et al., 2016; Rudenko et al., 2017; Vasquez, 2016;
Yen et al., 2008). Yen et al. (2008) proposed a probabilis-
tic goal-directed motion model that accounts for several
goals in the environment. The method computes the cost-
to-go function for each goal and evaluates the probabilities
of feasible transitions in each state. A person’s trajectory
is predicted using a particle filter with Monte Carlo sam-
pling. Best and Fitch (2015) proposed a Bayesian frame-
work that exploits the set of path hypotheses to estimate
the intended destination and the future trajectory. To this
end, a probabilistic dynamical model was used, which eval-
uates the next states of the agent based on the decrease of
the distance to the intended goal. Hypotheses are gener-
ated from the probabilistic roadmap (PRM). Karasev et al.
(2016) solve the prediction problem using a jump-Markov
decision process (MDP), modeling the agents’ behavior
as switching non-linear dynamical systems. A soft MDP
policy describes the nonlinear motion dynamics, and the
latent goal variable governs the switches. The method uses
hand-crafted costs for each surface type (e.g., sidewalk,
crosswalk, road, grass), and handles time-dependent infor-
mation such as traffic signals. Instead of using an MDP
formulation, Vasquez (2016) proposed the FMM to com-
pute the cost-to-go function for a set of goals. The predic-
tor used a velocity-dependent probabilistic motion model,
described the temporal evolution along the predicted path,
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Fig. 10. Examples of the planning-based approaches: (a) forward planning approach, which used a predefined cost function (e.g.,
Euclidean distance), and (b) inverse planning approach, which infers the feature-based cost function from observations.

and offered a gradient-based goal prediction that allows
quick recognition of the intended destination changes.

5.1.2. Multi-agent forward planning. Most planning-
based methods discussed so far do not consider interactions
between agents in the scene. To account for the presence of
other agents, several authors proposed to modify individual
optimal policies locally with physics-based methods
(Rudenko et al., 2018a; van Den Berg et al., 2008; Wu
et al., 2018) or imitation learning Muench and Gavrila
(2019). A crowd simulation approach that combines global
planning and local collision avoidance was presented by
van Den Berg et al. (2008). A global path for each agent is
computed using a PRM, considering only static obstacles.
Local collision avoidance along the global path is done
jointly for all agents using the RVO (van den Berg et al.,
2008) method. Rudenko et al. (2018a) extended the MDP-
based approaches (Karasev et al., 2016; Ziebart et al., 2009)
with a fast random-walk-based method to generate joint
predictions for all observed people using social forces. The
authors extended their approach considering group-based
social motion constraints in Rudenko et al. (2018b). Wu
et al. (2018) extended the gridmap transition-based and
reachability-based framework (Coscia et al., 2018; Rehder
and Klöden, 2015) with automatic inference of local goal
points, and calculate the stochastic policy in each cell,
augmenting the physics-based dynamics with optimal
motion direction. The motion of pedestrians is predicted
jointly with other traffic participants by risk checking of
future states based on gap acceptance model (Brewer et al.,
2006). Instead of using a physics-based approach (e.g.,
social forces) for augmenting the MDP-based predictor,
Muench and Gavrila (2019) proposed to learn an additional
interaction-aware Q-function with imitation learning.

A number of approaches considered cooperative plan-
ning in joint state-space that includes all agents (Bahram
et al., 2016; Broadhurst et al., 2005; Chen et al., 2017; Rös-
mann et al., 2015). Broadhurst et al. (2005) used Monte
Carlo sampling to generate probability distributions over
future trajectories of the vehicles and pedestrians jointly.

The approach considers several available actions for each
agent in the scene: each vehicle executes one of the hand-
crafted behaviors, and humans are assumed to move freely
in all directions. In addition, Rösmann et al. (2017) consid-
ered planning for cooperating agents. A set of topologically
distinct candidate trajectories for each person is computed
using trajectory optimization techniques (Rösmann et al.,
2015). Among those trajectories, the best candidate is cho-
sen according to a metric that includes group integrity, right
versus left motion bias, and curvature constraints. Finally,
the encounter is resolved jointly in an iterative fashion.
The interaction point of minimal spatial separation is com-
puted between each two people, who adjust their trajectories
accordingly, possibly switching to a different topological
candidate. Mavrogiannis and Knepper (2016) represented
multi-agent interaction through the use of braid groups
(topological patterns) that formalize trajectories sets. At
inference time, the problem of predicting joint trajectories
is posed as a graph search in a permutation graph.

Joint planning for the robot and the human is addressed
by several works (Bandyopadhyay et al., 2013; Chen et al.,
2017; Galceran et al., 2015). Assuming availability of a
fixed set of goals, Bandyopadhyay et al. (2013) solved an
optimal motion problem for each of it, and generated appro-
priate motion policies. The latter were used to estimate
the future evolution of the joint state-space of the robot
and the human. Galceran et al. (2015) introduced a multi-
policy decision-making system to generate robot motions
based on predicted movements of other agents in the scene,
estimated with a changepoint-based technique (Fearnhead
and Liu, 2007). Likelihood of future actions were sampled
from the policies. The final prediction was generated by
an exhaustive search of closed-loop forward simulations
of these samples. The approach is well suited for predict-
ing future macro-actions (i.e., turn left or right, slow down
or speed up). Bahram et al. (2016) generated joint robot
and agents’ motions using a sequential game theory tech-
nique. The approach presented an interactive prediction and
planning loop where a sequence of predictions (i.e., motion
primitives) was generated for the ego-vehicle by consid-
ering the sequential evolution of the entire scene. Chen
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et al. (2017) developed a de-centralized multi-agent colli-
sion avoidance algorithm, which resolves local interactions
with a learned joint value function that implicitly encodes
cooperative behaviors.

5.2. Inverse planning approaches

Forward planning approaches, discussed so far, make an
explicit assumption about the optimality criteria (reward or
cost function) of an agent’s motion. In this section, we dis-
cuss algorithms that estimate the reward function of agents
(or directly a policy) from observations, using statistical
and imitation learning techniques (for a survey on imita-
tion learning techniques applied to robotic systems, we refer
the reader to Osa et al. (2018)). Inverse planning methods
assume that the reward or cost function, which depends
on contextual and social features and defines the ratio-
nal behavior, can be learned from observations (see Figure
10(b)).

5.2.1. Single-agent inverse planning. In their influential
work, Ziebart et al. (2009) proposed to learn a reward func-
tion yielding goal-directed behavior of pedestrians using
maximum entropy (MaxEnt) inverse optimal control (IOC).
Humans are assumed to be near-optimal decision makers
with stochastic policies, learned from observations, which
are used to predict motion as a probability distribution over
trajectories. Building upon the work of Ziebart et al. (2009),
Kitani et al. (2012) expanded it to include the labeled
semantic map of the environment. An IOC method takes the
semantic map as an input, and learns the feature-based cost
function that captures agents’ preferences for, e.g., walking
on the sidewalk, or keeping some distance from parked cars.
Previtali et al. (2016) proposed an approach that adopts
linear programming formulation of IRL. Using a discrete
and non-uniform representation of the 2D workspace, it
scales linearly with respect to the size of the environment.
Chung and Huang (2010) presented an MDP-based model
that describes spatial effects between agents and the envi-
ronment. The authors used IRL to estimate cost of each
state as a linear combination of trajectory length, static and
dynamic obstacle avoidance and steering smoothness. Spe-
cial context-based spatial effects (SSEs) are identified by
comparing the costs of the states, learned with IRL, and
the actual observed trajectories. A follow-up work (Chung
and Huang, 2012) introduced a feature-based representa-
tion of SSEs, which can be modeled before being naturally
observed, as in Chung and Huang (2010).

Instead of IRL, other works used different techniques
to learn the reward function (Huang et al., 2016; Rehder
et al., 2018). Rehder et al. (2018) solved the problem of
intention recognition and trajectory prediction in one single
ANN. The destinations and costly areas are predicted from
stereo images using a recurrent mixture density network
(RMDN). Planning towards these destinations is performed
using fully CNNs. Two different architectures for planning

are proposed: an MDP network and a forward–backward
network, both using contextual features of the environment.
Huang et al. (2016) proposed an approach that exploits two
CNNs to learn a reward function considering spatial and
temporal contextual information from a video sequence. A
SMN learns the spatial context of human motion. An orien-
tation network (ON) is used to model the position variation
of the object. The Dijkstra algorithm is used to find the
minimum cost solution over a graph whose edges’ weights
are set by considering the reward function and the facing
orientation computed by the two networks (SMN and ON).

All the detailed methods show that IRL or similar meth-
ods are providing powerful tools to learn human behaviors.
Furthermore, Shen et al. (2018) showed that under some
particular requirements (i.e., when the feature vector, model
parameter, and output representation are invariant under
a rigid-body transformation of the world fixed coordinate
frame), IRL is suitable for learning location-independent
transferable motion models.

5.2.2. Imitation learning. Instead of first learning a reward
function and then applying planning techniques to generate
motion predictions, imitation learning approaches directly
extract a policy from the data. The GAIL approach, pro-
posed by Ho and Ermon (2016), aims for matching long-
term distributions over states and actions. It uses a GAN-
based (Goodfellow et al., 2014) optimization procedure, in
which a discriminator tries to distinguish between obser-
vations from experts and generated ones by making model
rollouts. Afterwards, a model is trained to make predic-
tions that yield similar long-term distributions over states
and actions. This method has been successfully applied to
learning human highway driving behavior (Kuefler et al.,
2017) and training joint pedestrian motion models (Gupta
et al., 2018). Li et al. (2017) extended GAIL by intro-
ducing a component to the loss function, which maxi-
mizes the mutual information between the latent struc-
ture and observed trajectories. They test their approach
in a simulated highway driving scenario, predicting the
driver’s actions given an input image and auxiliary infor-
mation (e.g., velocity, last actions, damage), and show that
it is able to imitate human driving, while automatically
distinguishing between different types of behaviors.

Differently from GAIL, the deep generative technique by
Rhinehart et al. (2018a) adopts a fully differentiable model,
which is easy to train without the need of an expensive pol-
icy gradient search. By minimizing a symmetrized cross-
entropy between the distributions of the policy and of the
demonstration data, the method allows to learn a policy that
generates predictions which balance precision (i.e., avoid
obstacle areas) and diversity (i.e., being multi-modal).

