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Abstract. We revisit end-to-end representation learning for cross-view
self-localization, the task of retrieving for a query camera image the clos-
est satellite image in a database by matching them in a shared image
representation space. Previous work tackles this task as a global localiza-
tion problem, i.e. assuming no prior knowledge on the location, thus the
learned image representation must distinguish far apart areas of the map.
However, in many practical applications such as self-driving vehicles, it
is already possible to discard distant locations through well-known lo-
calization techniques using temporal filters and GNSS/GPS sensors. We
argue that learned features should therefore be optimized to be discrimi-
native within the geographic local neighborhood, instead of globally. We
propose a simple but effective adaptation to the common triplet loss
used in previous work to consider a prior localization estimate already
in the training phase. We evaluate our approach on the existing CVACT
dataset, and on a novel localization benchmark based on the Oxford
RobotCar dataset which tests generalization across multiple traversals
and days in the same area. For the Oxford benchmarks we collected cor-
responding satellite images. With a localization prior, our approach im-
proves recall@1 by 9 percent points on CVACT, and reduces the median
localization error by 2.45 meters on the Oxford benchmark, compared to
a state-of-the-art baseline approach. Qualitative results underscore that
with our approach the network indeed captures different aspects of the
local surroundings compared to the global baseline.

Keywords: Visual localization, cross-view image matching, image re-
trieval, end-to-end representation learning

1 Introduction

Self-localization with respect to a known map is an indispensable part for nav-
igation in mobile robotics and autonomous driving. With the rise of camera-
equipped vehicles, visual localization provides an attractive approach to abso-
lute positioning. Many visual localization methods construct a descriptor vector
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(a) Input image (b) Geo-global features (c) Geo-local features (our)

Fig. 1: We reformulate visual localization in order to exploit coarse priors from
GNSS/GPS, and thus end-to-end learn feature extractors specialized to discrim-
inate nearby locations (in the order of meters). This is reflected in the visualized
attention maps obtained by our approach (c), compared to (b) standard end-
to-end learning [29]. Our features capture the location of nearby objects. The
baseline focuses on the road, which is globally distinct, but locally ambiguous.

of a query camera image, and match those to a spatial map of descriptors. For
instance, image retrieval-based localization simply represents the query image
with a single descriptor vector, and the gallery is constructed from exemplar
images with known geographic locations. A variant that has recently drawn a
lot of attention is cross-view image retrieval-based localization [10], [16,17], [29],
[36], [40], where the gallery is constructed from aerial or satellite images while
a ground-level image is used as the query. Although this requires the construc-
tion of a shared feature space for both the ground level and satellite images,
the satellite view provides a reliable representation of the local surroundings,
plus large databases are nowadays readily available. As in other computer vision
tasks, the feature extractors and their descriptor embeddings are nowadays often
learned end-to-end [1], e.g. through a triplet loss, surpassing earlier hand-crafted
methods [2], [11, 12], [24].

In the robotics domain, localization is traditionally addressed using special-
ized sensors that provide noisy measurements of the absolute position in a fixed
global coordinate frame directly, e.g. through Global Navigation Satellite Sys-
tems (GNSS) such as GPS, and through temporal filtering with odometry infor-
mation. Unfortunately, the localization accuracy of GNSS can vary significantly
near obstructions, buildings, trees and tunnels when less satellites are visible.
The horizontal positioning error can easily reach tens of meters [3].

We observe however that there are several gaps in how the localization task is
addressed in practice in mobile robotics and autonomous driving, and the state-
of-the-art visual localization techniques based on deep representation learning.

First, while GNSS alone is not sufficiently accurate, it does provide a coarse
estimate of the absolute position. End-to-end image representation learning ap-
proaches for visual localization do not consider the presence of such localiza-
tion priors during training, and often during testing too, which does not reflect
practice. We assert that both approaches should be used together, hence we
should learn a feature representation that is locally discriminative within the er-
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ror bounds of the coarse prior, rather than globally discriminative on the entirely
mapped area, see Figure 1.

