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Abstract— This work proposes a spatially-conditioned neural
network to perform semantic segmentation and geometric
scene completion in 3D on real-world LiDAR data. Spatially-
conditioned scene segmentation (SCSSnet) is a representation
suitable to encode properties of large 3D scenes at high resolu-
tion. A novel sampling strategy encodes free space information
from LiDAR scans explicitly and is both simple and effective.
We avoid the need for synthetically generated or volumetric
ground truth data and are able to train and evaluate our
method on semantically annotated LiDAR scans from the
Semantic KITTI dataset. Ultimately, our method is able to
predict scene geometry as well as a diverse set of semantic
classes over a large spatial extent at arbitrary output resolution
instead of a fixed discretization of space.

Our experiments confirm that the learned scene repre-
sentation is versatile and powerful and can be used for
multiple downstream tasks. We perform point-wise semantic
segmentation, point-of-view depth completion and ground plane
segmentation. The semantic segmentation performance of our
method surpasses the state of the art by a significant margin
of 7% mIoU.

I. INTRODUCTION

Perception systems need to reason about their environ-
ment given partial observations from sensors. For many
applications, including autonomous driving, a decision which
area is occupied by an object and an understanding of its
semantic meaning is required. While today’s LiDAR sensors
and RGB-D cameras already gather accurate 3D information
of their surroundings from a sensor-view perspective, we are
interested in an occupancy and semantic estimation of the
full Euclidean space around the robot. Point-of-view sensor
data projected into 3D space is inherently sparse and creates
incomplete object geometries because of occlusions. This
leads to the ill-posed problem of scene completion as a
composite of dense reconstruction from sparse measurements
and estimation of hidden geometry. Obtaining ground truth
data that includes the full scene geometry on a large scale
or for complex outdoor areas is especially tedious.

Existing learning-based 3D completion approaches can
broadly be categorized into sensor-view depth completion
[1], single object shape completion [2], [3], and scene
completion on synthetic [4], [5] or small-scale tabletop [6]
indoor datasets. Unlike image-space completion (e.g. [7], [8])
the scene and object completion task requires an encoding
of 3D space where existing works focus most commonly on
voxelization [4], [6], [9], [5], [3]. However, this results in
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Fig. 1: Visualizations of the scene segmentation function
fSCSS created from a single LiDAR frame: Our method
completes sparse LiDAR measurements over a large outdoor
area and predicts from 19 semantic classes. The underlying
representation can be applied to large spatial extents and
is not tied to any fixed output resolution. The generated
function fcSCSS : R3 → [0, 1]N+1 maps any point in R3 to
a probability vector over N semantic classes and free space.

satisfactory output resolutions only for volumes of limited
extent.

We see two reasons that have impeded the successful
transfer of semantic scene completion into robotics and
autonomous driving: The lack of real-world road scene data
and a suitable representation of large areas of 3D space that
handles different levels of detail well. In this paper both
issues are addressed by proposing an end-to-end trainable
approach for semantic scene segmentation from LiDAR
data. Our method does not require any synthetic data for
pretraining or a generated prior distribution of object shapes
to choose from. Instead, we implement single-point targets
as supervision signal that conveys information about objects
and free space of a scene.

Recent work [10], [11], [12], [13] proposes to encode
geometry implicitly as a function over 3D space, mapping
any point to a measure for occupation or signed distance to
an object. We base our method on this idea and name our
output function fcSCSS(p). This function represents the desired
geometric and semantic segmentation of 3D space implicitly.
A point of interest p ∈ R3 is the input to this function and
gets classified into either free space or one of N semantic
object categories by an output probability vector fcSCSS(p) ∈
[0, 1]N+1. The dependence of fcSCSS on the LiDAR scan of the
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scene is expressed by the conditioning vector c. The feature
vector c is generated from the LiDAR scan and parameterizes
the fcSCSS function to represent a particular scene. Output
function fSCSS and encoder to generate c are each represented
by a neural network and trained by backpropagation. A
visualization of the resulting function fSCSS is depicted in
Fig. 1. We show that our method avoids voxel resolution
trade-offs and is suitable to work on large outdoor areas with
arbitrary resolution.