5.2.3. Multi-agent inverse planning. In the following, we
review several inverse planning approaches that predict
multi-agent motions (Fernando et al., 2019; Kretzschmar
et al., 2014; Kuderer et al., 2012; Lee et al., 2017; Ma et al.,
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2017; Pfeiffer et al., 2016). Kuderer et al. (2012) and Kret-
zschmar et al. (2014) proposed a continuous formulation
of the MaxEnt IOC (Ziebart et al., 2009) by considering
a continuous spline-based trajectory representation. Their
method relies on several features (e.g., travel time, collision
avoidance) to capture physical and topological aspects of
the pedestrians trajectories. Pfeiffer et al. (2016) extended
the latter works by introducing the variable end position
of each trajectory, thus reasoning over the agents’ goals.
Walker et al. (2014) presented an unsupervised learning
approach for visual scene prediction. The approach exploits
mid-level elements (i.e., image patches) as building blocks
for jointly predicting positions of agents in the scene and
changes in their visual appearance. The learned reward
function defines the probability of a patch moving to a dif-
ferent location in the image. To generate predictions, the
method performs a Dijkstra search on the learned reward
function considering several goals. Ma et al. (2017) com-
bine the fictitious play (Brown, 1951) game theory method
with the deep learning-based visual scene analysis. Future
paths hypothesis are generated jointly and iteratively: each
pedestrian adapts their motion based on the predictions of
the other pedestrians’ actions. IRL’s reward function fea-
tures encode social compliance, neighborhood occupancy,
distance to the goal, and body orientation. Gender and age
attributes, extracted with a deep network from video, define
the possible average velocity of pedestrians.

Lee et al. (2017) formulated the prediction problem as
an optimization task. The method reasons on multi-modal
future trajectories accounting for agent interactions, scene
semantics, and expected reward function, learned using a
sampling-based IRL scheme. The model is wrapped into the
single end-to-end trainable RNN encoder-decoder network
called DESIRE. The RNN architecture allows incorpora-
tion of past trajectory into the inference process, which
improves prediction accuracy compared with the standard
IRL-based techniques.

The previously discussed approaches for joint predic-
tion assume multi-agent settings with rational and cooper-
ative behavior of all agents. Differently, several approaches
(Henry et al., 2010; Lee and Kitani, 2016) address the prob-
lem by modeling one target person as a rational agent, act-
ing in a dynamic environment. The influence of other agents
then becomes part of the stochastic transition model of the
environment. For example, Henry et al. (2010) proposed
an IRL-based method for imitating human navigation in
crowded environments. They conjectured that humans take
into account the density and velocity of nearby people and
learned a reward function that weights between these and
additional features. Another approach by Lee and Kitani
(2016) learned a reward function that explains the behav-
ior of a wide receiver in American football, whose strategy
takes into account the behavior of the defenders. Models of
the dynamic environment (e.g., linear or GPs) are used as
transitions in the IRL framework.

Rhinehart et al. (2019) has developed a multi-agent fore-
casting model called estimating social-forecast probabili-
ties (ESP) that uses exact likelihood inference (unlike VAEs
or GANs) derived from a deep neural network for forecast
trajectories. In contrast to most standard trajectory forecast-
ing methods, the approach is able to reason conditionally
based on additional information that it was not trained to
use by accepting agent goals at test time. The approach
uses a generative multi-agent model in order to perform
prediction conditioned on goals (PRECOG).

6. Contextual cues

In this section, we discuss the categorization of the contex-
tual cues, in those dealing with the target agent (Section
6.1), the other dynamic agents (Section 6.2), and the static
environment (Section 6.3).

6.1. Cues of the target agent

Most essential cues, used to predict future states of an agent,
are related to the agent itself. To this end most of the algo-
rithms use current position and velocity of the target agent
(Bahram et al., 2016; Bansal et al., 2019; Bennewitz et al.,
2005; Bera et al., 2016; Elfring et al., 2014; Ferrer and
Sanfeliu, 2014; Habibi et al., 2018; Karasev et al., 2016;
Kitani et al., 2012; Kucner et al., 2017; Kuderer et al.,
2012; Luo and Cai, 2019; Pellegrini et al., 2009; Rhine-
hart et al., 2018a; Rudenko et al., 2018b; Trautman and
Krause, 2010; Wu et al., 2018; Ziebart et al., 2009), often
considering also the history of recent states/velocities. Posi-
tion and velocity are also the main attributes of the target
agent in vehicle motion prediction tasks (Broadhurst et al.,
2005; Hermes et al., 2009; Käfer et al., 2010). Considering
the head orientation or full articulated pose of the person
(Blaiotta, 2019; Hasan et al., 2018; Kooij et al., 2019, 2014;
Mínguez et al., 2018; Quintero et al., 2014; Roth et al.,
2016; Schulz and Stiefelhagen, 2015; Unhelkar et al., 2015)
may bring valuable insights on the target agent’s immediate
intentions or their awareness of the environment. Consid-
ering additional semantic attributes of the target agent may
further refine the quality of predictions: gender and age in
Ma et al. (2017), personality type (Bera et al., 2017), class
of the dynamic agent (e.g. a person or a cyclist in pedestrian
areas, motorcycle, car, or a truck on a highway) (Altché
and de La Fortelle, 2017; Ballan et al., 2016; Coscia et al.,
2018), person’s attention and awareness of the robot’s pres-
ence in Oli et al. (2013), Kooij et al. (2019), and Blaiotta
(2019), and raised arm as a bending intention indicator for
cyclists (Kooij et al., 2019; Pool et al., 2019).

6.2. Cues of other dynamic agents

Most of the time all agents navigate in a shared environ-
ment, adapting their actions, timing, and route based on
the others’ presence and behavior. Therefore, for predicting
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motion it is beneficial to consider interaction between mov-
ing agents. We classify the existing approaches in three cat-
egories: unaware predictors, individual-aware predictors,
and group-aware predictors.

The class of unaware predictors includes all methods that
generate motion prediction for a single agent, considering
only the static contextual cues of the environment. Having
no need to explicitly define or learn the interaction model,
these methods are simpler to set up, require less training
data to generalize, typically have less parameters to esti-
mate. Simpler physics-based methods, such as linear veloc-
ity projection or constant acceleration models, are unaware
predictors (Bai et al., 2015; Coscia et al., 2018; Elnagar,
2001; Elnagar and Gupta, 1998; Foka and Trahanias, 2010;
Koschi et al., 2018; Vasishta et al., 2017, 2018; Xie et al.,
2018; Zhu, 1991). Many pattern-based (Bennewitz et al.,
2005, 2002; Carvalho et al., 2019; Chen et al., 2016, 2008;
Goldhammer et al., 2014; Habibi et al., 2018; Han et al.,
2019; Hermes et al., 2009; Huynh and Alaghband, 2019;
Kim et al., 2017, 2011; Kucner et al., 2017, 2013; Makansi
et al., 2019; Makris and Ellis, 2002; Molina et al., 2018;
Nikhil and Tran Morris, 2018; Piciarelli et al., 2005; Ridel
et al., 2019; Saleh et al., 2018b; Sung et al., 2012; Suraj
et al., 2018; Tadokoro et al., 1993; Thompson et al., 2009;
Unhelkar et al., 2015; Wang et al., 2016; Xiao et al., 2015;
Xue et al., 2019, 2017) and planning-based methods (Gong
et al., 2011; Karasev et al., 2016; Kitani et al., 2012; Rhine-
hart et al., 2018a; Rudenko et al., 2017; Vasquez, 2016; Yen
et al., 2008; Ziebart et al., 2009) are unaware predictors,
owing to the increase of complexity for conditioning the
learned transition patterns or optimal actions on the pres-
ence and positions of other agents. Methods for predicting
pedestrians crossing behavior (Gu et al., 2016; Keller and
Gavrila, 2014; Kooij et al., 2014; Mínguez et al., 2018;
Quintero et al., 2014; Roth et al., 2016; Schulz and Stiefel-
hagen, 2015) and cyclist motion (Pool et al., 2019, 2017;
Saleh et al., 2018a; Zernetsch et al., 2016) typically treat
each agent individually.

Individual-aware predictors methods consider the inter-
action between agents by modeling or learning their influ-
ence on each other. Physics-based methods that use social
forces (Blaiotta, 2019; Elfring et al., 2014; Ferrer and San-
feliu, 2014; Karamouzas et al., 2009; Luber et al., 2010;
Oli et al., 2013; Zanlungo et al., 2011) or similar local
interaction models (Bansal et al., 2019; Karamouzas and
Overmars, 2010; Kim et al., 2011; Luo and Cai, 2019; Paris
et al., 2007; Pellegrini et al., 2009, 2010; Pettré et al., 2009;
Robicquet et al., 2016; Yamaguchi et al., 2011) are classical
examples of individual-aware prediction models. A pattern-
based approach by Ikeda et al. (2012) models deviations
from the desired path using social forces. In general, how-
ever, learning joint motion patterns is a considerably harder
task. For example, the approach of Trautman and Krause
(2010); Trautman et al. (2013) learned unaware motion
patterns, and then evaluated the predicted probability dis-
tribution over the joint paths using an explicit interaction

potential. Luber et al. (2012) learned pairwise joint motion
patterns of two humans approaching the spatial point of
interaction. The approach by Yoo et al. (2016) learns which
motion patterns are likely to occur at the same time and uses
this information for predicting the future motion of sev-
eral dynamic objects. Some approaches propose to learn a
motion policy or reward function that accounts for dynamic
objects in the surrounding (Chung and Huang, 2010, 2012;
Henry et al., 2010; Lee and Kitani, 2016; Vemula et al.,
2017). Rudenko et al. (2018a) proposed an MDP planning-
based method, where optimal policies of people are locally
modified to account for other dynamic entities. Wu et al.
(2018) and Zechel et al. (2019) discounted predicted tran-
sition probabilities to states in collision with other agents.
Muench and Gavrila (2019) decomposed the interactive
planning problem into two policies with the correspond-
ing Q-functions: one for prediction in static environment,
and another for interaction prediction in an obstacle-free
environment. Many deep learning methods consider inter-
actions between participants: explicitly modeling interact-
ing entities (Alahi et al., 2016; Amirian et al., 2019; Bar-
toli et al., 2018; Choi et al., 2019; Eiffert and Sukkarieh,
2019; Fernando et al., 2018, 2019; Gupta et al., 2018; Hasan
et al., 2018; Huang et al., 2019; Ivanovic and Pavone, 2019;
Kosaraju et al., 2019; Pei et al., 2019; Pfeiffer et al., 2018;
Radwan et al., 2018; Rhinehart et al., 2019; Sadeghian
et al., 2019; Saleh et al., 2019; Shi et al., 2019; Su et al.,
2017; van der Heiden et al., 2019; Varshneya and Srini-
vasaraghavan, 2017; Vemula et al., 2018; Xu et al., 2018;
Xue et al., 2018; Zhao et al., 2019), implicitly as a result
of pixel-wise prediction (Walker et al., 2014), or by learn-
ing a joint motion policy (Lee et al., 2017; Ma et al., 2017;
Shalev-Shwartz et al., 2016; Zhan et al., 2018). Many vehi-
cle prediction methods consider interaction between traf-
fic participants (e.g., Agamennoni et al., 2012; Altché and
de La Fortelle, 2017; Bahram et al., 2016; Broadhurst et al.,
2005; Chai et al., 2019; Cui et al., 2019; Dai et al., 2019;
Deo and Trivedi, 2018; Ding et al., 2019; Djuric et al.,
2018; Hong et al., 2019; Jain et al., 2019; Käfer et al., 2010;
Kim et al., 2017; Kuhnt et al., 2016; Li et al., 2019; Park
et al., 2018; Raipuria et al., 2018; Srikanth et al., 2019).
Kooij et al. (2019) considered whether the ego-vehicle is on
a potential collision course when predicting the road user
path in their SLDS-based approach.