Second, existing cross-view localization benchmarks, such as the CVACT
dataset [17], split the train, validation, and test splits to different geographic re-
gions of the overall map. This means that the standard split intends to demon-
strate how well a learned feature representation generalizes to new areas, as
neither satellite nor ground images from the validation or test set are available
during training. However, in practice we can have satellite images of the test re-
gion available during training, especially for a navigation task with geo-localized
road information, which already presupposes that the target region is known.
Mapping companies may even have already collected ground images of the tar-
get region at some past date. An alternative but equally relevant question is
therefore how well a learned representation generalizes to new observations of
the same route, e.g. on a different time, day or even season.

To address the observed gaps, this paper presents the following contributions:
(i) We propose a simple but effective adaptation to the commonly used triplet
loss to learn an image representation that is specifically discriminative between
images from geographically nearby locations, rather than for distant areas. Note
that we include the term geographic to avoid potential confusion with image
local features, i.e. which represent a local pixel neighborhood. (ii) To demon-
strate the effectiveness of the approach compared to a state-of-the-art baseline,
we extend the well-known Oxford RobotCar dataset with a map composed of
satellite images to serve as a new dense cross-view localization benchmark to
test generalization across recording days. We also test on data from the existing
CVACT benchmark, for which we propose new splits. (iii) We report quanti-
tative improvements on image retrieval results and qualitatively show that the
proposed geographically local representation focuses on different structures in
the environment than the baseline.

2 Related Work

Visual localization methods can be roughly divided into three categories. Camera
pose regression [4], [13], [21], [37] uses the weights in the convolutional neural
network (CNN) to implicitly describe the map by directly learning the complex
function that converts the query image to map coordinates, but are in general
not that accurate [28]. Structure-based visual localization [26, 27], [43] relies on
extracting local image features from the query image, and matching these to
an explicit spatial map of known features. Image retrieval-based localization [1],
[10], [16], [25], [29, 30, 31], [36], [40] instead formulates the localization problem
as simply matching the query image to gallery images and use the location of
the matched gallery image as the location of the query image. Our work falls in
this third category.

Image retrieval-based localization methods consist of two key steps. The first
step is the image descriptor generation. Changes in illumination, appearance and
viewing angle create challenges for this task. A good descriptor should be robust
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against those changes and, in the meantime, should be discriminative enough to
allow distinguishing different images. The second key step is the similarity mea-
surement. Similar to the metric learning problem, we need a similarity/distance
measurement to measure how similar is the query image to the database im-
age. However, during the image retrieval, the query image needs to be compared
to every (in extreme case) image in the gallery. So, a complicated similarity
measurement is not desired w.r.t. the fast run time requirement.

Instead of learning a complex matching function [9], many recent image re-
trieval methods [1, 2], [11, 12], [24, 25], [30], [35] aim at the first key step. Those
methods usually map the image to Euclidean space and use the L1/L2 distance
or dot product as the similarity measurement for distinguishing different im-
ages. In the following we describe common approaches to build image/feature
descriptors, used in image retrieval methods.

Traditional methods do not require any feature learning process, but usually
aggregate hand-crafted local feature descriptors into a global descriptor of the
image. For example bag-of-visual-words [25], [30], VLAD [2], [11] or Fisher vector
[12], [24]. Recent works employ deep learning to obtain more informative image
descriptors. Some works [1], [5], [10], [16, 17, 18], [27], [31], [33], [36], [40] use
holistic features to construct the descriptor, and they are often more robust
against different illumination and dynamic objects. Other works [6], [14], [22,23],
[32], [34], [38], [41] try to let the network learn representative local features.
Those learned descriptors are usually more robust against view-point changes
comparing to learning on the whole image. PlaNet [39] is an exception since it
does not learn a global or local image descriptor for metric learning but treats
the image geolocalization problem as a classification problem.

One application of descriptor learning is the ground-to-aerial/satellite image
retrieval [10], [16,17], [29], [36], [40]. Due to the superior representative capabil-
ity of learned features, [40] proposes to reuse pre-existing CNNs for extracting
ground-level image features, and then learn to predict such features from aerial
images of the same location. They successfully used two separate CNNs to en-
code features from ground query images and aerial images, and matched them
in feature space.

Cross-View Matching Network (CVM-Net) [10] has a two-branch CNN archi-
tecture to encode features from ground images and satellite images separately.
It incorporates two NetVLADs to transform the features into a common space.
The final matching score of input pairs is given by the distance measurement of
two NetVLAD descriptors.