II. RELATED WORK

We categorize related work into completion methods on
the sensor-view plane and completion in 3D Euclidean space.
The amount of information that needs to be inferred or
estimated from given measurements is generally larger in
the latter case. In addition, we distinguish works on implicit
isosurface space representation and the state of the art in
semantic segmentation.

Depth Super-Resolution and Completion: Learning-based
depth super-resolution and LiDAR upsampling approaches
concern themselves with increasing the resolution of data
samples that are expected to be evenly distributed over the
image plane [14], [15], [16]. These methods are generally not
categorized under the term completion in a narrow sense. In
contrast, many learning-based methods for completion of a
sparse LiDAR depth map employ various possibilities to use
RGB images as guidance: One group of such methods is
using multi-stage setups using intermediate surface normals
from RGB [17], [1], occlusion boundary cues [18], [1], or se-
mantic information [18]. Others use end-to-end trained deep
neural networks (DNNs) proposing 2D-3D feature fusion
[19] or confidence weights [20]. Yang et al.[21] formulates
the dense depth completion as a maximum a-posteriori esti-
mate over the given sparse depth and a previously observed
image dataset.

Methods for LiDAR-only depth completion learn dense
depth prediction with convolutional neural networks
(CNNs)[22], [7], [8] or alternating direction neural networks
(ADNNs)[23]. They operate on sparse LiDAR points pro-
jected onto the image plane. To handle such sparse data
a sparsity invariant CNN formulation is proposed by [8].
Classical image processing methods are utilized by [24] for
the depth completion task.

Object and Scene Completion: It creates a substantial
new challenge to shift the completion task from an image
or sensor-view space to Euclidean space. Hence methods
need to reason about the structure of space in occluded or
otherwise unseen areas. The subject of scene completion has
first gotten momentum from the wide availability of RGB-D
cameras leading to the advent of indoor semantic segmenta-
tion datasets such as the NYUv2 Depth Dataset [25]. [6] is
a pioneering work to infer full scene geometry from a single
depth image in an output space of voxelized signed distance
functions (SDFs). Generalization to entirely new shapes is
data-driven and implemented with voxel occupancy predicted

by a structured random forest. A specially created table-
top scene dataset with ground truth from a Kinect RGB-D
camera is used as full-supervision training target.

[4], [5] predict a volumetric occupancy grid with seman-
tic information end-to-end from voxelized SDFs as input.
They apply their methods to synthetic indoor data from
the SUNCG dataset. While [5] works on single RGB-D
images only [4] extends this to larger spatial extents. Multi-
ple measures improve geometric precision and consistency:
Using SDFs as output representation per voxel, an iterative
increase of voxel resolution, and the division of space into
interleaving voxel groups. Explicit fusion of single depth
images with RGB data to infer voxelized SDFs and semantic
segmentation is performed by [9]. [3] implements single
object shape completion on real-world LiDAR data with
shape priors from synthetic models and learns to predict a
complete shape from partial LiDAR scans by sampling the
maximum likelihood shape from this prior.

Geometry and Surface Representation: The choice of
output representation for scene completion falls most com-
monly on a voxel occupancy grid [5], voxelized SDFs [3],
[4], [6], [9], or interpolation and CRFs [26] for sub-voxel
accuracy. To skip the intermediate SDF and train surface
representation end-to-end, [27] introduces the a differentiable
deep marching cubes algorithm which is still constrained
by the underlying voxel resolution. In 3D representation the
general trade-off between output resolution and computation
resources is an issue [4]. Octree-based CNNs [28], [29],
[30], [31] have been proposed to represent space at different
resolutions and to perform gradual shape refinements.

Recent works [10], [11], [12], [13] propose to represent 3D
shape implicitly as isosurface of an output function supported
by 3D space that is represented as a DNN. They either
use oriented surfaces [12] or watertight meshes [11] from
ShapeNet [2] as synthetic full-supervision training targets.
The scope of these approaches has so far been limited to
single object reconstruction.

