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Multi-class Road User Detection with 3+1D Radar
in the View-of-Delft Dataset
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Abstract—Next-generation automotive radars provide eleva-
tion data in addition to range-, azimuth- and Doppler velocity.
In this experimental study, we apply a state-of-the-art object
detector (PointPillars), previously used for LiDAR 3D data,
to such 3+1D radar data (where 1D refers to Doppler). In
ablation studies, we first explore the benefits of the additional
elevation information, together with that of Doppler, radar cross
section and temporal accumulation, in the context of multi-
class road user detection. We subsequently compare object
detection performance on the radar and LiDAR point clouds,
object class-wise and as a function of distance. To facilitate our
experimental study, we present the novel View-of-Delft (VoD)
automotive dataset. It contains 8693 frames of synchronized and
calibrated 64-layer LiDAR-, (stereo) camera-, and 3+1D radar-
data acquired in complex, urban traffic. It consists of 123106
3D bounding box annotations of both moving and static objects,
including 26587 pedestrian, 10800 cyclist and 26949 car labels.
Our results show that object detection on 64-layer LiDAR data
still outperforms that on 3+1D radar data, but the addition of
elevation information and integration of successive radar scans
helps close the gap. The VoD dataset is made freely available for
scientific benchmarking.

Index Terms—Object Detection, Segmentation and Categoriza-
tion; Data Sets for Robotic Vision; Automotive Radars

I. INTRODUCTION

RADARS are often used in intelligent vehicles because
they are relatively robust to weather and lighting condi-

tions, have excellent range sensitivity, and can directly measure
objects’ radial velocities at a reasonable cost. Traditional
automotive radars (2+1D radars) output a sparse point cloud
of reflections called radar targets. Each point has two spatial
dimensions, range r and azimuth α, and a third dimension
referred to as Doppler, which is the radial velocity vrel of the
target relative to the ego-vehicle [1]. In recent years, develop-
ments in both radar technology and proposed algorithms have
made it possible to use these radars for road user detection
[2][3][4][5][6]. Despite these improvements, the sparsity of
point clouds provided by traditional automotive radars is still
a bottleneck in object detection research. Due to their small
number of points, it is challenging to regress accurate 2D
bird’s-eye view (BEV) bounding boxes, especially for smaller
objects such as pedestrians. Furthermore, the lack of elevation
information (i.e., the height of the points) makes it nearly
impossible to infer the height and vertical offset of objects.
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Fig. 1: Example scene from the View-of-Delft (VoD)
dataset. Our recordings contain camera images, LiDAR
point clouds (shown here as lines of small dots), and
3+1D radar data (shown as large dots), along with accurate
localization information and 3D bounding box annotations
(cyclist/pedestrian class labels are colored red/green).

Unlike LiDAR based detectors, most 2+1D radar based object
detection methods do not regress bounding boxes either in 2D
(BEV) or in 3D, but instead perform semantic or instance seg-
mentation of the 2+1D radar point clouds [3][5][7][8][9][10].
Bounding box regression on sparse radar point clouds remains
challenging since the objects usually only have a few points on
them, providing little spatial information on the exact location
and extent of the true bounding box. The latest improvement
in automotive radar technology, 3+1D radars may help to
overcome these limitations. Unlike traditional automotive
radars, 3+1D radars have three spatial dimensions: range, az-
imuth, and elevation, while still providing Doppler as a fourth
dimension. They also tend to provide a denser point cloud
[11]. With the additional elevation information and increased
density, 3+1D radar point clouds are somewhat reminiscent
of LiDAR point clouds. Therefore, these radars may be better
suited for multi-class 3D bounding box regression, and it is
intuitive to apply object detection networks developed for
LiDAR data to them. Nonetheless, 3+1D radars have only
been used for the single-class car detection task [12][13],
not for pedestrian, cyclist, or multi-class detection tasks. We
see two possible reasons for this. First, the object detection
networks regularly used for LiDAR input were not designed
with the Doppler dimension in mind, and it is unclear how
best to incorporate this additional information. Furthermore,
the measured Doppler values depend on the direction in which
the object is located, so many data augmentation techniques
often applied to LiDAR point clouds are not suitable for radar
ones. Second, while many datasets contain several thousand
3D bounding box annotations for multiple classes on LiDAR
data [14][15][16], the only publicly available detection dataset
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[11] with 3+1D radar data has only ∼500 frames, with fewer
than 40 annotations for pedestrians or cyclists, and thus, it is
not suitable for multi-class object detection.