In [29] the Spatial-Aware Feature Aggregation (SAFA) network was pro-
posed, for cross-view image-based geo-localization. Notably, [29] introduces a
polar transformation pre-processing step, that warps satellite images in order to
reduce the domain gap with respect to ground images.

Still, all these representation learning approaches focused on the challenge
of learning globally discriminative localization features, without considering in
the training task that in practice a good localization prior can be obtained from
GPS and temporal filtering. Our work addresses this gap.
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3 Methodology

In this section, we first shortly describe the cross-view matching and feature
learning tasks, then summarize the common triplet loss found in the baseline
and related work, and then discuss our proposed changes to the loss.

3.1 Cross-view matching task

In the image matching approach, the objective is to select for a given query
image from the vehicle the closest image from the gallery with known geographic
coordinates. We here consider the cross-view matching problem, where the query
Gq is a ground-level (possibly panoramic) camera image from the ego-vehicle,
and the target dataset S = (S1, S2, · · · ) contains top-down satellite images of
the mapped environment. Each satellite image here shows a fixed-sized square
area of the Earth’s surface with a fixed image resolution. We assume that the
2D geographic position of the center of an image S is known, and given by
π(S) ∈ R2 in meters in the map’s coordinate system.

Matching is done by using two learned functions f(·) and g(·) to respectively
map the targets and query to an n-dimensional feature space, where the correct
target is expected to have the shortest Euclidean distance to the query. In other
words, to localize a given ground-based vehicle image Gq, the location p̂ of the

best matched target Ŝ is returned,

Ŝ = argminS∈S ||f(S)− g(Gq)||2, p̂ = π(Ŝ). (1)

In practice, f(·) and g(·) are implemented as deep convolutional neural net-
works, and trained on training data with known pairs X = {(S1, G1), (S2, G2), · · · }.
This task is typically addressed using the triplet loss.

3.2 Baseline global triplet loss

We define di,j = ||f(Si) − g(Gj)||2 as the Euclidean distance between satellite
image Si and ground image Gj in the embedding space. Ideally, the learned
embedding minimizes the positive distance term di,i between a correctly matched
satellite (Si) and ground (Gi) image pair. Meanwhile, it should maximize any
negative distance term di,j between a mismatched pair, i.e. where i 6= j. This
objective is captured by the weighted soft-margin triplet loss, of which we can
formulate two versions,

l1(i, j) = log(1 + eγ(di,i−di,j)), (satellite-to-ground) (2)

l2(i, j) = log(1 + eγ(di,i−dj,i)), (ground-to-satellite) (3)

where γ is a scalar parameter to adjust the gradient of the loss. The two versions
differ in whether we select a mismatched ground image, Eq. (2), or satellite
image, Eq. (3), to form the negative term.
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For a minibatch B = (P1, P2, ..., PN ) ⊆ X of N pairs, the baseline implemen-
tation [29] computes the final loss as

L(B) =
1

2N(N − 1)

N∑
i=1

N∑
j=1

∧
j 6=i

l1(i, j) + l2(i, j). (4)

These loss terms can be efficiently computed by performing the forward passes
f(Si) and g(Gi) only once for all samples, and then just computing N2 Euclidean
distances di,j of all combinations i, j.

An important aspect of the baseline is that it selects minibatches from the
training data by randomly shuffling all samples in each epoch, thus any two
pairs are equally likely to co-occur in the batches, independently if their actual
geographic coordinates are close together or far away. This triplet loss thus learns
a globally discriminative representation.

3.3 Proposed local triplet loss

In many outdoor localization applications, GNSS or temporal filtering can al-
ready provide a good estimate of the approximate location. We will assume that
the worst-case error in this coarse prior describes a geospatial circle with max. ra-
dius of r meters, and more distant locations can be discard a-priori. This leads
us to propose two effective but simple to implement adaptations to the original
loss, namely geo-distance weighted loss terms and local minibatches.

Geo-distance weighted loss terms We add a weighting term w(i, j) to the
triplet losses that adapts their contribution based on the Euclidean distance in
meters between the two geographic positions π(Si) and π(Sj),

l1(i, j) = w(i, j) · log(1 + eγ(di,i−di,j)), (satellite to ground) (5)

l2(i, j) = w(i, j) · log(1 + eγ(di,i−dj,i)). (ground to satellite) (6)

We define the weighting term using hyperparameters r and σ in meters,

w(i, j) =

{
0 iff ||π(Si)− π(Sj)||2 > r

1− e−||π(Si)−π(Sj)||22/(2σ
2) otherwise.

