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Abstract— This work proposes a spatially-conditioned neural
network to perform semantic segmentation and geometric
scene completion in 3D on real-world LiDAR data. Spatially-
conditioned scene segmentation (SCSSnet) is a representation
suitable to encode properties of large 3D scenes at high resolu-
tion. A novel sampling strategy encodes free space information
from LiDAR scans explicitly and is both simple and effective.
We avoid the need for synthetically generated or volumetric
ground truth data and are able to train and evaluate our
method on semantically annotated LiDAR scans from the
Semantic KITTI dataset. Ultimately, our method is able to
predict scene geometry as well as a diverse set of semantic
classes over a large spatial extent at arbitrary output resolution
instead of a fixed discretization of space.

Our experiments confirm that the learned scene repre-
sentation is versatile and powerful and can be used for
multiple downstream tasks. We perform point-wise semantic
segmentation, point-of-view depth completion and ground plane
segmentation. The semantic segmentation performance of our
method surpasses the state of the art by a significant margin
of 7% mIoU.

I. INTRODUCTION

Perception systems need to reason about their environ-
ment given partial observations from sensors. For many
applications, including autonomous driving, a decision which
area is occupied by an object and an understanding of its
semantic meaning is required. While today’s LiDAR sensors
and RGB-D cameras already gather accurate 3D information
of their surroundings from a sensor-view perspective, we are
interested in an occupancy and semantic estimation of the
full Euclidean space around the robot. Point-of-view sensor
data projected into 3D space is inherently sparse and creates
incomplete object geometries because of occlusions. This
leads to the ill-posed problem of scene completion as a
composite of dense reconstruction from sparse measurements
and estimation of hidden geometry. Obtaining ground truth
data that includes the full scene geometry on a large scale
or for complex outdoor areas is especially tedious.

Existing learning-based 3D completion approaches can
broadly be categorized into sensor-view depth completion
[1], single object shape completion [2], [3], and scene
completion on synthetic [4], [5] or small-scale tabletop [6]
indoor datasets. Unlike image-space completion (e.g. [7], [8])
the scene and object completion task requires an encoding
of 3D space where existing works focus most commonly on
voxelization [4], [6], [9], [5], [3]. However, this results in
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Fig. 1: Visualizations of the scene segmentation function
fSCSS created from a single LiDAR frame: Our method
completes sparse LiDAR measurements over a large outdoor
area and predicts from 19 semantic classes. The underlying
representation can be applied to large spatial extents and
is not tied to any fixed output resolution. The generated
function fcSCSS : R3 → [0, 1]N+1 maps any point in R3 to
a probability vector over N semantic classes and free space.

satisfactory output resolutions only for volumes of limited
extent.

We see two reasons that have impeded the successful
transfer of semantic scene completion into robotics and
autonomous driving: The lack of real-world road scene data
and a suitable representation of large areas of 3D space that
handles different levels of detail well. In this paper both
issues are addressed by proposing an end-to-end trainable
approach for semantic scene segmentation from LiDAR
data. Our method does not require any synthetic data for
pretraining or a generated prior distribution of object shapes
to choose from. Instead, we implement single-point targets
as supervision signal that conveys information about objects
and free space of a scene.

Recent work [10], [11], [12], [13] proposes to encode
geometry implicitly as a function over 3D space, mapping
any point to a measure for occupation or signed distance to
an object. We base our method on this idea and name our
output function fcSCSS(p). This function represents the desired
geometric and semantic segmentation of 3D space implicitly.
A point of interest p ∈ R3 is the input to this function and
gets classified into either free space or one of N semantic
object categories by an output probability vector fcSCSS(p) ∈
[0, 1]N+1. The dependence of fcSCSS on the LiDAR scan of the



scene is expressed by the conditioning vector c. The feature
vector c is generated from the LiDAR scan and parameterizes
the fcSCSS function to represent a particular scene. Output
function fSCSS and encoder to generate c are each represented
by a neural network and trained by backpropagation. A
visualization of the resulting function fSCSS is depicted in
Fig. 1. We show that our method avoids voxel resolution
trade-offs and is suitable to work on large outdoor areas with
arbitrary resolution.

II. RELATED WORK

We categorize related work into completion methods on
the sensor-view plane and completion in 3D Euclidean space.
The amount of information that needs to be inferred or
estimated from given measurements is generally larger in
the latter case. In addition, we distinguish works on implicit
isosurface space representation and the state of the art in
semantic segmentation.