Semantic Segmentation: Numerous prior works focus on
semantic classification of all observed data points meaning
pixel-wise or point-wise classification. These methods do
not predict any labels for invisible parts of space from
the sensor’s perspective. However, datasets and benchmarks
on real-world road scenes [32], [33], [34] have defined a
standard of relevant semantic classes for autonomous driving
while simultaneously advancing the state of the art. CNN-
architectures on RGB-Images for segmentation and detection
[35], [36] have inspired sensor-view based approaches in
the more recent LiDAR-based segmentation task [37], [38].
Neural network architectures adjust to the three dimensional
nature of a segmentation or detection problem through vox-
elization of input data [39], [40], [41] or use of surface
geometry [37]. The semantic segmentation problem on real-
world data has only recently been advanced by the large-scale
Semantic KITTI dataset [33] featuring point-wise semantic
annotations on LiDAR together with a private test set and
segmentation benchmark.



(a) LiDAR point cloud (b) Training target sampling (c) Single point classification fL

(d) Point feature extractor (e) Multi-resolution feature
encoder

(f) Top-view latent condi-
tioning grid

(g) Composition of fcSCSS over support region
V for given point p (weighting omitted)

Fig. 2: Composition of the segmentation function fcSCSS: (a): Input LiDAR scan consisting of points L and sensor position
s. (b): Sampling of additional free space points F between sensor position s and LiDAR points L for supervised training of
scene geometry. (c): Point classification head for a single point using coordinates ∆pV relative to the position of a specific
conditioning vector cV . (d): Top-view pseudo-image from LiDAR scan through voxelization. (e): U-net like multi-resolution
feature encoder CNN. (f): CNN feature maps at three output resolutions are arranged spatially as top-view latent grid of
conditioning vectors with direct correspondence to points in the scene through ground plane x-y-coordinates (offset in height
between c1, c2, c3 only for visualization, ego-vehicle for scale). (g): Each point p falls into a conditioning grid cell V .
However, the point p is classified by all of the nearby conditioning vectors within the support region Vp around this grid
cell. The fcSCSS value for a point p is the weighted summation over these single point classifications fL.

III. PROPOSED APPROACH

A. Overview
Our method takes as input a point cloud and outputs

the corresponding Spatially Conditioned Scene Segmentation
(SCSS) function fcSCSS : R3 → [0, 1]N+1. This function
maps every 3D coordinate of a point p within the scene
to a probability vector that we define to represent the
semantic class of the point p. Points belonging to objects
in the scene are categorized into N semantic classes. The
additional class free space represents positions that are not
occupied by any object for a total of N + 1 classes. Hence
the fcSCSS function uniformly represents the geometric and
semantic segmentation of space instead of only the physical
boundaries of objects.

The components of the fcSCSS function are represented by a
neural network fL with two distinctive inputs: The coordinate
of interest ∆p and a parameterization vector cV . In this
context, generating an output function fcL means generating
a parameterization (conditioning) vector cV and therefore
obtaining the conditioned function fcL that is just dependent
on the remaining input coordinate ∆p.

Our approach to the composition of the fcSCSS function
is designed to encode large outdoor scenes. While related
works on single object shape representation encode geometry
information in a fixed size conditioning vector, we propose
a convolutional encoding where the amount of conditioning
information is tied to the spatial extent. To achieve this,
multiple conditioning vectors are spatially distributed over

a two-dimensional uniform grid in the xy-ground plane at a
fixed resolution (Fig. 2f). The intuition is that each individual
conditioning vector now describes only a small part of the
complete scene in the vicinity of its own position. The fixed
grid layout ensures that every location of the scene is evenly
covered by conditioning vectors. The configuration of objects
in outdoor scenes is assumed to be translation-invariant in x
and y direction. Such as the encoding of the front of a car
or a part of a tree is the same regardless of the absolute
position of the object. On this account an implementation of
the generation of the conditioning vectors by a convolutional
neural network suggests itself. A schematic diagram of the
point cloud encoding into the latent conditioning grid and
composition of the output function is given in Fig. 2.

In the next chapter the details of the composition of
the fcSCSS function from multiple conditioning vectors and
grid resolutions are described. A sampling-based supervised
training method from real-world LiDAR data is proposed
and details on the used network architecture and inference
procedure follow. In summary, our main contributions are:

• We formulate conditioning vectors that are distributed
in a hierarchical spatial manner to parametrize an output
function to classify positions in 3D space.