Group-aware predictors also recognize affiliations and
relations of individual agents and respect the probability
of them traveling together, as well as model an appropri-
ate reaction of other agents to the moving group formation.
For example, several physics-based methods model group
relations by introducing additional attractive forces between
group members (Choi and Savarese, 2010; Karamouzas and
Overmars, 2012; Moussaïd et al., 2010; Pellegrini et al.,
2010; Qiu and Hu, 2010; Robicquet et al., 2016; Seitz
et al., 2012; Singh et al., 2009; Yamaguchi et al., 2011).
Several learning-based approaches that use LSTMs (Alahi
et al., 2016; Bartoli et al., 2018; Pfeiffer et al., 2018; Shi
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et al., 2019; Varshneya and Srinivasaraghavan, 2017; Zhang
et al., 2019) may be capable of implicitly learning intra-
and inter-group coherence behavior, however only the work
by Bisagno et al. (2018) states this capability explicitly.
A planning-based approach that implicitly respects group
integrity by increasing the costs of passing between group
members was presented by Rösmann et al. (2017) and an
approach that explicitly models group motion constraints
was presented by Rudenko et al. (2018b).

Algorithms using high-level context information about
dynamic agents produce more precise predictions in a vari-
ety of cases. Learning advanced social features of human
motion improves interactive predictors performance, for
instance different parameters for interactions of heteroge-
neous agents (Ferrer and Sanfeliu, 2014), advanced motion
criteria such as social comfort of navigation (Kuderer et al.,
2012; Luber et al., 2012; Pfeiffer et al., 2016) or “desire to
move with the flow” or “avoid dense areas” (Henry et al.,
2010). Some approaches model prior knowledge in terms
of the dynamics of moving agents (Lee et al., 2017; Rös-
mann et al., 2017), human attributes and personal traits (Ma
et al., 2017). Chung and Huang (2012) presented a gen-
eral framework for learning context-related spatial effects,
which affect the human motion, such as avoiding going
through a waiting line, or in front of a person, who observes
the work of art in a museum.

Modeling also the influence of the robot’s presence on the
agents’ paths is another interesting line of research: Traut-
man and Krause (2010) and Oli et al. (2013) tackled this
problem by placing the robot as a peer-interacting agent
among moving humans. Several authors (Kretzschmar
et al., 2014; Kuderer et al., 2012; Pfeiffer et al., 2016;
Rösmann et al., 2017) optimized joint trajectories for all
humans and the robot. A relevant case of modeling the
effect of robotic herd actions on the location and shape of
the flock of animals was studied by Sumpter and Bulpitt
(2000). Similarly, Schmerling et al. (2018) condition human
response on the candidate robot actions for modeling pair-
wise human–robot interaction. Eiffert and Sukkarieh (2019)
included the robot as an interacting agent in the LSTM-
based predictor. Tang and Salakhutdinov (2019) computed a
conditional probability density over the trajectories of other
agents given the hypothetical rollout for the robot.

6.3. Cues of the static environment

Humans adapt their behaviors according not only to the
movements of the other agents but also to the environ-
ment’s shape and structure, making extensive use of its
topology to reason on the possible paths to reach the long-
term goal. Many existing prediction algorithms make use of
such geometric information of the environment.

Some approaches produce unaware predictions, assum-
ing an obstacle-free environment. This category includes
several physics-based approaches (Bai et al., 2015; Blaiotta,

2019; Elnagar, 2001; Elnagar and Gupta, 1998; Foka
and Trahanias, 2010; Pettré et al., 2009; Schneider and
Gavrila, 2013; Zhu, 1991). Pattern-based methods usually
model obstacles implicitly, by learning collision-free pat-
terns (Bennewitz et al., 2002; Carvalho et al., 2019; Chen
et al., 2016, 2008; Ellis et al., 2009; Ferguson et al., 2015;
Han et al., 2019; Hasan et al., 2018; Huynh and Alagh-
band, 2019; Jacobs et al., 2017; Joseph et al., 2011; Kim
et al., 2011; Kruse and Wahl, 1998; Kucner et al., 2017,
2013; Makansi et al., 2019; Makris and Ellis, 2002; Molina
et al., 2018; Piciarelli et al., 2005; Saleh et al., 2018a,b;
Sun et al., 2018; Sung et al., 2012; Tadokoro et al., 1993;
Tay and Laugier, 2008; Thompson et al., 2009; Vasquez
et al., 2008; Wang et al., 2015, 2016; Xue et al., 2019,
2017; Yoo et al., 2016). When facing a change in the
obstacles’ configuration, such patterns become obstacle-
unaware. Location-independent motion patterns are usually
obstacle-unaware (Goldhammer et al., 2014; Hermes et al.,
2009; Luber et al., 2012; Nikhil and Tran Morris, 2018;
Unhelkar et al., 2015; Xiao et al., 2015). Pedestrian cross-
ing prediction methods typically assume obstacle-free envi-
ronment (Gu et al., 2016; Keller and Gavrila, 2014; Kooij
et al., 2019, 2014; Mínguez et al., 2018; Quintero et al.,
2014; Roth et al., 2016; Schulz and Stiefelhagen, 2015), as
well as most of the vehicle prediction methods (Altché and
de La Fortelle, 2017; Deo and Trivedi, 2018; Ding et al.,
2019; Kim et al., 2017; Park et al., 2018; Raipuria et al.,
2018; Suraj et al., 2018), which assume the road-surface to
be free of static obstacles. Finally, many methods consider
only dynamic entities, but no static obstacles in the envi-
ronment (Alahi et al., 2016; Althoff et al., 2013, 2008b;
Amirian et al., 2019; Bahram et al., 2016; Bartoli et al.,
2018; Bera et al., 2016; Bisagno et al., 2018; Broadhurst
et al., 2005; Dai et al., 2019; Eiffert and Sukkarieh, 2019;
Fernando et al., 2018, 2019; Gupta et al., 2018; Huang et al.,
2019; Ivanovic and Pavone, 2019; Käfer et al., 2010; Kim
et al., 2015; Kuderer et al., 2012; Li et al., 2019; Pei et al.,
2019; Pfeiffer et al., 2018; Radwan et al., 2018; Shi et al.,
2019; Su et al., 2017; Trautman and Krause, 2010; Traut-
man et al., 2013; Varshneya and Srinivasaraghavan, 2017;
Vemula et al., 2017; Vemula et al., 2018; Xu et al., 2018;
Zanlungo et al., 2011; Zhang et al., 2019).

In several approaches the exact pose of the objects is
known and utilized to compute more informed predictions
(we refer to such methods as obstacle-aware methods).
Mainly the social force-based and similar techniques model
the interaction between the moving agents and individual
static obstacles (Elfring et al., 2014; Ferrer and Sanfeliu,
2014; Karamouzas et al., 2009; Karamouzas and Overmars,
2010; Karasev et al., 2016; Kretzschmar et al., 2014; Luber
et al., 2010; Luo and Cai, 2019; Oli et al., 2013; Paris et al.,
2007; Pellegrini et al., 2009, 2010; Rhinehart et al., 2019;
Robicquet et al., 2016; van den Berg et al., 2008; Yam-
aguchi et al., 2011; Zechel et al., 2019). Several location-
independent pattern-based methods (Antonini et al., 2006;
Aoude et al., 2011) can handle static object avoidance.



22 The International Journal of Robotics Research 00(0)

Still, obstacle-aware methods may fail in very clut-
tered environments, owing to the complexity of represent-
ing an environment with a set of individual obstacles. To
overcome this difficulty, many prediction approaches use
maps that are a more complete representation of the envi-
ronment (we call them map-aware methods). Occupancy
grid maps are the most common representation for these
approaches, e.g., in the physics-based approach by Rehder
and Klöden (2015) reachability-based transitions are cal-
culated on a binary grid-map. In particular, the planning-
based approaches use this kind of representation: thanks
to the map they can infer global, intentional behaviors
of the agents (Best and Fitch, 2015; Bruce and Gordon,
2004; Chen et al., 2017; Chung and Huang, 2010, 2012;
Gong et al., 2011; Henry et al., 2010; Ikeda et al., 2012;
Liao et al., 2003; Pfeiffer et al., 2016; Previtali et al.,
2016; Rösmann et al., 2017; Rudenko et al., 2017, 2018a,b;
Vasquez, 2016; Xie et al., 2013; Yen et al., 2008; Yi et al.,
2016; Ziebart et al., 2009). Figure 7 shows the difference
between the pure motion-based predictions, the obstacle-

aware, and the map-aware approaches. The latter perform
better in terms of global obstacle avoidance behavior during
prediction.

Semantic map-based approaches extend the map-aware
approaches by considering various semantic attributes of
the static environment. A semantic map (Ballan et al., 2016;
Coscia et al., 2018; Karasev et al., 2016; Kitani et al., 2012;
Muench and Gavrila, 2019; Rehder et al., 2018; Rhinehart
et al., 2018a; Rhinehart et al., 2018b; Ridel et al., 2019;
Saleh et al., 2019; Shen et al., 2018; Tadokoro et al., 1993;
van der Heiden et al., 2019; Vasishta et al., 2017, 2018;
Zhao et al., 2019) or extracted features from a top-down
image (Kosaraju et al., 2019; Sadeghian et al., 2019; Tang
and Salakhutdinov, 2019; Xue et al., 2018) can be used to
capture people preferences in walking on a particular type
of surfaces. Furthermore, planning-based methods often
use prior knowledge on potential goals in the environment
(Best and Fitch, 2015; Karasev et al., 2016; Previtali et al.,
2016; Rudenko et al., 2017; Vasquez, 2016). Location- and
time-specific information in the particular environment may
help to improve prediction quality (Molina et al., 2018; Sun
et al., 2018).

