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Abstract— This paper presents an experimental study on 3D
person localization (i.e. pedestrians, cyclists) in traffic scenes,
using monocular vision and LiDAR data. We first analyze the
detection performance of two top-ranking methods (PointPillars
and AVOD) on the KITTI benchmark, with respect to varying
Intersection over Union (IoU) settings and the underlying
parameters of 3D bounding box location, extent and orientation.
Given that the KITTI dataset contains relatively few 3D person
instances, we also consider the new EuroCity Persons 2.5D
(ECP2.5D) dataset, which is one order of magnitude larger. We
perform domain transfer experiments between the KITTI and
ECP2.5D datasets, to examine how these datasets generalize
with respect to each other.

I. INTRODUCTION

According to a recent report of the World Health Organi-
sation, about half of the 1.3 million people killed yearly in
traffic worldwide involve Vulnerable Road Users (VRUs), i.e.
pedestrians, cyclists and other riders. For much of the past
two decades, vision was the dominant sensor modality for
intelligent vehicles to detect VRU. Strong progress has been
made on 2D image-based VRU detection facilitated by novel
(deep learning) methods, faster processors and more data
(including benchmarks, e.g. [1], [2], [3]). 3D localization
from 2D detections can subsequently be achieved by back-
projection, disparity computation [4], and/or association with
radar targets. Vision-based VRU detection is meanwhile
incorporated in active safety systems of various premium
vehicles on the market.

Still, current active VRU safety systems are deployed in
the context of driver assistance. With the advent of fully
self-driving vehicles, performance needs to be significantly
upped, as a driver is no longer available as a back-up. The
LiDAR sensor is an attractive sensor for self-driving vehicles,
stemming from its capabilities to directly and accurately
measure distances and to deal with low-light environments.
KITTI [5] meanwhile offers a 3D object detection bench-
mark, including one for pedestrians. The latter leader-board
currently lists a 3D Average Precision (AP3D) of 51% and
around 40% for the easy and all targets, respectively (in
contrast, the state-of-the-art in 2D object detection attains an
Average Precision (AP) of 75% overall).

This paper presents an experimental study on 3D person
localization (i.e. pedestrians, cyclists) in traffic scenes, using
monocular vision and LiDAR data. We consider two 3D ob-
ject detection methods, PointPillars [6] and AVOD [7], which
are among the top performers on the KITTI benchmark, see
fig. 1. We investigate the effect of the varying IoU setting
on detection performance and quantify the various errors in
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Fig. 1. An example of the predicted bounding boxes of PointPillars [6]
(PP) and AVOD [7] on a scene from the EuroCity Persons 2.5D [8], along
with the annotated ground truth (GT).

terms of 3D bounding box location, extent and orientation.
Given that the KITTI benchmark contains relatively few 3D
person instances, we also perform experiments on a large
subset of the new EuroCity Persons 2.5D (ECP2.5D) dataset
[8]. Apart from being one order of magnitude larger than
KITTI, ECP2.5D has advantages in terms of diversity (e.g.
geographical coverage, time of day/season, weather condi-
tions) and by being devoid of privacy-driven image blurring.
This makes ECP2.5D also attractive when compared to other
recent dataset additions, see table II. Finally, we perform
domain transfer experiments between KITTI and ECP2.5D,
to examine how these datasets relate to each other.

II. PREVIOUS WORK

We focus our discussion on previous 3D object detection
methods that use neural network architectures, as they are
the current best performers in the various benchmarks.

One way to categorize this work is by sensor modality, i.e.
either a single modality or a fusion of multiple modalities.
The commonly used sensors used are (monocular) camera

dgavrila
Sticky Note
Published at IEEE Intelligent Vehicles Symposium, held online, 2020



TABLE I
COMPARISON OF AVOD AND POINTPILLARS.

AVOD PointPillars

Modality LiDAR + image LiDAR
Stages Two-stage Single-stage
Bounding box
regression

four corners,
heights,
orientation

3D center point,
length, width, height,
orientation

and LiDAR. However, the RGB-only methods (e.g. Shift R-
CNN [9]) are generally outperformed by methods that instead
use LiDAR information. These LiDAR-only networks map
the point cloud to either a 2D or a 3D representation.
Examples of 2D representations are Birds Eye View (used
by e.g. HDNet [10]) and Range View (e.g. LaserNet [11]).
Networks can also map the point cloud to 3D representations
like Voxels (e.g. Voxelnet [12]), Pillars (e.g. PointPillars [6]),
or Stixels (e.g. SCNet [13]).