• We propose a point-based training scheme on LiDAR
data for the 3D scene segmentation task.

• We validate that the 3D representation generalizes to oc-
cluded areas and is suitable for geometric reconstruction
and semantic segmentation of space.



B. Spatially-distributed conditioning vectors

Composition of fcSCSS: Centerpiece of our method is the
formulation of latent conditioning vectors that are spatially
distributed and generated by a convolutional encoder net-
work on LiDAR point clouds. Each individual condition-
ing vector cV parameterizes a local segmentation function
fL(cV ,∆pV ) (see Fig. 2c) to classify a point of interest p.
While the extent of the support of individual local functions
is R3 and therefore infinite, the classification will only be
meaningful for points that are close to the conditioning
vector’s position. Hence, for a given point p we define a set
of grid cells in its vicinity as support region Vp of the point
p. Determining the support region for p means finding the
grid cell that contains p and selecting this center cell together
with a number of neighboring cells. The classification fcSCSS
of point p is the weighted mean of the individual function
outputs based on the conditioning vectors at the grid cells in
the support region:

fcSCSS(p) =
∑

V ∈Vp

w(∆pV )∑
w

fL(cV ,∆pV ) (1)

with ∆pV = p− oV (2)

oV is the center position of a cell V and cV is the
conditioning vector at cell V . The weights w are introduced
to value cells linearly according to their distance to p.
Naturally, further away conditioning vectors get assigned a
lower weight. Intuitively, the spatial extent of a scene can
be thought of as covered by overlapping function patches
fL. Each function fL has its own coordinate origin oV at
the center of its grid cell V . Eq. (2) conveys the translation
of scene coordinates p into the coordinate system of the
conditioning vector’s grid cell that shall describe p.

Multi-resolution scene representation: An additional as-
pect of the composition of fcSCSS is the use of three individual
conditioning vectors from three different resolutions levels.
The geometric structure of a scene is composed of different
levels of detail: from the coarse position of the ground level
and walls to more fine-grained details like curbstones, small
objects and poles. We reproduce this hierarchy in the network
structure to facilitate learning of a smooth representation with
more details and without value jumps over cell boundaries.
That is why a single conditioning vector c gets defined as
the concatenation of three resolution-specific conditioning
vectors. We opt for features cV = (c1, c2, c3) from the
resolution ratios 1 : 16, 1 : 4, and 1 : 1 that originate from
a U-net like convolutional feature encoder, see Fig. 2e. The
resolution ratios correspond to grid cells with 5.12 m, 1.28 m,
and 0.32 m edge length respectively.

The size of the support regions differs between the res-
olution levels. At lowest resolution we choose to only use
the cell the point resides in (|V1| = 1). At 1:4 resolution
a centered 3×3 square is selected (|V2| = 9), and at 1:1
resolution a 5× 5 square (|V3| = 25). This results in a
support region Vp for point p that consists of all possible
combinations of conditioning vectors (cV 1, cV 2, cV 3) within

Point type Source Loss available
Semantic Reconstr. Consistency

LiDAR L Input data 3 3 3
Free space F Gen. from input 7 3 3
Consistency C Random uniform 7 7 3

TABLE I: Training targets: LiDAR measurements and
sampled free space points define the binary reconstruction
target (occupied, free) used in the geometric reconstruction
loss. The consistency loss is well-defined for all points in
3D space, regardless of semantic label.

the resolution-specific regions V1, V2, and V3. In total there
are 1 × 9 × 25 combinations for cV and just as many
conditioned local segmentation functions that are able to
describe the single point p in the scene. When training, only
two of these combinations of each point are drawn at random.

Each conditioning vector ci, i ∈ {1, 2, 3} belongs to a
grid cell Vi at resolution i defining a coordinate system
relative to its own position through its origin oVi

. Due to the
hierarchical set of vectors (c1, c2, c3) at different resolutions,
we also obtain a corresponding 3-tuple of relative coordinates
∆pV = (p1,p2,p3) with pi = p− oVi

as input for fL.