Owing to the high level of structure in the environment,
methods in autonomous driving scenarios extensively use
available semantic information, such as street layout and
traffic rules (Agamennoni et al., 2012; Chai et al., 2019;
Choi and Savarese, 2010; Cui et al., 2019; Djuric et al.,
2018; Gu et al., 2016; Hong et al., 2019; Jain et al., 2019;
Keller and Gavrila, 2014; Kooij et al., 2014; Kuhnt et al.,
2016; Lee et al., 2017; Petrich et al., 2013; Pool et al., 2019,
2017; Srikanth et al., 2019; Xie et al., 2018) or current state
of the traffic lights (Gu et al., 2016; Jain et al., 2019; Kara-
sev et al., 2016), also for predicting pedestrian and cyclist
motion (Habibi et al., 2018; Kooij et al., 2019; Koschi et al.,
2018).

7. Motion prediction evaluation

An important challenge for motion prediction methods is
the design of experiments to evaluate their performance
with respect to other methods and the requirements from the
targeted application. In this section, we review and discuss
common metrics and datasets to this end.

7.1. Performance metrics

Owing to the stochastic nature of human decision mak-
ing and behavior, exact prediction of trajectories is rarely
possible, and we require measures to quantify the similar-
ity between predicted and actual motion. Different predic-
tion types (see Figure 2) require different measures: for
single trajectories we need geometric measures of trajec-
tory similarity or final displacement, for parametric and
non-parametric distributions over trajectories we can use
geometric measures as well as difference measures for
probability distributions. Metrics, commonly used in the
literature, are summarized in Table 1.

7.1.1. Geometric accuracy metrics. Geometric measures
are the most commonly used across all application domains.
Several surveys have considered the topic of trajectory anal-
ysis and comparison (Morris and Trivedi, 2008; Pan et al.,
2016; Quehl et al., 2017; Zhang et al., 2006; Zheng, 2015)
where, based on the previous ones, only the recent sur-
vey by Quehl et al. (2017) specifically considers geometric
similarity measures for trajectory prediction evaluation. In
addition to that, we review the probabilistic metrics and the
assessment of distributions with geometric methods in Sec-
tion 7.1.2, and the experiments to evaluate robustness in
Section 7.1.3.

Summarizing Morris and Trivedi (2008) and Quehl et al.
(2017), we consider eight metrics as follows.

Mean Euclidean distance (MED), also called the aver-

age displacement error (ADE), averages Euclidean dis-
tances between points of the predicted trajectory and the
ground truth that have the same temporal distance from
their respective start points. An alternate form computes
MED in a subspace between coefficients of the trajecto-
ries’ principal components (PCA-Euclid). A third variant
(MEDP) is a path measure able to compare paths of dif-
ferent length. For each ( x, y)-point of the predicted path,
the nearest ground-truth point is searched. Being a path
measure, MEDP is invariant to velocity differences and
temporal misalignment but does not account for tempo-
ral ordering. A fourth variant (n-ADE) measures MED
only on non-linear segments of trajectories. MED measures
are widely used by many authors across all domains, see
Table 1. Many authors evaluate probabilistic predictions
by computing expected MED under the predictive distribu-
tion, referring to it as mean ADE, weighted mean ADE, or,
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Table 1. Metrics to evaluate motion prediction.

Metric Used by

Geometric Average displacement error
(ADE)

Pellegrini et al. (2009), Yamaguchi et al. (2011), Alahi et al. (2016), Sun et al. (2018), Bartoli et al.
(2018), Vemula et al. (2017), Karasev et al. (2016), Kim et al. (2015), Vasquez et al. (2008), Yi et al.
(2016), Rösmann et al. (2017), Yoo et al. (2016), Schulz and Stiefelhagen (2015), Zernetsch et al.
(2016), Pool et al. (2017), Mínguez et al. (2018), Wu et al. (2018), Hermes et al. (2009), Raipuria
et al. (2018), Deo and Trivedi (2018), Kim et al. (2017), Vemula et al. (2018), Radwan et al. (2018),
Pfeiffer et al. (2018), Kooij et al. (2019), Quintero et al. (2014), Saleh et al. (2018a,b), Bisagno et al.
(2018), Xue et al. (2019), Zhang et al. (2019), Shi et al. (2019), Zhao et al. (2019), Xue et al. (2017),
Hasan et al. (2018), Xue et al. (2018), Su et al. (2017), Srikanth et al. (2019), Sadeghian et al. (2019),
Park et al. (2018), Djuric et al. (2018), Xie et al. (2018), Gupta et al. (2018), Huynh and Alaghband
(2019), Nikhil and Tran Morris (2018), Xu et al. (2018), Fernando et al. (2018), Cui et al. (2019),
Luo and Cai (2019), Hong et al. (2019), Pei et al. (2019), Altché and de La Fortelle (2017), Huang
et al. (2019), Chai et al. (2019), Amirian et al. (2019), Blaiotta (2019), Dai et al. (2019), Kosaraju
et al. (2019), Ivanovic and Pavone (2019), Eiffert and Sukkarieh (2019), Saleh et al. (2019), Choi et al.
(2019), Rhinehart et al. (2018a), Fernando et al. (2019), Li et al. (2019), Jain et al. (2019)

Final displacement error
(FDE)

Varshneya and Srinivasaraghavan (2017), Alahi et al. (2016), Vemula et al. (2017), Chung and Huang
(2010), Vemula et al. (2018), Radwan et al. (2018), Bisagno et al. (2018), Xue et al. (2019), Zhang
et al. (2019), Shi et al. (2019), Zhao et al. (2019), Xue et al. (2017), Hasan et al. (2018), Xue et al.
(2018), Su et al. (2017), Sadeghian et al. (2019), Gupta et al. (2018), Huynh and Alaghband (2019),
Nikhil and Tran Morris (2018), Xu et al. (2018), Fernando et al. (2018), Luo and Cai (2019), Pei et al.
(2019), Huang et al. (2019), Amirian et al. (2019), Blaiotta (2019), Kosaraju et al. (2019), Ivanovic
and Pavone (2019), Eiffert and Sukkarieh (2019), Choi et al. (2019)

Modified Hausdorff distance
(MHD)

Vasquez (2016), Kitani et al. (2012), Jacobs et al. (2017), Rudenko et al. (2017, 2018a,b), Yoo et al.
(2016), Coscia et al. (2018), Shen et al. (2018), Habibi et al. (2018), Fernando et al. (2019), Saleh et al.
(2019)

Prediction accuracy (PA) Ferrer and Sanfeliu (2014), Ikeda et al. (2012), Bera et al. (2016), Best and Fitch (2015), Ding et al.
(2019), Hong et al. (2019)

Probabilistic Negative log likelihood Coscia et al. (2018), Rudenko et al. (2017), Suraj et al. (2018), Jain et al. (2019), Chai et al. (2019),
Pool et al. (2019), Makansi et al. (2019), Ivanovic and Pavone (2019), Rhinehart et al. (2019)

Negative log loss Ma et al. (2017), Previtali et al. (2016), Vasquez (2016), Kitani et al. (2012), Tang and Salakhutdinov
(2019)

Predicted probability (PP) Kooij et al. (2019, 2014), Rehder and Klöden (2015), Rudenko et al. (2018a,b)

Minimum average or final
displacement error (mADE,
mFDE)

Lee et al. (2017), Park et al. (2018), Rhinehart et al. (2018a, 2019), Ridel et al. (2019), Ivanovic and
Pavone (2019), Amirian et al. (2019), Chai et al. (2019), van der Heiden et al. (2019), Hong et al.
(2019), Li et al. (2019), Tang and Salakhutdinov (2019)

Cumulative probability (CP) Suraj et al. (2018)

abusing notation, simply MED or ADE. This type of eval-
uation, however, does not measure how good the predictive
distribution matches the ground-truth distribution, falling
short of being a true probabilistic measure. For example, it
favors point predictions and avoids larger variances, as they
often increase the expected ADE.

Dynamic time warping (DTW) (Berndt and Clifford, 1994)
computes a similarity metric between trajectories of dif-
ferent length as the minimum total cost of warping one
trajectory into another under some distance metric for point
pairs. As DTW operates on full trajectories, it is susceptible
to outliers.

Modified Hausdorff distance (MHD) (Dubuisson and Jain,
1994) is related to the Hausdorff distance as the maximal
minimal distance between the points of predicted and actual
trajectory. MHD was designed to be more robust against
outliers by allowing slack during matching and to compare
trajectories of different length. A further variant is the tra-

jectory Hausdorff measure (THAU) (Lee et al., 2007), a

path metric that computes a weighted sum over three dis-
tance terms each focusing on differences in perpendicular
direction, length, and orientation between the paths. The
weights can be chosen to be application-dependent.

Longest common subsequence (LCS) (Buzan et al., 2004)
aligns two trajectories of different length so as to maximize
the length of the common subsequence, i.e., the number of
matching points between both trajectories. A good match is
determined by thresholding a pair-wise distance and time
difference where not all points need to be matched. LCS
is more robust to noise and outliers than DTW but finding
suitable values for the two thresholds is not always easy.

CLEAR multiple object tracking accuracy (CLEAR-
MOTA) was initially introduced as a performance metric for
target tracking (Bernardin and Stiefelhagen, 2008). In the
context of prediction evaluation, it is similar to LCS in that
it sums up good matches between points on the predicted
trajectory and the ground truth. The difference is that the
concept of pair-wise matches/mismatches is more complex
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including false negatives, false positives, and non-unique
correspondences.

In addition to the metrics considered in Morris and
Trivedi (2008) and Quehl et al. (2017), relevant metrics
used in the reviewed literature include the quaternion-based

rotationally invariant LCS (QRLCS), which is the rotation-
ally invariant counterpart of LCS (Hermes et al., 2009), and
several measures that quantify different geometric aspects
in addition to trajectory or path similarity as follows.

Final displacement error (FDE) measures the distance
between final predicted position and the ground-truth posi-
tion at the corresponding time point. If the prediction is rep-
resented by a distribution, many authors compute expected
FDE. FDE, however, is not appropriate when there are
multiple possible future positions.

Prediction accuracy (PA) uses a binary function to classify
a prediction as correct if the predicted position fulfills some
criteria, e.g., is within a threshold distance away from the
ground truth. Percentage of correctly predicted trajectories
is then reported. PA allows to incorporate suitable invari-
ances into the distance function such as allowing certain
types of errors.