(7)

The weighting term considers two cases. First, it cancels any triplet term between
pairs that are further away than the maximally assumed prior localization error,
given by the maximum distance r in meters. Second, if the pairs are within the
acceptable distance, a positive weight should be assigned, though we smoothly
reduce the weight to zero if the samples are too close together. The smoothness
of this reduction is controlled by σ, see Figure 2a for an example.

We find that down-weighting the loss on geographically nearby samples is cru-
cial to learn a good representation in densely populated data sets. For instance,
consider pairs i and j with 1 meter interval then without down-weighting the op-
timization requires both minimizing the embedding distance of positive match
Si and Gi, while maximizing the embedding distance of the almost identical
satellite image Sj and ground image Gi leading to severe overfitting.
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Fig. 2: (a) Weight function of Equation (7), here shown as a function of geo-
distance ||π(Si)−π(Sj)||2 with r = 20m and σ = 5m. (b) Example of generating
a local minibatch of size 8. The black/red dots indicate geographic locations
in/outside Nr of the first picked sample (dot in center). Thick dots mark samples
picked for the batch. Edges between picked dots indicate the weight w: red for
low weight, blue for high weight, and dashed edges for distances larger than r.

Local minibatches Using the geo-distance weighted loss term, most randomly
picked pairs from the training data would have zero weight as they are likely
to be at distant geographic locations, especially when the mapped area is large.
We therefore construct local minibatches that only contain pairs from nearby
geographic locations, maximizing the impact of each sample per epoch:

1. pre-compute before training for each pair Pi = (Si, Gi) the local neighbor-
hood of pairs within geographic radius of r meters, i.e.

Nr(i) = {(Sj , Gj) | i 6= j ∧ ||π(Si)− π(Sj)||2 ≤ r} ⊂ X . (8)

2. At the start of an epoch, create a fresh set X̃ containing all training samples,
X̃ ← X , representing the still unused samples in this epoch.

3. To create a new minibatch B of size N , first randomly pick a pair Pi from
pool X̃ , and then uniformly pick without replacement the remaining N − 1
samples from the neighborhood set Nr(i). All picked samples are removed
from the epoch’s pool, X̃ ← X̃/B. Once X̃ is empty, a new epoch is started.

Note that overall each pair occurs in at most one minibatch per epoch, and
pairs without enough neighbors will not be used. Since all pairs j in the batch are
per definition within distance r from the first sampled pair i, two samples j and
j′ in the minibatch can be at most a distance of 2r meters geographically apart.
Our local minibatch formulation thus maximizes the chance that many pairs in
the minibatch are also within each other’s r-meter radius, and thus minimizes
the chance of near-zero geo-distance weighted loss terms, see Figure 2b for an
example. Contrast this to the standard minibatches, where the maximum dis-
tance is bounded by the geographic size of the mapped area, which is potentially
several orders of magnitude larger than 2r meters.
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4 Experiments

We perform various cross-view matching experiments to compare our geo-distance
weighted loss to the standard loss used in the SAFA baseline method [29]. Us-
ing two datasets, we explore generalization to new areas, generalization to new
traversals (e.g. on different days), and provide qualitative results to demonstrate
to what image properties the attention maps in our trained model responds to,
and how our approach affects localization uncertainty.

4.1 Datasets

We will first review our two adapted and novel localization benchmarks.

CVACT Dataset: CVACT [17] is a large cross-view dataset with GPS foot-
print for image retrieval. It contains 35532 ground panorama-and-satellite image
pairs, denoted as CVACT train, and 92802 pairs as CVACT test. Notably, the
validation set CVACT val of 8884 pairs is a subset of CVACT test, and [29]
reported their quantitative results on the CVACT val rather than CVACT test.
We will not directly follow the data split in [17], [29] since CVACT val is rather
sparse and distributed over too large an area, which we found trivialized local-
ization with a prior too much as it discarded all negative samples. Furthermore,
we only split the ground images into training, validation and test set, and follow
the target use-case where all satellite images are available during training.