Multi-sensor modality networks, or fusion networks, use
both camera and LiDAR. Here, all the previously mentioned
LiDAR mappings can be used to fuse with the camera
data. How they are fused exactly falls into four categories.
The first category is early fusion, where the modalities are
concatenated before being passed into a neural network.
An example of early fusion is MVX-Net PointFusion [14]
where the pointcloud is projected onto a RGB-image and
then concatenated. Secondly, deep fusion networks fuse the
modalities after they have already been processed by a part of
the network, for example PointFusion [15]. Here, the features
from a PointNet [16] and a ResNet-50 are concatenated. With
deep fusion, it is also possible to fuse the various modalities
at multiple stages, as is done with AVOD [7]. Within such
a deep fusion network, the performance is dependent on
the feature encoder used [17]. Thirdly, late fusion takes the
output of two or more independent networks and fuses the
class probabilities [18]. Lastly, sequential fusion processes
the sensor modalities in sequence. For example, Frustum
PointNets [19] and Frustrum Convnet [20] use a 2D image
detector to select frustums in a pointcloud, which is then
processed separately.

Another way of categorizing previous 3D object detection
methods is by the number of stages used by the network.
Two-stage approaches utilize a Region Proposal Network
(RPN) to generate bounding boxes which are individually
evaluated (e.g. STD [21]). Single-state approaches instead
evaluate predetermined bounding boxes (e.g. PointPaint-
ing [22]), also called anchor boxes.

Table I highlights the differences between PointPillars [6]
and AVOD [7], two of the best performing LiDAR and fusion
networks, respectively, with code available at the time of
writing. These will be used later in the experiments.

In terms of existing datasets, one of the first 3D ob-
ject detection benchmarks was an extension to KITTI [5],
released in 2017, which contains around 9400 pedestrians
(of which half in the publicly available training set). Since
then, KITTI has become the de facto standard for 3D object

TABLE II
OVERVIEW OF TRAFFIC-RELATED 3D PERSONS DATASETS. A DASH

DENOTES THAT THE INFORMATION COULD NOT BE DETERMINED.

Dataset Waymo
[23]

nuScenes
[24]

Argoverse
[25]

Lyft
[26]

KITTI
[5]

ECP2.5D
[8]

# Countries 1 2 1 1 1 12
# Cities 2 2 2 1 1 30
# Imgs 800K 34K 350K 55K 15K 46K
# Peds 2.8M 222K 132K 25K 9.4K 123K
# Riders 67K 24K 11K 22K 3.3K 13K
# Seasons - - 1 1 1 4
Weather dry,

rain
dry,
rain

dry dry dry dry,
rain

Time of day day,
night

day,
night

day,
night

- day day,
night

Unblurred 7 7 7 7 3 3

detection. However, because of the relatively small dataset
size, performances can differ a lot on the validation and test
set. More recent dataset additions to KITTI are significantly
larger and more diverse, see table II.

This paper presents an experimental study on monocular
and LiDAR-based 3D person detection. Its specific contribu-
tions are:
• A performance analysis of two state-of-the-art meth-

ods (PointPillars and AVOD) on KITTI, with respect
to varying IoU and the underlying parameters of 3D
bounding box location, extent and orientation.

• Results from domain transfer experiments between
KITTI and ECP2.5D.

III. METHODOLOGY

The goal of 3D person detectors is to detect the bounding
boxes of VRUs in the scene. In KITTI, these bounding boxes
have seven degrees of freedom (fig. 2). The 3D position is
given in a coordinate system with respect to the egovehicle,
where x is the position of the bounding box center lateral
to the vehicle, z is the position longitudinal to the vehicle
(i.e. depth), and y determines the altitude of the bounding
box center. The bounding box dimensions are specified by
a width w, length l and height h, and finally each bounding
box has a yaw rotation θ. The top and bottom face of the
bounding box are assumed to be parallel to the y = 0 plane.
The predicted bounding boxes will also have a detection
score d related to them.

A. Intersection over Union (IoU)

To evaluate the performance of an object detector, one
needs to count a predicted bounding box as valid or non-valid
(i.e. true positive or false positive). In 3D (as well as 2D)
object detection, the method to assess if a proposed bounding
box is a true- or false-positive is based on IoU. It is defined as
the intersection (or overlap) of a 3D bounding box prediction
(Bp) and ground truth (Bgt) divided by the union of the
prediction and ground truth. When both bounding boxes only
have a yaw rotation, this can be written as [27]:

IoU =
Bp ∩Bgt
Bp ∪Bgt

=
Ao × ho

Vgt + Vp −Ao × ho
(1)
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Fig. 2. A visualization of the parameters relevant for computing the IoU of
a ground truth and predicted bounding box. The darker shaded area indicates
the overlap area Ao. In this figure, the overlapping height ho is equal to
the height of the smaller bounding box.