C. Training on LiDAR data

Training target sampling: The point-classification neural
network and feature encoder are trained using individual
points and their associated training labels. We use three
different kinds of training targets: LiDAR L, free space F ,
and consistency points C. The set of 3D points of a LiDAR
point cloud is denoted as L. Naturally, the coordinates in L
must all refer to the same sensor coordinate system so that
the position of the LiDAR sensor itself is known for every
measured point in L.

A natural insight is that the straight line between a
LiDAR measurement and the sensor’s position at time of
measurement is empty, meaning not occupied by any object.
We model this explicitly for supervised training of scene
geometry. Points that are randomly sampled on these straight
lines form the set of free space points F . Accordingly, these
points get assigned the semantic class free space. This addi-
tional class allows to unambiguously define a classification
label for every point within the scene.

To learn a realistic representation over a larger scene
extent it is crucial to enforce classification consistency over
the support region Vp of a point p. The idea is to bias
the individual local segmentation functions fL within Vp in
Eq. (1) to predict the same probability distribution at point
p. Therefore, we introduce the additional training target type
consistency points together with an additional loss term. The
consistency loss penalizes divergence without specifying any
particular target label. Thereby, this loss term is available
at any coordinate within the scene, not only at regions
where LiDAR L or free space points F are occurring. A
set of additional consistency points C is sampled uniformly
within the scene boundaries to cause the network to make
meaningful predictions even in completely occluded areas.
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Fig. 3: Qualitative results on KITTI Semantic test set: Renders of the isosurface of the free space probability as
semantically colored mesh [b, c] give an intuition how the learned function behaves for different scenes. The ground plane is
estimated from semantic predictions and segmented into classes road, sidewalk, and parking space [d]. The top-view images
cover an extent of −45 m to 45 m behind and in front of the ego-vehicle. We create sensor-view dense depth images [f]
from the fcSCSS representation by projection of the free space surface onto the image plane. Only sparse LiDAR data has
been used [a]. The RGB image is given as a reference only (not used by our method) [e].

Loss function: Training the classifier involves the three
different loss terms semantic, geometric reconstruction, and
consistency loss. The availability of these losses at specific
coordinates in the scene differs between the three different
kind of sampled training targets as summarized in Table I.
The overall loss

L = λS
∑
p∈L

LS + λR
∑

p∈L∪F
LR + λC

∑
p∈L∪F∪C

LC (3)

is the weighted sum of the individual losses that are
each summed over their respective training point sets. We
write the predicted probability vector at position p as

[f1, . . . , fN , fN+1]ᵀ = fcSCSS(p). The scalar fN+1 is the
predicted probability of the free space class.

The semantic loss LS is a cross-entropy loss between the
full classification output vector [f1, . . . , fN+1]ᵀ and semantic
ground truth. The ground truth free space probability for
LiDAR targets is always zero as LiDAR measurements L
are assumed to be located on objects.

The geometric reconstruction loss

LR = H

(
[loccupied, lfree]

ᵀ
,

[
N∑
i=1

fi, fN+1

]ᵀ)
(4)

is the binary cross-entropy H between the sum of the



semantic class probabilities [f1, . . . , fN ] for all objects and
the remaining free space probability fN+1. It is available
for all free space points with [loccupied, lfree]

ᵀ = [0, 1]ᵀ

and all LiDAR points with [loccupied, lfree]
ᵀ = [1, 0]ᵀ. The

differentiation between semantic and reconstruction loss is
only introduced to cover LiDAR points that do not carry a
semantic label.

The consistency loss

LC = JSD (fL,0(p), . . . , fL,m(p)) (5)

= H

 1

m

∑
V ∈Vp

fL(cV ,∆pV )


− 1

m

∑
V ∈Vp

H (fL(cV ,∆pV )) (6)

for a given coordinate p is the Jensen-Shannon divergence
(JSD) between m = |Vp| probability distributions predicted
by the local segmentation functions fL on the support region
Vp of a consistency point p. H(P) denotes the entropy of
distribution P. The JSD is symmetric and always bounded.