As also pointed out by Quehl et al. (2017), the challenge
in choosing a suitable measure is that each of these mea-
sures usually produce quite different results. For the sake of
an unbiased and fair evaluation of different prediction algo-
rithms, measures should be chosen not to suit a particular
method but based on the requirements from the targeted
application. An application that includes a lot of differ-
ent velocities, for example, should not solely rely on path
measures.

7.1.2. Probabilistic accuracy metrics. One of the draw-
backs of geometric metrics is their inability to measure
uncertainty and also multimodal nature of predictions, e.g.,
when the target agent may take different paths to reach the
goal, or when an observed partial trajectory matches sev-
eral previously learned motion patterns. Moreover, owing
to the stochasticity of the human behaviors, motion pre-
diction algorithms need to be evaluated on their accuracy
to match the underlying probability distribution of human
movements. Several probabilistic accuracy metrics can be
used for this purpose.

Many variational inference and machine learning algo-
rithms (Bishop, 2006; MacKay and Mac Kay, 2003) use the
Kullback–Leibler (KL) divergence (Kullback and Leibler,
1951) to measure dissimilarity of two distributions, e.g.,
the unknown probability distribution of human behavior
p(s1:T ) and the predicted probability distribution q(s1:T |θ ),
with θ being a set of parameters of the chosen predic-
tion model. The KL divergence is computed as dKL( p||q) '
∑

s1:T ∈S
{−p(s1:T ) log q(s1:T |θ ) + p(s1:T ) log p(s1:T )} with the

space of all trajectories S. Minimizing dKL( p||q) corre-
sponds to maximizing the log-likelihood function for θ

under the predicted distribution q(s1:T |θ ). Different sur-
veyed papers have adopted variants of the KL divergence
as accuracy metric for their stochastic predictions.

For example, the average negative log likelihood or aver-

age negative log loss evaluates the negative log likelihood
term

(

'
∑

s1:T ∈D
log q(s1:T |θ )

)

of dKL from a set of ground-

truth demonstrations D =
{

si
1:T

}N

i=1
with the total number

of demonstrations N . Furthermore, several approaches use
the predicted probability (PP) metric,

(

'
∑T

t=1 q(st|θ )
)

or
its negative logarithm, to calculate the probability of the
ground-truth path (i.e., s1:T ) on the predicted states distri-
bution. For the above metrics, the computation of the log
likelihood depends on the chosen model, its induced graph
and the corresponding factorization. Finally, the cumulative

probability (CP) metric computes the fraction of the predic-
tive distribution that lies within a radius r from the correct
position for various values of r.

Several recently introduced metrics follow a sam-
pling approach to evaluate a probability distribution. The
minimum average displacement error (mADE) metric
(Rhinehart et al., 2019; Schöller et al., 2019; Tang and
Salakhutdinov, 2019; Thiede and Brahma, 2019; Walker
et al., 2016), as well as variety loss, oracle, minimum

over N , best-of-N , top n%, or minimum mean squared dis-

tance (minMSD), computes Euclidean distance between the
ground-truth position of the agent s∗

t at time t and the clos-
est (or the n% closest) of the K samples from the predicted
probability distribution: mink ‖s∗

t −sk
t ‖. Similarly, minimum

final displacement error (mFDE) evaluates only the distri-
bution at the prediction horizon T . Such metrics encourage
the predicted distribution to cover multiple modes of the
ground-truth distribution, while placing probability mass
according to the mode likelihood. An evaluation of the
robustness of top 1 versus top n% metrics by Bhattacharyya
et al. (2019) has shown that the top n% metric produces
more stable results.

7.1.3. Other performance metrics. Prediction accuracy is
by far the primary performance indicator in the reviewed
literature across approaches and application domains. In
particular, for long-term prediction methods, authors evalu-
ate accuracy against the prediction horizon (Bahram et al.,
2016; Blaiotta, 2019; Choi et al., 2019; Chung and Huang,
2010; Deo and Trivedi, 2018; Galceran et al., 2015; Gold-
hammer et al., 2014; Hermes et al., 2009; Ikeda et al., 2012;
Jacobs et al., 2017; Karasev et al., 2016; Keller and Gavrila,
2014; Lee and Kitani, 2016; Pfeiffer et al., 2018, 2016;
Quintero et al., 2014; Radwan et al., 2018; Raipuria et al.,
2018; Rehder and Klöden, 2015; Rudenko et al., 2018a,b;
Sun et al., 2018; Suraj et al., 2018; Thompson et al., 2009;
Vasishta et al., 2018; Wu et al., 2018; Xu et al., 2018). Far
fewer authors address other aspects of robustness and inves-
tigate the range of conditions under which prediction results
remain stable and how they are impacted by different types
of perturbations.
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Experiments to explore robustness evaluate prediction
accuracy as a function of various influences: the length
or duration of the observed partial trajectory until predic-
tion (addresses the question of how long the target agent
needs to be observed for a good prediction) (Kitani et al.,
2012; Lee et al., 2017; Radwan et al., 2018), the size of the
training dataset (Huynh and Alaghband, 2019; Suraj et al.,
2018; Vasishta et al., 2018; Vasquez et al., 2009), number of
agents in the scene (Rhinehart et al., 2019), input data sam-
pling frequency and the amount of sensor noise (Bera et al.,
2016), or amount of anomalies in the training trajectories
(Han et al., 2019). Several authors report a separate accu-
racy measurement for the more challenging (e.g., non-linear
or anomalous) part of the test set (Fernando et al., 2018;
Huynh and Alaghband, 2019; Kooij et al., 2019), or evaluate
the model’s performance on different classes of behavior,
e.g., walking or stopping (Saleh et al., 2018b). Analysis of
generalization, overfitting, and input utilization by a neural
network, presented by Schöller et al. (2019), makes a good
case for robustness evaluation.

Furthermore, to quantify efficiency of a prediction
method, some authors relate inference time to the number
of agents in the scene (Rudenko et al., 2018a,b; Thomp-
son et al., 2009), and only a few papers provide an analy-
sis of their algorithms’ complexity (Best and Fitch, 2015;
Chen et al., 2016; Keller and Gavrila, 2014; Rudenko et al.,
2018b; Zhao et al., 2019).

7.2. Datasets

In order to evaluate the quality of predictions, predicted
states or distributions are usually compared with the
ground-truth states using standard datasets of recorded
motion. Availability of annotated trajectories, represented
with the sequence of states or bounding boxes in the top-
down view, sets prediction benchmarking datasets aside
from the other popular computer vision datasets, where
the ground-truth state of the agent is not available and is
difficult to estimate.

Common recording setup includes a video camera with
static top-down view of the scene, or ground-based lasers
and/or depth sensors, mounted on a static or moving plat-
form. Detected agents in each frame are labeled with unique
IDs, and their positions with respect to the global world
frame are given as ( x, y) coordinates together with the
frame time-stamp t, i.e., (id, t, x, y). Often the coordinate
vector is augmented with orientation and velocity infor-
mation. Furthermore, social grouping information, gaze
directions, motion mode or maneuver labels, and other con-
textual cues can be provided. Apart from this specific form
of labeling, further requirements to prediction benchmark-
ing datasets include interaction between agents, varying
density of agents, presence of non-convex obstacles in the
environment, availability of the semantic map, and long
continuous observations of the agents.

In Table 2 we review the most popular datasets, used for
evaluation in the surveyed literature. Out of many datasets,

used for benchmarking by different authors, we picked
those used by at least two independent teams, excluding
the creators of the dataset. We believe that this is a good
indication of the dataset’s relevance, which also supports
the primary purpose of benchchmarking: comparing per-
formance of different methods on the same dataset. In addi-
tion, in Table 3 we include four recent datasets, which do
not meet the selection criterion, but cover valuable aspects,
missing from the earlier datasets. This includes the first
dataset of cyclists trajectories (Pool et al., 2017), the first
large-scale dataset of vehicles trajectories (Krajewski et al.,
2018), the first dedicated benchmark for human trajectory
prediction (Sadeghian et al., 2018), and the first dataset
of human motion trajectories with accurate motion capture
data (Rudenko et al., 2019).

8. Discussion

There has been great progress in developing advanced
prediction techniques over recent years in terms of method
diversity, performance, and relevance to an increasing
number of application scenarios. In this section, we sum-
marize and discuss the state of the art and pose the three
questions initially raised in the introduction: Are the eval-

uation techniques to measure prediction performance good

enough and follow best practices (Q1)? This is discussed in
Section 8.1 by reviewing the existing benchmarking prac-
tices including metrics, experiments, and datasets. Have all

prediction methods arrived on the same performance level

and the choice of the modeling approach does not matter

anymore (Q2)? This is discussed in Section 8.2 where we
consider the theoretical and demonstrated ability of the dif-
ferent modeling approaches to solve the motion prediction
problem by accounting for contextual cues from the envi-
ronment and the target agent. Finally, Is motion prediction

solved (Q3)? This is discussed in Section 8.3 by revisiting
the requirements from the different application scenarios.
Finally, in Section 8.4 we outline open challenges and future
research directions.

8.1. Benchmarking

Evaluating the performance of a motion prediction algo-
rithm requires choosing appropriate testing scenarios and
accuracy metrics, as well as studying the method’s robust-
ness against various variables, such as the number of
interacting agents or amount of maneuvering in the data.

Depending on the application area, the testing scenario
may be an intersection, a highway, a pedestrian crossing,
shared urban street with heterogeneous agents, a home envi-
ronment, or a crowded public space. Existing datasets, sum-
marized in Section 7.2, cover a wide range of scenarios,
e.g., indoor (Brščić et al., 2013; Rudenko et al., 2019; Zhou
et al., 2012) and outdoor environments (Lerner et al., 2007;
Oh et al., 2011; Pellegrini et al., 2009), pedestrian areas
(Benfold and Reid, 2011; Majecka, 2009), urban zones
(Robicquet et al., 2016; Schneider and Gavrila, 2013) and
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Table 2. Overview of the motion trajectories datasets.