Where Vp and Vgt are the volume of the predicted and
ground truth bounding box. The overlap of volumes can be
computed from the overlapping top-view area Ao and the
overlapping height (ho), see fig. 2. In KITTI, a predicted
bounding box is seen as a true positive if it has an IoU
of more than 0.5. Only one predicted bounding box can be
marked as a true positive for any ground truth bounding box.

B. Performance metrics

After the true positives have been determined, it is pos-
sible to compute the two metrics as defined in the KITTI
benchmark for 3D object detection: 3D Average Precision
(AP3D) and Average Orientation Similarity (AOS) [5].

The AP3D averages the maximum attained precision s
with at least a recall r for a fixed range of recall values [28]:

AP3D =
1

40

∑
r∈{ 1

40 ,
2
40 ,...,1}

max
r̄:r̄≥r

s(r̃) (2)

As precision and recall both depend on the amount of true
positives, the AP3D strongly depends on the IoU threshold.

Where the AP3D verifies whether the bounding boxes
are in the correct place, the AOS additionally verifies the
correctness of their orientations:

AOS =
1

40

∑
r∈{ 1

40 ,
2
40 ,...,1}

max
r̄:r̄≥r

s̃(r̃) (3)

s̃(r) =
1

|D (r) |
∑
i∈D(r)

1 + cos ∆
(i)
θ

2
δi (4)

Where D (r) denotes the set of all objects at a specific
recall rate r and ∆

(i)
θ the difference between the estimated

and the real orientation. The indicator δi is one if the
predicted bounding box is seen as a true positive, and zero
otherwise. If every true positive predicted bounding box has
an orientation error of 0, eq. (4) reduces to the precision at
that recall rate.

IV. EXPERIMENTS

Experiments were performed with the codebase of the
authors of AVOD1 and the codebase recommended by the
authors of PointPillars2 as is, using the best performing
network as reported in their papers. Thus for AVOD, we use
AVOD-FPN, and for PointPillars, we use a spatial resolution
of 0.16× 0.16 m2.

A. Datasets overview

Figure 3 shows the distribution of the VRUs locations
relative to the vehicle, for the publicly available part of both
KITTI and ECP2.5D. The bulk of the detections in the KITTI
dataset lies within 30 m distance of the ego-vehicle. Both
datasets have a bias towards VRUs being on the right side
of the ego-vehicle.

We are using the same KITTI 1:1 train/validation split
as specified by the AVOD and PP codebases. The KITTI
dataset contains 2.2K/0.7K and 2.3K/0.9K pedestrian/cyclist
annotations for the train and validation split respectively.
The validation split can be divided in three parts which
are “easy”, “moderate” and “hard”, as defined by KITTI.
The ECP2.5D dataset has a larger amount of annotations for
the 3D position and orientation, but lacks width, length and
height annotation. We will use the median bounding box
dimensions of the train split of the KITTI dataset so both
networks can still regress a full bounding box. This paper
uses the ”Day” subset of ECP2.5D as its basis. Additionally,
the underlying EuroCity Persons (ECP) dataset misses an
orientation label for 386 pedestrians and 144 riders, these
are set to “Don’t Care”. This results in 62.3K/7.3K pedes-
trian/cyclist annotations in the training split, and 12.6K/1.3K
pedestrian/cyclist annotations in the validation split. The test
set ground truth annotations of both datasets is not made
public, so all evaluations done in the rest of this paper are
done using the validation splits of either dataset as mentioned
here.

Both datasets use the Velodyne HDL-64E (LiDAR) sensor.
The intensity of the LiDAR points in KITTI fall in 100
discrete bins of between 0 and 1. ECP2.5D has an intensity
on a continuous range between 1.0 and 255.

B. Effect of IoU on performance and error analysis

Performance with lower IoU constraints: Table III shows
the performance of PointPillars and AVOD on KITTI for
the cyclist and the pedestrian classes. PointPillars has a
higher AP3D than AVOD, even though their scores on the
moderate test split on the KITTI benchmark differ less
than one percent. However, the results we find for AVOD
are comparable to those found on the validation split in
the comparison study of [17]. Lowering the IoU threshold
increases the AP3D by a large margin. For example, the
AP3D of PointPillars on pedestrians increases from 55.8 to
77.2 (21 %).