D. Implementation

Point cloud encoding: At the base layer we use a voxel-
wise point cloud feature encoder from recent literature [39],
[41]. The encoder transforms the raw input point set into a
fixed-size pseudo-image feature representation (Fig. 2d) that
corresponds to the spatial extent of the scene and is a suitable
input for a convolutional feature extractor. Note that the
encoder input feature space is in principle unrelated to the R3

support of the generated function. This means that the point
cloud encoder can make use of additional information of
the sensor. We supply the reflectivity value of every LiDAR
point as extra feature.

Batch-norm conditioned classification: Spatial encoding
is implicitly modeled with a local output function fL that
needs to be conditioned on the latent vector cV of the feature
extractor. This point classification function is implemented as
an Multi-layer perceptron (MLP) that uses conditioned batch-
normalization layers to express its dependency on the latent
vectors[42]. Our method divides the latent coding cV into
resolution-specific latent vectors cV = (cV 1, cV 2, cV 3) and
their associated relative positions ∆pV =(∆p1,∆p2,∆p3).
This information then conditions the output function from
coarse to fine: Thus beginning with the lowest resolution
latent vector and adding more fine-grained information in
the later layers of the MLP (see Fig. 2c).

Training details: Training the architecture involves com-
mon spatial augmentations of the input LiDAR point clouds
themselves in sensor coordinates: random uniform rotation
over the full 360◦, random uniform scaling between ±5 %,
random uniform translations between ±5 cm. In addition, the
voxelization grid is globally shifted off-center using normal-
distributed offsets with σ = 15 m. We sample two free space
points for each LiDAR point in a scan and 2500 consistency
locations per scan. Depending on available VRAM and

desired batch size the number of training targets of each
category is reduced by random drop-out. For a scan with
120k points, 16 GB VRAM and batch size of 4 we dropped
10 % of training targets. We found that a batch size of 4 was
the minimum required for stable training.

E. Inference and Visualization

We use latent conditioning vectors to define a function
fcSCSS over R3 to represent geometry and semantics in a sin-
gle classification vector. Depending on the task at hand this
implicit representation necessitates different procedures to
obtain explicit results. In any case, the function is evaluated
for an arbitrary number of query coordinates at test time.

For point-wise semantic segmentation it is straightforward
to use the positions of the set of LiDAR points L as test
time query points to obtain semantic predictions for the
point cloud itself. The predicted class value is the max-
imum probability over all non-free-space semantic classes
argmax (fcSCSS(p)i)i∈[1,N ].

Sensor-view depth completion images as in Fig. 3f can
be generated given the projection matrix from LiDAR co-
ordinates to an image plane. Each image pixel corresponds
to a down-projected straight line in LiDAR 3D coordinates.
Tracing the free space probability of the output function fcSCSS
on these lines for every image pixel starting at the image
plane at d = 0 until encountering a free space probability
below a threshold value θthres yields the depth values for each
pixel.

To visualize the fcSCSS function we generate 3D meshes
to represent the isosurface of a scalar function over R3 as
close as possible (see Fig. 3b). From the N + 1 semantic
classes of the vector-valued fcSCSS function we choose to
visualize the free space probability isosurface at a cer-
tain threshold θfree space ∈ (0, 1). This isosurface {p ∈
R3| (fcSCSS(p))N+1 = θfree space} corresponds to the bound-
aries of all objects in the scene and therefore gives an idea
of the learned scene representation. To extract the mesh,
we use multiresolution IsoSurface Extraction (MISE) [11].
We query the fcSCSS function for all vertex positions of the
resulting mesh and color the mesh based on these semantic
predictions.

IV. EXPERIMENTS

We conduct different types of experiments to validate
our proposed training approach and output representation.
Experiments are split into point-wise semantic segmentation
and ground plane segmentation. Additionally we visualize
the predicted free space isosurface. An overview is given in
Fig. 3.