Dataset Location Agents Sensors Scene description Duration and
tracks

Annotations and sampling
rate

ETH (Pellegrini
et al., 2009)

Outdoor People Camera 2 pedestrian scenes, top-down view,
moderately crowded

25 min, 650
tracks

Positions, veloci-
ties, groups, maps
@2.5 Hz

Used by: Varshneya and Srinivasaraghavan (2017), Bera et al. (2016), Alahi et al. (2016), Vemula et al. (2017), Trautman and Krause (2010), Kim
et al. (2015), Yamaguchi et al. (2011), Chung and Huang (2010), Vemula et al. (2018), Radwan et al. (2018), Pfeiffer et al. (2018), Bisagno et al.
(2018), Zhang et al. (2019), Zhao et al. (2019), Xue et al. (2018), Sadeghian et al. (2019), Gupta et al. (2018), Huynh and Alaghband (2019), Nikhil
and Tran Morris (2018), Xu et al. (2018), Luo and Cai (2019), Pei et al. (2019), Huang et al. (2019), Amirian et al. (2019), Blaiotta (2019), Kosaraju
et al. (2019), Ivanovic and Pavone (2019)

UCY (Lerner et al.,
2007)

Outdoor People Camera 2 pedestrian scenes (sparsely popu-
lated Zara and crowded Students),
top-down view

16.5 min, over
700 tracks

Positions, gaze directions
–

Used by: Ma et al. (2017), Varshneya and Srinivasaraghavan (2017), Alahi et al. (2016), Bartoli et al. (2018), Best and Fitch (2015), Yamaguchi et al.
(2011), Pellegrini et al. (2010), Vemula et al. (2018), Radwan et al. (2018), Bisagno et al. (2018), Zhang et al. (2019), Zhao et al. (2019), Hasan et al.
(2018), Xue et al. (2018), Sadeghian et al. (2019), Gupta et al. (2018), Huynh and Alaghband (2019), Nikhil and Tran Morris (2018), Xu et al. (2018),
van der Heiden et al. (2019), Pei et al. (2019), Huang et al. (2019), Luo and Cai (2019), Amirian et al. (2019), Blaiotta (2019), Kosaraju et al. (2019),
Ivanovic and Pavone (2019)

Stanford Drone
Dataset (Robic-
quet et al.,
2016)

Outdoor People,
cyclists,
vehicles

Camera 8 urban scenes, ∼900 m2 each, top-
down view, moderately crowded

5 hours,
20,000 tracks

Bounding boxes
@30 Hz

Used by: Varshneya and Srinivasaraghavan (2017), Jacobs et al. (2017), Coscia et al. (2018), Zhao et al. (2019), Sadeghian et al. (2019), van der Heiden
et al. (2019), Chai et al. (2019), Fernando et al. (2019), Makansi et al. (2019), Eiffert and Sukkarieh (2019), Ridel et al. (2019), Saleh et al. (2019)

NGSIM (Colyar
and Halkias, 2006,
2007)

Outdoor Vehicles Camera
network

Recording of the US Highway 101
and Interstate 80, road segment
length 640 and 500 m

90 min Local and global positions,
velocities, lanes, vehi-
cle type, and parameters,
@10 Hz

Used by: Kuefler et al. (2017), Deo and Trivedi (2018), Zhao et al. (2019), Altché and de La Fortelle (2017), Li et al. (2019), Kalayeh et al. (2015), Dai
et al. (2019), Ding et al. (2019), Tang and Salakhutdinov (2019)

Edinburgh
(Majecka, 2009)

Outdoor People Camera 1 pedestrian scene, top-down view,
12 × 16 m2, varying density of peo-
ple

Several
months,
92,000 tracks

Positions
@9 Hz

Used by: Previtali et al. (2016), Elfring et al. (2014), Rudenko et al. (2017), Xue et al. (2017), Fernando et al. (2018), Carvalho et al. (2019)

Grand Central
Station Dataset
(Zhou et al., 2012)

Indoor People Camera Recording in the crowded New York
Grand Central train station

33 minutes Tracklets
@25 Hz

Used by: Su et al. (2017), Xue et al. (2017), Xue et al. (2019), Yi et al. (2016), Xu et al. (2018), Fernando et al. (2018)

VIRAT (Oh et al.,
2011)

Outdoor People,
cars,
other
vehicles

Camera 16 urban scenes, 20–50◦ camera
view angle towards the ground
plane, homographies included

25 hours Bounding boxes, events
(e.g., entering a vehi-
cle or using a facility)
@10, 5, and 2 Hz

Used by: Previtali et al. (2016), Vasquez (2016), Kitani et al. (2012), Walker et al. (2014), Xie et al. (2013)

KITTI (Geiger
et al., 2012)

Outdoor People,
cyclists,
vehicles

Velodyne,
4
cameras

Recorded around the mid-size city of
Karlsruhe (Germany), in rural areas
and on highways

21 training
sequences
and 29 test
sequences

3D Positions
@10 Hz

Used by: Karasev et al. (2016), Wu et al. (2018), Rhinehart et al. (2018a), Lee et al. (2017), Srikanth et al. (2019)

Town Center
Dataset (Benfold
and Reid, 2011)

Outdoor People Camera Pedestrians moving along a moder-
ately crowded street

5 minutes, 230
hand labelled
tracks

Bounding boxes
@15 Hz

Used by: Ma et al. (2017), Xue et al. (2018), Xue et al. (2019), Hasan et al. (2018)

ATC (Brščić et al.,
2013)

Indoor People 3D range
sensors

Recording in a shopping center, 900
m2 coverage, varying density of peo-
ple

92 days, long
tracks

Positions, orientations,
velocities, gaze directions,
@10–30 Hz

Used by: Rudenko et al. (2018a,b), Molina et al. (2018)

(Continued)
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Table 2. Continued

Dataset Location Agents Sensors Scene description Duration and
tracks

Annotations and sampling
rate

Daimler Pedes-
trian Path
Prediction
Dataset (Schneider
and Gavrila, 2013)

Outdoor People Stereo
camera

Recording from a moving or stand-
ing vehicle, pedestrians are cross-
ing the street, stopping at the curb,
starting to move or bending in

68 tracks of
pedestrians, 4
sec each

Positions, bound-
ing boxes, stereo
images, calibration data
@17 Hz

Used by: Schulz and Stiefelhagen (2015), Saleh et al. (2018b, 2019)

L-CAS (Yan et al.,
2017)

Indoor People Velodyne Recording in a university building
from a moving or stationary robot

49 minutes Positions, groups,
Velodyne scans
@10 Hz

Used by: Sun et al. (2018), Radwan et al. (2018)

Table 3. Additional motion trajectories datasets.

Dataset Location Agents Sensors Scene description Duration and
tracks

Annotations and sampling
rate

Tsinghua-
Daimler Cyclist
(Pool et al., 2017)

Outdoor Cyclists Stereo
camera

Recording from a moving vehicle 134 tracks Positions, road topology
@5 Hz

Used by: Saleh et al. (2018a)

TrajNet
(Sadeghian et al.,
2018)

Outdoor People Cameras Superset of datasets, collecting also
relevant metrics and visualization
tools

Superset
of image-
plane and
world-plane
datasets

Bounding boxes and track-
lets, datasets recording at
different frequencies

Used by: Xue et al. (2019)

highD Dataset
(Krajewski et al.,
2018)

Outdoor Vehicles Camera Six different highway locations near
Cologne, top-down view, varying
densities with light and heavy traffic

Over 110,000
vehicles, 447
driven hours

Positions and additional
features, e.g., THW, TTC
@25 Hz

THÖR (Rudenko
et al., 2019)

Indoor People Motion
capture

Human-robot navigation study in a
university lab

Over 600 per-
son and group
trajectories in
60 minutes

Positions, head orientations,
gaze directions, groups,
map, Velodyne scans
@100 Hz

highways (Colyar and Halkias, 2006, 2007; Krajewski et al.,
2018), and include trajectories of various agents, such as
people, cyclists, and vehicles. However, these datasets are
usually semi-automatically annotated and, therefore, only
provide incomplete and noisy estimation of the ground-
truth positions (owing to annotation artifacts). Furthermore,
length of the trajectories is often not sufficient for evalu-
ation in some application domains, where long-term pre-
dictions are required. Moreover, the amount of interac-
tions between recorded agents is often limited or disbal-
anced (very few agents are interacting, ergo misinterpreting
such cases is not reflected in the lower benchmark scores).
Finally, relevant semantic information about static (i.e.,
grass, crosswalks, sidewalks, streets) and dynamic (i.e.,
human attributes such as age, gender, or group affiliation)
entities is usually not recorded.

Accuracy metrics, described in Section 7.1, offer a rich
choice for benchmarking, ranging from computing geomet-
ric distances between points (ADE, FDE) also accounting
for temporal misalignments (DTW, MHD), to probabilistic

policy likelihood measures (NLL) and sampling-based dis-
tribution evaluation (mADE). For long-term forecasts made
in topologically non-trivial scenarios, results are usually
multi-modal and associated with uncertainty. Performance
evaluation of such methods should make use of metrics
that account for this, such as negative log-likelihood or log-
loss derived from the KLD. Not all authors are currently
using such metrics. Even for short-term prediction hori-
zons, for which a large majority of authors use geometric
metrics only (AED, FDE), probabilistic metrics are prefer-
able as they better reflect the stochastic nature of human
motion and the uncertainties involved from imperfect
sensing.

Another issue of benchmarking is related to variations
in exact metric formulation and different names used for
the same metric, e.g., for the ADE- and likelihood-based
metrics, as indicated in Section 7.1. In addition, precision
is often evaluated on a single arbitrary prediction horizon.
These aspects obstruct comparison of the relative precision
of various methods.
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Furthermore, very few authors currently address robust-
ness as a relevant issue/topic. This is surprising as predic-
tion needs to be robust against a variety of perturbations
when deployed in real systems. Examples includes sensing
and detection errors, tracking deficiencies, self-localization
uncertainties, or map changes.

8.1.1. On question 1. We conclude that Q1 is not con-
firmed. Despite the numerous metrics, datasets, and
experiment designs used in individual works, benchmark-
ing prediction algorithms lack a systematic approach with
common evaluation practices.

For evaluating prediction quality, researchers should opt
for more-complex testing scenarios (which include non-
convex obstacles, long trajectories, collision avoidance
maneuvers, and non-trivial interactions) and the complete
set of metrics (both geometric and probabilistic). It is a good
practice to condition the forecast precision on various pre-
diction horizons, observation periods, and the complexity
of the scene, e.g., defined by how many interacting agents
are tracked simultaneously. Furthermore, perfect sensing,
perception, and tracking is not always achieved in real-life
operation, and therefore algorithms’ performance ideally
should be investigated in realistic conditions and supported
by robustness experiments, e.g., see Section 7.1.3. Perform-
ing proper performance analysis would clarify application
potential and effective prediction horizon of many methods.

Similar benchmarking practices should be applied to run-
time evaluation. Considering efficiency on embedded CPUs
of autonomous systems is important for the algorithm’s
design and evaluation. To prove applicability in real-life
scenarios (e.g., in the pipeline with time-sensitive local and
global motion planners), discussion should include formal
complexity and runtime analysis, conditioned on the scene
complexity and prediction horizon.