The overview of our data split is shown in Figure 3a. In total, there are 128334
satellite images and the number of ground images is 86469, 21249 and 20616 in
training, validation and test set respectively. The data is relatively sparse, using
a localization prior of r = 100m most samples having between 25 and 100 other
pairs in their local neighborhood.

(a) CVACT (b) Oxford RobotCar

Fig. 3: (a) Our used CVACT train (blue) / validation (green) / test (red) data
splits. (b) One traversal from Oxford RobotCar, with raw GPS (red) and ground
truth RTK (green). Raw GPS can have large errors over extended periods.
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Oxford RobotCar Dataset: Oxford RobotCar [20], [19] is a dataset tar-
geted at autonomous driving which contains images, LiDAR measurements and
GPS recordings under different lighting and weather conditions collected over a
year over multiple traversals in the Oxford region. The ground truth location
is acquired via GPS-RTK. We note that the recordings reveal the limitations
of raw GNSS/GPS and the necessity of our research. As shown from a sample
traversal in Figure 3b, the raw GPS error can reach 50 meters. This highlights
the practical application of our proposed approach as a refining step on the
inaccurate GNSS/GPS measurements.

The dataset has not been used for cross-view image matching-based localiza-
tion, as it does not contain satellite/aerial images. To construct a novel bench-
mark we collected 600× 600 pixel satellite images at zoom level 20 (∼ 0.0924m
per pixel) from Google Maps Static API 1 for each ground front-viewing image.
For now, we do not target the most extreme lighting and weather condition and
select the traversals recorded in day time with label “sun” or “overcast” and
which contain both raw GPS and accurate RTK localization measurements. In
the dataset the front-viewing images are taken at 16Hz. To make sure the con-
secutive ground images do not look too similar in appearance, we sample the
images to make sure there is at least 5m between two consecutive frames in each
traversal. Finally, we acquire the corresponding satellite images centered at the
ground truth locations to formulate the ground-to-satellite pairs. In total we ac-
quire 23554 pairs from 13 traversals. We always keep all the satellite images, and
use the ground image from 11 traversals as the training set (19707), 1 traversal
as the validation set (1953), and 1 traversal as the test set (1894). In this dense
dataset, almost all images have more than 200 pairs in a r = 50m neighborhood.
Some example ground and satellite pairs are shown in Figure 4.

4.2 Network architecture and implementation details

In our experiments we apply our new loss to the baseline SAFA method for
cross-view matching of ground images to a map of satellite images [29]. We
here shortly discuss pre-processing, and the neural network architectures for the
functions g(·) and f(·) from Equation (1). 2

First, when the ground images are 360◦ panoramic views, as is the case for
the CVACT dataset, [29] proposed to use a polar image transformation as a pre-
processing step on the satellite images, as this can make the two image domains
more similar, and simplifies the learning task for the network somewhat. In our
experiments on CVACT, we will use these pre-processed images too.

Second, the networks f(·) and g(·) are both structured the same. Each net-
work starts with the first 16 layers of a VGG network as feature extractor, and
the extracted features are then input into the 8 separate spatial-aware position
embedding modules [29], the results of which are concatenated resulting in a

1 https://developers.google.com/maps/documentation/maps-static/dev-guide
2 Code of our implementation is available at https://github.com/tudelft-iv/

Visual-Localization-with-Spatial-Prior
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(a) (b) (c) (d)

Fig. 4: Four sample pairs in the proposed Oxford RobotCar cross-view localiza-
tion benchmark to highlight some local and global differences. (a) and (b) are 5
meters apart, (c) and (d) are 20 meters apart. Ground images are from different
traversals and recording days in the original dataset, resulting in variations in
cars and lighting conditions. Note that the presence of a white road marking
would be informative to globally discriminate between locations (a) and (c), but
not to locally discriminate between (a) and (b), nor between (c) and (d).

4096-length descriptor in the shared space of f(·) and g(·). During training,
both networks are optimized jointly without weight sharing.