This is further visualized in fig. 4, which shows a his-
togram of the IoU found for all true positive detections

1https://github.com/kujason/avod
2https://github.com/traveller59/second.pytorch
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Fig. 3. The overall distribution over location of pedestrians and cyclists in both the KITTI and ECP2.5D dataset as a log plot. In all figures, the egovehicle
is positioned at (0, 0), looking upwards. Each pixel in the image corresponds to a 1x1 square meter area. The darkest blue region indicates areas with
zero pedestrians.

TABLE III
AOS AND AP3D PERFORMANCE OF POINTPILLARS (PP) AND AVOD,
TRAINED ON KITTI AND EVALUATED ON THE MODERATE PART OF THE

KITTI VALIDATION SPLIT.

Pedestrian Cyclist

IoU AP3D AOS AP3D AOS

PP

0.5 55.8 27.0 58.5 5.8
0.4 71.5 34.5 63.7 6.9
0.3 76.5 37.1 64.9 7.1
0.2 77.1 37.4 66.0 7.2
0.1 77.2 37.5 66.0 7.2

AV OD

0.5 41.2 32.3 35.1 34.8
0.4 50.0 38.3 36.3 35.9
0.3 52.5 40.1 36.3 35.9
0.2 52.7 40.2 36.3 35.9
0.1 52.7 40.3 36.3 35.9

at an IoU threshold of 0.1. This histogram shows that for
pedestrians more than 15% of the detections of PointPillars
and 10% of the detections of AVOD had an IoU between
0.4 and 0.5, just outside the normal IoU threshold. A similar
effect is seen for cyclists, albeit less strongly.

The upper bound of the AOS is the AP3D, as mentioned
in section III-B. Table III shows that even though the general
detection accuracy of AVOD is lower than PointPillars, its
AOS is almost perfect, especially for cyclists. The AOS of
PointPillars is far worse than the AOS noted on the online
KITTI benchmark. A closer inspection of the distribution
of the orientation error (fig. 5) shows that for PointPillars,
the orientation error peaks around 0 or 180 degrees. In the
paper of PointPillars, the authors state that the orientation
loss used cannot distinguish between flipped boxes, for
which they use an additional binary classification loss. The
orientation errors of PointPillars shown in fig. 5 seem to
indicate that while the original overall orientation loss works
as expected, there might be an implementation issue with the
binary classification loss in the codebase of SECOND. As for
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Fig. 4. PointPillars and AVOD trained on KITTI: a histogram of what
fraction of true positive detections had what IoU (IoU threshold of 0.1).
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Fig. 5. PointPillars and AVOD trained on KITTI: A histogram of the
orientation error. The arrows indicate the fraction of detections of the two
bars outside of the y axis range. Most orientation errors lie either between
-40 and 40 degrees, or between 140 and -140 degrees.

AVOD, almost all of the orientation estimates indeed have
an error closer to 0 degrees as was expected from their AOS.

Error analysis of bounding box estimation: Figure 6
shows the error made in position and size of the predicted
bounding boxes on pedestrians by PointPillars. The smallest
errors are made on the x and the z estimation: the lateral
and longitudinal position. The largest error is made on the
width and length estimation. These depend on the stride of a
pedestrian, as well as the location of their arms, which can
be difficult to infer at larger distances.
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Fig. 7. PointPillars trained on KITTI: The localization error made by true
positive detections of pedestrians, from a bird’s eye viewpoint. Of the true
positive detections with an IoU of over 0.5, 1462 out of 1494 detections
lie within a radius of 15 cm. Of the true positive detections with an IoU
between 0.1 and 0.5, 349 out of 478 lie within that radius.

The relatively small error in x and the z position (essen-
tially a top-down position estimate) is visualized in fig. 7.
It shows the x and z position error made for the true
positive detections for the original IoU threshold, as well
as the detections between an IoU of 0.1 and 0.5. A lot of
the detections with an IoU below 0.5 are still accurate at
estimating the position. For an IoU threshold of 0.5, nearly
all of the true positive detections (1462 of the 1494) lie
within a radius of 15 cm. When looking at the detections
found with an IoU threshold of 0.1, a total of 1811 detections
lie within a radius of 15 cm. In other words, using a radius
of 15 cm for as a metric to determine true positives instead
of an IoU of at least 0.5 shows an increase in detections of
23 %. The same data is put more succinctly in fig. 8, with
cyclists added as well. It shows the amount of true positive
detections which fall below a specific Euclidean position
error. Cyclists see a smaller benefit, but as their annotated
bounding boxes are larger, it is possible to make a larger
position error without affecting the IoU as much.