For a fair objective comparison of the prediction algo-
rithms, developing a standard benchmark with testing sce-
narios and metrics is becoming a task of critical impor-
tance, e.g., given the rapid growth in published literature
(see Figure 4). The first attempt to build such a benchmark,
TrajNet, is taken by Sadeghian et al. (2018), with the fol-
low up, TrajNet++, to be released soon. TrajNet is based
on selected trajectories from the ETH, UCY, and Stanford
Drone Dataset and uses the ADE and FDE evaluation met-
rics. We encourage more researchers to follow this example
and contribute to the unification of benchmarking practices.

8.2. Modeling approaches

With such a wide variety of motion modeling approaches,
a natural question arises: which one should be preferred?
In this section, we discuss the inherent strengths and lim-
itations of different approaches’ classes and the efforts to
incorporate various contextual cues. This discussion contin-
ues in Section 8.3 with highlighting the specifics of several
key tasks in the application domains.

Physics-based approaches are suitable in those situa-
tions where the effect of other agents or the static envi-
ronment, and the agent’s motion dynamics can be modeled
by an explicit transition function. Many of the physics-
based approaches naturally handle joint predictions With
the choice of an appropriate transition function, physics-
based approaches can be readily applied across multiple
environments, without the need for training datasets (some
data for parameter estimation is useful, though). The down-
side of using explicitly designed motion models is that they
might not capture well the complexity of the real world.
The transition functions tend to lack information regard-
ing the “greater picture,” both on the spatial and the tem-
poral scale, leading to solutions that represent local min-
ima (“dead ends”). In practice, this limits the usability of
physics-based methods to short prediction horizons and rel-
atively obstacle-free environments. All in all, the existence
of fast approximate inference, the applicability across mul-
tiple domains under mild conditions, and the interpretabil-
ity make physics-based approaches a popular option for
the collision avoidance of the mobile platforms (e.g., self-
driving vehicles, service robots) and the people-tracking
applications.

Pattern-based approaches are suitable for environments
with complex unknown dynamics (e.g., public areas with
rich semantics), and can cope with comparatively large pre-
diction horizons. However, this requires ample data that
must be collected for training purposes in a particular type
of location or scenario. One further issue is the generaliza-
tion capability of such learned model, whether it can be
transferred to a different site, especially if the map topol-
ogy changes (cf. service robot in an office where the furni-
ture has been moved). Pattern-based approaches tend to be
used in non-safety critical applications, where explainabil-
ity is less of an issue and where the environment is spatially
constrained.

Planning-based approaches work well if goals, that the
agents try to accomplish, can be explicitly defined and a
map of the environment is available. In these cases, the
planning-based approaches tend to generate better long-
term predictions than the physics-based techniques and
generalize to new environments better than the pattern-
based approaches. In general, the runtime of planning-
based approaches, based on classical planning algorithms
(i.e., Dijkstra (Schrijver, 2012), FMM (Sethian, 1996), opti-
mal sampling-based motion planners (Janson et al., 2018;
Karaman and Frazzoli, 2011), value iteration (Littman et al.,
1995)) scales exponentially with the number of agents, the
size of the environment and the prediction horizon (Russell
and Norvig, 2016).

8.2.1. On question 2. In our view, Q2 is not confirmed.
As we have seen, the different modeling approaches have
various strengths and weaknesses. Although, in principle,
it could be possible to incorporate the same contextual



Rudenko et al. 29

cues, there have been so far insufficient studies to com-
pare prediction performance across modeling approaches.
Moreover, different modeling approaches exhibit varying
degree of complexity and efficiency in including contex-
tual cues from different categories. Physics-based methods
are by their very nature aware of the target agent cues and
may be easily extended with other ones (e.g., social-force-
based (Helbing and Molnar, 1995) and circular distribution-
based (Coscia et al., 2018)). Pattern-based methods can
potentially handle all kind of contextual information that is
encoded in the collected datasets. Some of them are intrin-
sically map-aware (Bennewitz et al., 2005; Kucner et al.,
2013; Roth et al., 2016). Several others can be extended
to include further types of contextual information (e.g.,
Alahi et al., 2016; Bartoli et al., 2018; Pfeiffer et al., 2018;
Trautman and Krause, 2010; Vemula et al., 2018), but such
extension may lead to involved learning, data efficiency,
and generalization issues (e.g., for the clustering methods
(Bennewitz et al., 2005; Chen et al., 2008)). Planning-
based approaches are intrinsically map- and obstacle-aware,
natural to extend with semantic cues (Kitani et al., 2012;
Rhinehart et al., 2018a; Rudenko et al., 2018b; Ziebart
et al., 2009). Usually they encode the contextual complexity
into an objective/reward function, which may fail to prop-
erly incorporate dynamic cues (e.g., changing traffic lights).
Therefore, authors have to design specific modifications to
include dynamic cues into the prediction algorithm (such
as jump Markov processes in Karasev et al. (2016), local
adaptations of the predicted trajectory in Rudenko et al.
(2018a,b), game-theoretic methods in Ma et al. (2017)).
Unlike for the pattern-based approaches, target agents cues
are natural to incorporate, e.g., as in Kuderer et al. (2012),
Rudenko et al. (2018a), and Ma et al. (2017), as both for-
ward and inverse planning approaches rely on a dynamical
model of the agents. Contextual cues-dependent parameters
of the planning-based methods (e.g., reward functions for
inverse planning and models for forward planning) are triv-
ial and typically easier to learn but inference-wise less effi-
cient for high-dimensional (target) agent states compared
with the simple physics-based models.

8.3. Application domains

In Section 8.2, we have shown that all modeling approaches
theoretically can handle various contextual cues. However,
the question of preferring one approach over the others also
depends on the task at hand.

8.3.1. Service robots. Predictors for mobile robots usually
estimate the most likely future trajectory of each person in
the vicinity of the robot. The usual setup includes cameras,
range and depth sensors mounted on the robot, operating on
a limited-performance mobile CPU.

Physics-based or pattern-based human interaction mod-
els, capable of providing short-term high-confidence pre-
dictions (i.e., for 1–2 seconds), are best suited for local

motion planning and collision avoidance in the crowd.
Methods used to this end should have fast and efficient
inference for predicting short-term dynamics of several
people around the robot. In the simplest case, even linear
velocity projection is sufficient for smoothing the robot’s
local planning (Bai et al., 2015; Chen et al., 2017). More
advanced methods should handle human–human interaction
(Alahi et al., 2016; Ferrer and Sanfeliu, 2014; Gupta et al.,
2018; Moussaïd et al., 2010; Pellegrini et al., 2009), the
influence of robot’s presence and actions on human motion
(Eiffert and Sukkarieh, 2019; Oli et al., 2013; Rhinehart
et al., 2019; Schmerling et al., 2018), and high-level body
cues of human motion for disambiguating the immediate
intention (Hasan et al., 2018; Kooij et al., 2019; Quintero
et al., 2014; Unhelkar et al., 2015). In safety-critical appli-
cations, reachability-based methods provide a guarantee on
local collision avoidance (Bansal et al., 2019). Furthermore,
understanding local motion patterns is useful for compliant
and unobstructive navigation (Palmieri et al., 2017; Vintr
et al., 2019).

For global path and task planning, on the other hand,
long-term multi-hypothesis predictions (i.e., for 15–20 sec-
onds ahead) are desired, posing a considerably more chal-
lenging task for the prediction system. Reactivity require-
ment is relaxed, however understanding dynamic (Bera
et al., 2017; Ma et al., 2017) and static contextual cues
(Chung and Huang, 2010; Coscia et al., 2018; Kitani et al.,
2012; Sun et al., 2018), which influence motion in the long-
term perspective, reasoning on the map of the environment
(Karasev et al., 2016; Rudenko et al., 2018a) and inferring
intentions of observed agents (Best and Fitch, 2015; Rehder
et al., 2018; Vasquez, 2016) becomes more important. For
both local and global path planning, location-independent
methods are best suited for predicting motion in a large vari-
ety of environments (Bansal et al., 2019; Fernando et al.,
2019; Shi et al., 2019).

In terms of accuracy of the current state-of-the-art meth-
ods, experimental evaluations on simpler datasets, such as
the ETH and UCY, show an average displacement error of
0.19–0.4 m for 4.8 s prediction horizon (Alahi et al., 2016;
Radwan et al., 2018; Vemula et al., 2018; Yamaguchi et al.,
2011). Linear velocity projection in these scenarios is esti-
mated at 0.53 m ADE. In more-challenging scenarios of the
ATC dataset with obstacles and longer trajectories an aver-
age error of 1.4–2 m for 9 s prediction has been reported
(Alahi et al., 2016; Rudenko et al., 2018b; Sun et al., 2018).

8.3.2. Self-driving vehicles. The early recognition of
maneuvers of road users in canonical traffic scenarios is the
subject of much interest in the self-driving vehicles applica-
tion. Several approaches stop short of motion trajectory pre-
diction (i.e., regression) and consider the problem as action
classification, while operating on short image sequences.
Sensors are typically on-board the vehicle, although some
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work involves infrastructure-based sensing (e.g., station-
ary cameras or laser scanners) that can potentially avoid
occlusions and provide more precise object localization.

Most works consider the scenario of the laterally cross-
ing pedestrian, dealing with the question what the latter
will do at the curbside: start walking, continue walking, or
stop walking (Keller and Gavrila, 2014; Kooij et al., 2019,
2014; Schneider and Gavrila, 2013). Some works enlarge
the pedestrian crossing scenario, by allowing some initial
pedestrian movement along the boardwalk before crossing
(Schneider and Gavrila (2013) performed trajectory predic-
tion, while other approaches were limited to crossing inten-
tion recognition, e.g. Schneemann and Heinemann (2016),
Köhler et al. (2015), and Fang et al. (2017)). This scenario is
safety-critical and crucial for autonomous vehicles to solve
with high confidence. Pose and high-level contextual cues
of the target agent (Kooij et al., 2019), and the scene context
modeling (e.g., location and type of the obstacles (Muench
and Gavrila, 2019; Völz et al., 2016), state of the traffic
lights (Karasev et al., 2016)) are helpful to improve the
crossing trajectory prediction.

As to cyclists, Kooij et al. (2019) considered the scenario
of a cyclist moving in the same direction as the ego-vehicle,
and possibly bending left into the path of the approach-
ing vehicle. Pool et al. (2017) considered the scenario of
a cyclist nearing an intersection with up to five differ-
ent subsequent road directions. Both involved trajectory
prediction.