We trained the baseline model on our proposed data split using the code
released by the author of [29]. For our method, we do not change the base-
line architecture but directly replace the loss with our proposed geo-distance
weighted loss. Similar to [29], the VGG model is pre-trained on Imagenet [7].
For the triplet loss, γ is set to 10. Both models are trained with Adam opti-
mizer [15]. On the CVACT dataset, we use a batch size of 16 for the baseline.
Since some images do not have more than 15 neighbors, we use batch size of 4
for our model, and the learning rate is set to 10−5. On the Oxford RobotCar
dataset, the batch size is set to 16. A learning rate of 5×10−5 works well for our
model, but we find that a learning rate of 10−5 works better for the baseline.
Due to the dense geospatial distribution of this dataset, many satellite images
are very similar. We employ two strategies to combat overfitting. First, we use
dropblock [8] with block size of 11 and keep probability of 0.8 for our method.
We also tested this on the baseline but did not find that it improved its results.
Second, we perform data augmentation by selecting for a query ground image a
random satellite image at a small geospatial offsets of maximally 5 meter radius
for additional robustness.

4.3 Evaluation metrics

For our main task we assume at test time a known (worst-case) prior localization
error of radius r, and thus directly discard for both methods any false negatives
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beyond r meters of the true location. Still, for reference we also review the case
when no such prior would be available (i.e. an infinite test radius).

The recall@1 is our main quantitative metric. The reported percentage in-
dicates how often the the top-1 retrieved satellite image exactly corresponds to
the test query location. On the dense Oxford RobotCar dataset, we also report
recall@x-meters, where any satellite image within that radius is counted as cor-
rect since these are nearly identical. Our maximal acceptable offset is x = 5m,
the same distance used to select the camera frames (see Sec. 4.1).

4.4 Experiment on CVACT Dataset

For the CVACT datases, we use r = 100 meters as the localization prior for
training our model, and testing. Both the baseline and our model are trained for
100 epochs, and we keep the best model for both according to validation split
performance. Results are reported on the test split.

The test split is from a region not seen during training, hence the recall@1 is
indicative how well the learned feature representation also generalizes to ground
images in new areas. With a test radius of 100m, recall@1 for our method is
74.0%, and for the baseline approach 65.0%, which demonstrates that our rep-
resentation indeed exploits the availability of a localization prior. For reference,
with an infinite test radius (no prior), our recall@1 is 54.5% compared to 58.4%
for the baseline. As expected, in this case our model perform indeed somewhat
worse than the globally trained baseline. Still, in real world applications where a
prior is feasible, this suggests our model outperforms the baseline by 9% points.

To provide a more intuitive view of the difference of the behaviour of the
baseline and our model, we visualized the location heat map of a given query
using the similarity score provided by the models during inference. As shown in
Figure 5, our model is less certain outside the prior area, but it is capable to
localize the image along a road, where the baseline shows high uncertainty.

The advantage of our model comes from the geographically local representa-
tion it used. We verified this by comparing the encoded features from the baseline
and our model. Similar to [29], we follow [42] to back-propagate the spatial em-
bedding maps to the input image to show where the model extracts features
from. As shown in Figure 6, our model pays attention at poles and streetlights.
Such objects are repeated at many different places but they are quite useful in
distinguishing other images along this road. The baseline model, on the other
hand, ignores these objects and pays more attention on the road structure, which
is more useful in finding out the global location.

4.5 Experiment on Oxford RobotCar Dataset

On the Oxford RobotCar dataset, the baseline and our model are trained for 200
epochs. Since the images are distributed much denser here, we can use a more
realistic hypothetical GPS prior with the location uncertainty at r = 50 meters.

Table 1 summarizes the image matching results. Our model surpasses the
baseline by a large margin when tested with location prior of 50 meters. The
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(a) Geo-local representation (ours) (b) Geo-global representation (baseline)

Fig. 5: Example of localization heat maps on CVACT dataset. Each dot repre-
sents a satellite image and the ground truth location is indicated by the cross in
the heat map. Darker colors indicate smaller embedding distance between the
satellite images at those locations and the ground query taken at the center lo-
cation. The circle indicates the local neighborhood with 100m radius, the boxed
image the surrounding 1km2 area. Within the local neighborhood, our approach
results in a single peak, while the baseline distribution is more spread.

satellite images are densely distributed along the roads, and there are on average
26 satellite images within a 5 meter neighborhood. Therefore our model can
successfully locate over 99% of query ground images in the test split.