Depth Super-Resolution and Completion: Learning-based
depth super-resolution and LiDAR upsampling approaches
concern themselves with increasing the resolution of data
samples that are expected to be evenly distributed over the
image plane [14], [15], [16]. These methods are generally not
categorized under the term completion in a narrow sense. In
contrast, many learning-based methods for completion of a
sparse LiDAR depth map employ various possibilities to use
RGB images as guidance: One group of such methods is
using multi-stage setups using intermediate surface normals
from RGB [17], [1], occlusion boundary cues [18], [1], or se-
mantic information [18]. Others use end-to-end trained deep
neural networks (DNNs) proposing 2D-3D feature fusion
[19] or confidence weights [20]. Yang et al.[21] formulates
the dense depth completion as a maximum a-posteriori esti-
mate over the given sparse depth and a previously observed
image dataset.

Methods for LiDAR-only depth completion learn dense
depth prediction with convolutional neural networks
(CNNs)[22], [7], [8] or alternating direction neural networks
(ADNNs)[23]. They operate on sparse LiDAR points pro-
jected onto the image plane. To handle such sparse data
a sparsity invariant CNN formulation is proposed by [8].
Classical image processing methods are utilized by [24] for
the depth completion task.

Object and Scene Completion: It creates a substantial
new challenge to shift the completion task from an image
or sensor-view space to Euclidean space. Hence methods
need to reason about the structure of space in occluded or
otherwise unseen areas. The subject of scene completion has
first gotten momentum from the wide availability of RGB-D
cameras leading to the advent of indoor semantic segmenta-
tion datasets such as the NYUv2 Depth Dataset [25]. [6] is
a pioneering work to infer full scene geometry from a single
depth image in an output space of voxelized signed distance
functions (SDFs). Generalization to entirely new shapes is
data-driven and implemented with voxel occupancy predicted

by a structured random forest. A specially created table-
top scene dataset with ground truth from a Kinect RGB-D
camera is used as full-supervision training target.

[4], [5] predict a volumetric occupancy grid with seman-
tic information end-to-end from voxelized SDFs as input.
They apply their methods to synthetic indoor data from
the SUNCG dataset. While [5] works on single RGB-D
images only [4] extends this to larger spatial extents. Multi-
ple measures improve geometric precision and consistency:
Using SDFs as output representation per voxel, an iterative
increase of voxel resolution, and the division of space into
interleaving voxel groups. Explicit fusion of single depth
images with RGB data to infer voxelized SDFs and semantic
segmentation is performed by [9]. [3] implements single
object shape completion on real-world LiDAR data with
shape priors from synthetic models and learns to predict a
complete shape from partial LiDAR scans by sampling the
maximum likelihood shape from this prior.

Geometry and Surface Representation: The choice of
output representation for scene completion falls most com-
monly on a voxel occupancy grid [5], voxelized SDFs [3],
[4], [6], [9], or interpolation and CRFs [26] for sub-voxel
accuracy. To skip the intermediate SDF and train surface
representation end-to-end, [27] introduces the a differentiable
deep marching cubes algorithm which is still constrained
by the underlying voxel resolution. In 3D representation the
general trade-off between output resolution and computation
resources is an issue [4]. Octree-based CNNs [28], [29],
[30], [31] have been proposed to represent space at different
resolutions and to perform gradual shape refinements.

Recent works [10], [11], [12], [13] propose to represent 3D
shape implicitly as isosurface of an output function supported
by 3D space that is represented as a DNN. They either
use oriented surfaces [12] or watertight meshes [11] from
ShapeNet [2] as synthetic full-supervision training targets.
The scope of these approaches has so far been limited to
single object reconstruction.

Semantic Segmentation: Numerous prior works focus on
semantic classification of all observed data points meaning
pixel-wise or point-wise classification. These methods do
not predict any labels for invisible parts of space from
the sensor’s perspective. However, datasets and benchmarks
on real-world road scenes [32], [33], [34] have defined a
standard of relevant semantic classes for autonomous driving
while simultaneously advancing the state of the art. CNN-
architectures on RGB-Images for segmentation and detection
[35], [36] have inspired sensor-view based approaches in
the more recent LiDAR-based segmentation task [37], [38].
Neural network architectures adjust to the three dimensional
nature of a segmentation or detection problem through vox-
elization of input data [39], [40], [41] or use of surface
geometry [37]. The semantic segmentation problem on real-
world data has only recently been advanced by the large-scale
Semantic KITTI dataset [33] featuring point-wise semantic
annotations on LiDAR together with a private test set and
segmentation benchmark.