For predicting motion of both cyclists and vehicles is it
important to consider multi-modality and uncertainty of the
future motion. Recently many authors have proposed solu-
tions to this end (Chai et al., 2019; Cui et al., 2019; Hong
et al., 2019; Zhao et al., 2019). Furthermore, it is important
to consider coordination of actions between the vehicles
(Rhinehart et al., 2019; Schmerling et al., 2018).

It is difficult to compare the experimental results, as the
datasets are varying (different timings of same scenario,
different sensors, different metrics). Several works report
improvements versus their baselines. For example, Figure 2
of Kooij et al. (2014) shows that during pedestrian stopping,
0.9 and 1.1 m improvements in lateral position prediction
can be reached with a context-based SLDS, compared with
a simpler context-free SLDS and basic LDS (KF), respec-
tively, for prediction horizons up to 1 s. A live vehicle
demo of this system at the ECCV’14 conference in Zurich,
showed that the superior prediction of the context-based
SLDS could lead to evasive vehicle action being triggered
up to 1 s earlier than with the basic LDS.

8.3.3. Surveillance. The classification of goals and behav-
iors as well as the accurate prediction of human motion is of
great importance for surveillance applications such as retail
analytics or crowd control. Common setups for these appli-
cations use stationary sensors to monitor the environment.
Although single-frame-based systems allow us to partially

solve some tasks such as perimeter protection, incorporat-
ing a sequence of observations and making use of behavior
prediction models often improve accuracy in cases of occlu-
sions or measurements with low quality (e.g., noise, bad
lighting conditions).

Traffic monitoring and management applications can
benefit from long-term prediction models, as they allow
us to associate new observations with existing tracks (e.g.,
Luber et al., 2010; Pellegrini et al., 2009, 2010; Yamaguchi
et al., 2011) and to model long-term distributions over pos-
sible future positions of each person (Chung and Huang,
2012; Yen et al., 2008). Furthermore, it enables the analy-
sis and control of customer flow in populated areas such as
malls and airports, by gathering extensive information on
human motion patterns (Ellis et al., 2009; Kim et al., 2011;
Tay and Laugier, 2008; Yoo et al., 2016), understanding
crowd movement in light and dense scenarios, tracking indi-
viduals within them, and making future predictions of indi-
viduals or crowds (e.g., crowd density prediction). Often
these methods benefit from employing sociological meth-
ods, such as understanding of social interaction, behavior
analysis, group and crowd mobility modeling (Antonini
et al., 2006; Bera et al., 2016; Ma et al., 2017; Zhou et al.,
2015).

Furthermore identifying deviation from usual patterns
often makes the foundation for anomaly detection methods
that go beyond perimeter protection, as they analyze tra-
jectories instead of the pure existence of a pedestrian in a
specific region.

In addition, in this application area it is difficult to com-
pare results obtained by different approaches, owing to the
diversity of the used datasets and the way the evaluation
has been performed (e.g., different prediction horizons). In
terms of prediction accuracy, we report the most interest-
ing results obtained in densely crowded environments using
mainly image data. In these settings, recent state-of-the-
art approaches achieve an average displacement error of
0.08–1.2 m on the ETH, UC, NY Grand Central, Town Cen-
ter, and TrajNet datasets, and a final displacement error of
0.081–2.44 m, with a prediction horizon that generally goes
from 0.8 up to 4.8 s (see Xue et al. (2019, 2017, 2018),
Zhou et al. (2015), and Shi et al. (2019), the latter using a
proprietary dataset and going up to a prediction horizon of
10 s).

8.3.4. On question 3. As we showed in Sections 8.3.1–
8.3.3, requirements to the motion prediction framework
strongly depend on the application domain and particu-
lar use-case scenarios therein (e.g., vehicle merging versus
pedestrian crossing within the intelligent vehicles domain).
Therefore, it is not possible to conclude achievement of
absolute requirements of any sort. When considering con-
crete use-cases, industry-driven domains, such as intelligent
vehicles, appear to be the most mature in terms of formu-
lated requirements and proposed solutions. For instance,



Rudenko et al. 31

requirements to the prediction horizon and metric accu-
racy for emergency braking of intelligent vehicles in urban
driving scenarios are described in the ISO 15622:2018 stan-
dard (ISO, 2018), which defines norms for comfortable
acceleration/deceleration rates for vehicles, conditioned on
the maximum speed and traffic rules, as well as the dis-
tribution of pedestrian speed and acceleration. Therefore,
we conclude that for specific use-cases, in particular for
basic emergency braking for intelligent vehicles, solutions
have achieved a level of performance that allows for indus-
trialization into consumer products. Those use-cases can
be considered solved. For other use-cases we expect more
standardization and explicit formulation of requirements to
take place in the near future. For instance, the standard for
safety requirements for personal care robots, Standard ISO
13482:2014 (ISO, 2014) suggests using sensors for detect-
ing a human in the vicinity of the robot to issue a protective
stop, and controlling the speed and force when the robot
is in close proximity to humans to reduce the risk of col-
lision. This standard, however, does not propose motion
anticipation to improve the risk assessment.

Furthermore, several aspects of performance, robustness,
and generalization to new environments, discussed in the
following sections, need to be explored before reaching
further conclusions on maturity of the solutions. Finally,
in order to reliably assess the quality of existing solutions
across all application domains, is it critical to address the
issues of benchmarking.

8.4. Future directions

Developing more sophisticated methods for motion predic-
tion which go beyond Kalman filtering with simple motion
models is a clear trend of recent years. Modern techniques
make extensive use of machine learning in order to bet-
ter estimate context-dependent patterns in real data, handle
more complex environment models and types of motion,
or even propose end-to-end reasoning on future motion
from visual input. An increasing number of methods also
includes reasoning on the global structure of the environ-
ment, intentions, and actions of the agent. Having these
trends in mind, we see several directions of future research.

8.4.1. Use of enhanced contextual cues. To analyze and
predict human motion, as well as to plan and navigate
alongside them, intelligent systems should have an in-
depth semantic scene understanding. Context understand-
ing with respect to features of the static environment and its
semantics for better trajectory prediction is still a relatively
unexplored area, see Section 6.3 for more details.

The same argument applies for the contextual cues of the
dynamic environment. Socially aware methods are making
an important improvement over socially unaware ones in
such spaces where the target agent is not acting in isolation.
However, most existing socially aware methods still assume
that all observed people are behaving similarly and that

their motion can be predicted by the same model and with
the same features. Capturing and reasoning on the high-
level social attributes is at an early stage of development,
see Sections 6.1 and 6.2, however recent methods take steps.
Furthermore, most available approaches assume coopera-
tive behavior, while real humans might rather optimize per-
sonal goals instead of joint strategies. In such cases, game-
theoretic approaches are possibly better suited for modeling
human behavior. Consequently, adopting classical artificial
intelligence and game-theoretic approaches in multi-agent
systems is a promising research direction, that is only partly
addressed in recent work (see, e.g., Bahram et al., 2016; Ma
et al., 2017).

One task where contextual cues become particularly
important is long-term prediction of motion trajectories.
While context-agnostic motion and behavioral patterns are
helpful for short prediction horizons, long-term predictions
should account for intentions, based on the context and
the surrounding environment. Many pattern-based meth-
ods treat agents as particles, placed in the field of learned
transitions, dictating the direction of future motion. Extend-
ing these models by more goal- or intention-driven predic-
tions, that resemble human goal-directed behavior, would
be beneficial for long-term predictions.

Consequently, further research on automatic goal infer-
ence based on the semantics of the environment is impor-
tant. Most planning-based methods rely on a given set of
goals, which makes them unusable or imprecise in a situ-
ation where no goals are known beforehand, or the num-
ber of possible goals is too high. Alternatively, one could
consider identifying on-the-fly possible goals in the envi-
ronment and predicting the way the agent may reach those
goals. This would allow application of the planning-based
methods in unknown environments. In addition, semantic
indicators of possible goals, coming from understanding the
person’s social role or current activity (Bruckschen et al.,
2019), could lead to more robust intention recognition.

Apart from the contextual cues, discussed in this survey,
there are many other factors influencing pedestrian motion,
according to the recent studies (Rasouli and Tsotsos, 2019),
e.g., weather conditions, time of day, social roles of agents.
Future methods could benefit from closer connection to
the studies of human motion and behavior in social spaces
(Arechavaleta et al., 2008; Do et al., 2016; Gorrini et al.,
2016).

8.4.2. Robustness and integration. Several practi-
cal aspects of deploying prediction systems in real
environments should be considered in the future work.

Most of the presented methods are designed for specific
tasks, scenarios, or types of motion. These methods work
well in certain situations, e.g., when prominent motion pat-
terns exist in the environment, or when the spatial struc-
ture of the environment and target agent’s goals are known
beforehand. A conceptually interesting approach that uses
a combination of multiple prediction algorithms to reason
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about best performance in the given situation is presented
by Lasota and Shah (2017). The multiple-predictor frame-
work opens a possibility for achieving more robust pre-
dictions when operating in undefined, changing situations,
where a combination of strengths of different methods is
required.

We suggest that more emphasis should be put on transfer
learning and generalization of approaches to new environ-
ments. Learning and reasoning on basic, invariant rules and
norms of human motion and collision avoidance is a better
approach in this case. When having access to several envi-
ronments, domain adaptation could be potentially used for
learning generalizable models.

Integration of prediction in planning and control is
another worthwhile topic for overall system robustness. Pre-
dicting human motion is usually motivated with increased
safety of human–robot interaction and efficiency of opera-
tion. However, the insights on exploiting predictions in the
robot’s motion or action planning module are typically left
out of scope in many papers. Future work would benefit
from outlining possible ways to incorporate predictions in
the robot control framework.

9. Conclusions

In this work, we have presented a thorough analysis of the
human motion trajectory prediction problem. We have sur-
veyed the literature across multiple domains and proposed
a taxonomy of motion prediction techniques. Our taxon-
omy builds on the two fundamental aspects of the motion
prediction problem: the model of motion and the input con-
textual cues. We have reviewed the relevant trajectory pre-
diction tasks in several application areas, such as service
robotics, self-driving vehicles, and advance surveillance
systems. Finally, we summarize and discuss the state of the
art along the lines of three major questions and outlined
several prospective directions of future research.

“Prediction is very difficult, especially about the future.”
This quote (whose origin has been attributed to multiple
people) certainly remains applicable to motion trajectory
prediction, despite two decades of research and the >200
prediction methods listed in this survey. We hope that our
survey increases visibility in this rapidly expanding field
and the will stimulate further research along the directions
discussed.
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