Surprisingly, our model also shows better result in recall@1,1m,2m,3m than
the baseline without location prior. A possible reason is that images outside
the prior area do not share common local features with the ground truth satel-
lite images. Consequently, our model gains global localization ability with those
prominent features. Besides, as seen in Figure 7c, the localization uncertainty
of the baseline approach barely benefits from discarded negatives outside the
localization prior. This validates our original hypothesis that exploiting avail-
able localization priors during training directly improves the utility of the learnt
representations.

Test Radius 50m infinite (no prior)

Recall@ 1 1m 2m 3m 4m 5m 1 1m 2m 3m 4m 5m

Our method (%) 8.9 54.7 78.0 89.3 95.1 99.2 5.4 34.1 46.6 52.4 55.6 57.7
Baseline [29](%) 2.4 22.3 35.9 47.3 56.2 70.2 2.4 22.3 35.9 47.3 56.2 70.2

Table 1: Recall comparison on Oxford RobotCar (best results in bold).

Many image retrieval-based localization methods do not report a metric eval-
uation of their localization capability due to the sparsity of the datasets. We re-
port the distance error of geolocation of the top-1 retrieved satellite image from
our model and the baseline on the Oxford RobotCar dataset in Table 2. With
50 meter location prior, our model achieved a median localization error of 0.86
meters on the test split, which is 2.45 meters lower than the baseline.
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(a) Input satellite and ground image

(b) Geo-local attention maps (ours)

(c) Geo-global attention maps (baseline)

Fig. 6: Visualized Back-propagated Encoded Feature [42] attention maps for two
CVACT inputs. Saturated red/blue areas indicate strong positive/negative ac-
tivation in the maps, bright areas indicate low absolute activation.

Top1 distance median 80%quantile 90%quantile 95%quantile mean

Our method (meter) 0.86 2.13 3.07 3.97 1.27
Baseline [29] (meter) 3.31 5.44 6.74 9.63 3.62

Table 2: Geo-distance error of top-1 result on Oxford RobotCar (best in bold).

To provide more intuition about how the baseline and our models work on
this novel denser dataset, we visualized the localization heat map on the regular
grid of satellite images in Figure 7. In Figure 7, the cross indicates the center
of the circle, which is also the ground truth location. Notice that the ground
truth location is always not on the grid point. The color means the probability
of the query image located at that grid point. The darker the color the higher
the probability. In most of cases, the baseline is quite discriminative globally,
but has local uncertainty in around 20 meters by 20 meters area. For our model,
although it has no global localization ability, it is more accurate in local area.

5 Conclusions

Our experiments show that there is a clear quantitative and qualitative difference
between learned image representations that must distinguish between either only
geographically nearby locations, i.e. a ‘geo-local’ representation, or that must
also distinguish between geographically distant locations, a ‘geo-global’ represen-
tation. While previous work only focused on learning geo-global representations,
we have shown that a geo-local representation can already be obtained with easy
to implement adjustments to the triplet loss. We find an improvement of 2.45
meters and 2.35 meters in terms of median and mean localization accuracy given
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(a) Satellite image (b) Ours (full map) (c) Baseline (full map)

(d) Ours (local) (e) Baseline (local) (f) Ours (local grid)(g) Baseline (l. grid)

Fig. 7: Example localization heat maps comparing our method to the baseline in
the Oxford RobotCar benchmark, the circle marks the r = 50 meter test radius
around the query. In the heat maps, darker colors indicate smaller embedding
distance between the the satellite images at those locations and the ground
query. (a) Satellite image of the query. (b), (c) Response to the full map. Our
approach also shows matches outside the test radius, since those are ignored
during training and testing. The baseline matches the same region as the coarse
prior, adding little more information. (d), (e) Within the test radius, our method
has less uncertainty. (f), (g) Matching satellite images at regular grid locations
reveals the structure of the learned embedding in more detail.

a weak localization prior during inference. Our qualitative visualizations show
that the proposed modifications result in different attention patterns. In partic-
ular, our method focuses on surrounding trees and lamp posts, which would be
at distinct positions when moving only a few meters away. The baseline global
approach instead focuses on the road layout that distinguishes distant map re-
gions, but is less discriminative for nearby locations. The proposed geographic
localized triplet loss is general, and in future work we will investigate how it
affects other learned map representations.
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