Accuracy evaluation using fixed bounding boxes during
training: The relatively large errors in width and length
suggest that these two 3D object detectors are not able to
properly estimate these. To investigate the influence of the
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TABLE IV
AP3D PERFORMANCE OF POINTPILLARS (PP) AND AVOD FOR TWO

IOU THRESHOLDS, EVALUATED ON THE MODERATE PART OF THE KITTI
VALIDATION SPLIT. THE NETWORKS WERE TRAINED ON THE ORIGINAL

KITTI GROUND TRUTH (ORIG.) OR THE GROUND TRUTH WITH FIXED

BOUNDING BOX DIMENSIONS (FIXED).

Pedestrian Cyclist

IoU Orig. Fixed Orig. Fixed

PP

0.5 55.8 54.6 58.5 62.6
0.1 77.2 73.3 66.0 68.1

AV OD

0.5 41.2 46.0 35.1 35.5
0.1 52.7 59.6 36.3 38.8

bounding boxes dimensions, we train on a version of the
KITTI dataset train split where we fix the dimensions of each
VRU. The dimensions are fixed to the median dimensions
of their respective class. Then, we evaluate on the original
KITTI dataset validation split with the correct dimensions.
See Table IV. Where at an IoU of 0.5, the performance of
PointPillars on the pedestrian class drops with 1.2 %, the
performance of the cyclist class even increases with 3.9 %.
Next to that, AVOD shows an increase for both the pedestrian
and the cyclist class.

C. Cross-dataset Evaluations

To see how well each dataset generalizes, we train both
networks on the one dataset and evaluate them on the
other. Because the original PointPillars uses the intensity
information of the points in the point cloud as well, we
train it once with this intensity information present, and once
without. AVOD does not use the intensity information, and
therefore only needs to be trained once on each dataset. To
ensure the datasets are compatible, we linearly rescaled the
LiDAR intensity values in each dataset to the same range.

Table V shows the resulting AP3D. PointPillars using
LiDAR intensity data and the (“native”) training sets, cor-
responding to the datasets tested, has the best performance
on both datasets. When not using LiDAR intensity data,
PointPillars’ performance slightly drops, but still clearly



TABLE V
AP3D PERFORMANCE OF POINTPILLARS (PP) AND AVOD FOR AN IOU
OF 0.1 ON THE MODERATE VALIDATION SPLIT OF KITTI AND ECP2.5D.

BOLD INDICATES HIGHEST PERFORMANCE IN THAT COLUMN.

AP3D

Trained network ECP2.5D KITTI

with intensity :

PP on ECP2.5D 34.1 46.7
PP on KITTI 6.9 77.2

w/o intensity :

PP on ECP2.5D 32.8 55.4
PP on KITTI 26.0 67.5

AVOD on ECP2.5D 26.8 34.0
AVOD on KITTI 5.0 52.7

outperforms AVOD on both datasets, when using the native
training sets. Performance of both methods was significantly
lower on ECP2.5D vs. KITTI,

When non-native training sets are used, performances de-
grade significantly for both methods, both when moving from
KITTI to ECP2D, and vice versa. The resulting performance
degradation for PointPillars is less severe when the LiDAR
intensity data is not used. More research is needed to improve
cross-domain adaptation (e.g. [29]).

V. CONCLUSION

This paper presented an experimental study on 3D person
localization in traffic scenes, on the basis of monocular vision
and LiDAR data. In experiments on KITTI, we found that
whereas headline results (AP3D) results might seem low, the
3D box center localization accuracies are in fact quite high.
The errors lowering AP3D are mostly related to the estimates
of the bounding box extents (especially, width and length).

PointPillars clearly outperformed AVOD (AP3D of 68%
vs. 53% and 33% vs. 27%, for KITTI and ECP2.5D re-
spectively, when not using LiDAR intensity information).
Performance of both methods was significantly lower on
ECP2.5D vs. KITTI, we attribute this to a larger prevalence
of distant persons with fewer LiDAR points in ECP2.5D.

Domain transfer experiments indicated the two datasets
have quite different biases, in the sense that training on
one and testing to the other leads to significantly degraded
performance (upwards of AP3D of 6.8%). Further research
is needed on cross-domain adaptation.
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