A. Dataset

We train our method on single LiDAR frames from the
Semantic KITTI dataset that provide semantic annotations
in 19 different classes for each LiDAR measurement. The
point clouds of this dataset are taken from the ego-motion
corrected KITTI Odometry dataset that is recorded using a
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DarkNet21Seg [33], [38] 47.7 91.4 74.0 57.0 26.4 81.9 85.4 18.6 26.2 26.5 15.6 77.6 48.4 63.6 31.8 33.6 4.0 52.3 36.0 50.0
DarkNet53Seg [33], [38] 49.9 91.8 74.6 64.8 27.9 84.1 86.4 25.5 24.5 32.7 22.6 78.3 50.1 64.0 36.2 33.6 4.7 55.0 38.9 52.2
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TABLE II: Point-wise semantic segmentation performance (higher is better): We compare our method to the three best-
performing methods from [33]. These are based on sensor-view CNNs. We outperform all other methods on nearly all
semantic categories.

Road Sidewalk Parking Vegetation Terrain

Fig. 4: Ground plane estimation and segmentation: Top-
view, from left to right: zoom into sparse point cloud,
corresponding geometric reconstruction, and segmentation
of ground plane into road, parking, sidewalk and remaining
classes. Our approach makes meaningful semantic predic-
tions in partly or completely occluded areas from the ego-
vehicle’s point of view. Segmentation and extent of parking
spaces are predicted beneath or behind occupying objects as
well as continued over areas that are very sparse (bottom left
and right corners).

single Velodyne HDL-64 sensor. We split the part contain-
ing public ground truth annotations into 22 001 frames for
training and 1200 frames for validation.

B. Semantic Segmentation

To evaluate semantic segmentation performance we submit
our results to the Semantic KITTI segmentation benchmark
on the single 360◦ LiDAR frames category. The benchmark
uses the widely-used mean intersection-over-union (mIoU) or
Jaccard index to assess performance. The semantic classes
itself and results are listed in Table II. Our method is
compared to the three best performing LiDAR semantic
segmentation methods from [33] and outperforms them by a
significant margin.

C. Ground plane estimation and segmentation

We execute a simple ground plane estimate and query
the output segmentation function for semantic labels on
just this surface. The semantic classes of primary interest
for a car on the ground plane are Road, Parking, and
Sidewalk. All other classes are summed up and displayed as
white background. The height value at positions that are not
predicted as of any ground class are interpolated to generate
a dense ground plane height grid for semantic evaluation.

See Fig. 4 for the color coding and a close-up example of
ground plane scene completion. More qualitative examples
are listed in Fig. 3d. The learned representation is able to
complete a meaningful segmentation in metric space of the
scene even in great distances from the recording vehicle
where LiDAR points are very sparse. We see some artefacts
from the voxelized conditioning vector hierarchy only in
entirely invisible regions. The ground plane segmentation
exists as continuous function over space. Consequently the
road surface can be extracted from the scene as a single
object. This adds much value over individual LiDAR points
or voxels of reduced resolution. The representation evades all
sparsity issues that are inherently existent in LiDAR data.

V. CONCLUSION

This paper introduces spatially-conditioned scene seg-
mentation networks (SCSSnet) as convolutional-generated
representation for 3D geometry and semantic segmentation.
In a series of experiments we show that the representation
is versatile and powerful: It is suitable for scenes of a large
extent without sacrificing resolution and precision. Inferred
semantic and geometric decision boundaries are smooth and
meaningful. Using this 3D scene representation we reach
a semantic segmentation mIoU score of 57.6 % on the
Semantic KITTI Benchmark significantly outperforming all
other sensor-view based methods. An apparent next step is
to train our method on time-accumulated point clouds and
volumetric ground truth scene completion data to adapt to
the full scene completion task.

REFERENCES

[1] Y. Zhang and T. Funkhouser, “Deep Depth Completion of a Single
RGB-D Image,” in CVPR, 2018, pp. 175–185.

[2] A. X. Chang, T. A. Funkhouser, et al., “ShapeNet: An Information-
Rich 3D Model Repository,” ArXiv, vol. abs/1512.03012, 2015.

[3] D. Stutz and A. Geiger, “Learning 3D Shape Completion From Laser
Scan Data With Weak Supervision,” in CVPR, 2018, pp. 1955–1964.

[4] A. Dai, D. Ritchie, et al., “ScanComplete: Large-Scale Scene Com-
pletion and Semantic Segmentation for 3D Scans,” in CVPR, 2018,
pp. 4578–4587.

[5] S. Song, F. Yu, et al., “Semantic Scene Completion From a Single
Depth Image,” in CVPR, 2017.

[6] M. Firman, O. Mac Aodha, et al., “Structured Prediction of Unob-
served Voxels From a Single Depth Image,” in CVPR, 2016, pp. 5431–
5440.



[7] F. Ma, G. V. Cavalheiro, and S. Karaman, “Self-Supervised Sparse-to-
Dense: Self-Supervised Depth Completion from LiDAR and Monoc-
ular Camera,” in ICRA, 2019.

[8] J. Uhrig, N. Schneider, et al., “Sparsity Invariant CNNs,” in 3DV,
2017.

[9] M. Garbade, Y.-T. Chen, et al., “Two Stream 3D Semantic Scene
Completion,” in CVPR Workshops, 2019.

[10] Z. Chen and H. Zhang, “Learning Implicit Fields for Generative
Shape Modeling,” CVPR, pp. 5939–5948, 2019. [Online]. Available:
http://arxiv.org/abs/1812.02822

[11] L. Mescheder, M. Oechsle, et al., “Occupancy Networks: Learning 3D
Reconstruction in Function Space,” in CVPR, 2019, pp. 4460–4470.
[Online]. Available: http://arxiv.org/abs/1812.03828

[12] M. Michalkiewicz, J. K. Pontes, et al., “Deep Level Sets: Im-
plicit Surface Representations for 3D Shape Inference,” ArXiv, vol.
abs/1901.06802, 2019.

[13] J. J. Park, P. Florence, et al., “DeepSDF: Learning Continuous Signed
Distance Functions for Shape Representation,” CVPR, pp. 165–174,
2019. [Online]. Available: http://arxiv.org/abs/1901.05103

[14] T.-W. Hui, C. C. Loy, and X. Tang, “Depth Map Super-Resolution by
Deep Multi-Scale Guidance,” in ECCV, 2016.

[15] L. Triess, D. Peter, et al., “CNN-based synthesis of realistic high-
resolution LiDAR data,” in IV, 2019, pp. 1512–1519.

[16] L. Yu, X. Li, et al., “PU-Net: Point Cloud Upsampling Network,” in
CVPR, 2018, pp. 2790–2799.

[17] J. Qiu, Z. Cui, et al., “Deeplidar: Deep surface normal guided depth
prediction for outdoor scene from sparse lidar data and single color
image,” in CVPR, June 2019.

[18] N. Schneider, L. Schneider, et al., “Semantically guided depth upsam-
pling,” in GCPR, 2016.

[19] Y. Chen, B. Yang, et al., “Learning Joint 2D-3D Representations for
Depth Completion,” in ICCV, 2019.

[20] W. Van Gansbeke, D. Neven, et al., “Sparse and Noisy LiDAR
Completion with RGB Guidance and Uncertainty,” in MVA, 2019.

[21] Y. Yang, A. Wong, and S. Soatto, “Dense Depth Posterior (DDP) From
Single Image and Sparse Range,” in CVPR, 2019, pp. 3353–3362.

[22] H. Hekmatian, J. Jin, and S. Al-Stouhi, “Conf-Net: Toward High-
Confidence Dense 3D Point-Cloud with Error-Map Prediction,” 2019.
[Online]. Available: http://arxiv.org/abs/1907.10148

[23] N. Chodosh, C. Wang, and S. Lucey, “Deep Convolutional Compressed
Sensing for LiDAR Depth Completion,” in ACCV, 2018, pp. 499–513.

[24] J. Ku, A. Harakeh, and S. L. Waslander, “In Defense of Classical
Image Processing: Fast Depth Completion on the CPU,” in 2018 15th
Conference on Computer and Robot Vision (CRV), 2018, pp. 16–22.

[25] N. Silberman, D. Hoiem, et al., “Indoor Segmentation and Support
Inference from RGBD Images,” in ECCV, 2012, pp. 746–760.

[26] L. P. Tchapmi, C. B. Choy, et al., “SEGCloud: Semantic Segmentation
of 3D Point Clouds,” in 3DV, 2017.
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