In this experimental study, we apply a state-of-the-art object
detector (PointPillars [17]), commonly used for LiDAR 3D
data, to such 3+1D radar data. We incorporate the Doppler
information, and explore how it influences the detection
performance. Furthermore, we investigate how elevation
information and the use of past radar scans (i.e. temporal in-
formation) increase road user detection performance. We also
discuss what kind of data augmentation methods are applicable
to 3+1D radar data. Finally, we compare our best radar based
object detection method with a PointPillars network operating
with LiDAR data, and examine the two sensors’ performance
and capabilities as a function of class and distance.

To facilitate our experimental study, we introduce the View-
of-Delft1 (VoD) dataset, a multi-sensor automotive dataset for
multi-class 3D object detection, see Figure 1.

II. RELATED WORK

A. 2+1D radar based multi-class object detection

Traditional automotive radars have been used for multi-
class road user detection in various ways, such as using
clustering algorithms [2][7], convolutional neural networks
(CNNs) [3][4][22], or point cloud processing neural networks
[5][6]. The sparsity of the point cloud provided by 2+1D
radars is one of the largest bottlenecks of the radar perception
domain. Furthermore, the lack of elevation information renders
the inference of objects’ height nearly impossible. Researchers
attempted to overcome these challenges and obtain more
information in various ways, e.g.: by merging multiple frames
over time [5][22][23], using multiple radars [24], using low-
level radar data [3][4][23], or fusing radar with other sensor
modalities [25][26][27][28]. Nevertheless, there is no 2+1D
radar based method that performs multi-class 3D bounding box
regression. Instead, most existing methods perform semantic or
instance segmentation of the radar point cloud, i.e. they assign
a class label (and potentially an object id) to each radar target
individually [3][5][7][8][9][10].

B. 3+1D based multi-class object detection

Only few works have used 3+1D radars for object detection.
In [29] the authors applied such a sensor to build a static 3D
occupancy map of highway and parking lot scenes after filter-
ing out dynamic targets. Afterward, the map is semantically
segmented by image segmentation networks into the street,
curbstone, fence, barrier, or parked car classes. Currently,
the only publicly available automotive detection dataset that
contains 3+1D radar data is the Astyx dataset [11]. Despite the
small size of the dataset (∼500 frames), the authors have suc-
cessfully used it to perform 3D car detection by fusing radar
and camera with the AVOD fusion network [12]. Furthermore,
they also compared this radar-camera fusion with LiDAR-
camera fusion, although the LiDAR sensor had only 16 layers.
Finally, [13] used the combination of two spatially separated

1Named after the famous painting by Johannes Vermeer (pun intended)

low-resolution 3+1D radars to detect vehicles by a novel neural
network called RP-net, containing several Pointnet layers. To
the best of our knowledge, 3+1D radars have neither been used
for multi-class road user detection before, nor have they been
compared to high-end LiDAR sensors.

C. The use of Doppler

Doppler has been exploited in various ways before. Its
most trivial use is to distinguish static and dynamic objects
after ego-motion compensation. E.g., while some research only
keeps static radar targets [29][30][31], others use the Doppler
information to keep only moving reflections to detect dynamic
objects [3][23][32]. After first clustering the radar point cloud
to generate object proposals, basic statistical properties (mean,
deviation, etc.) of the velocity spectrum can been used for
classification [2][7]. [5] presented in an ablation study that
adding Doppler as an input channel to a Pointnet++ network
significantly improves semantic segmentation. [3] showed that
the (relative) velocity distribution contains valuable class in-
formation which can be exploited for multi-class road user
detection. With multiple radar targets originating from the
same object, it is also possible to regress the 2D velocity vector
(and thus, orientation) of the object using the targets’ measured
radial velocities as samples at different azimuth angles, as
[33] showed for cars and [34] for bikes. Thus, it has been
shown that the Doppler dimension can be beneficial in 3D
object detection in two ways: 1) classification, as classes may
have distinct velocity patterns [3][5], and 2) in orientation
estimation, as the general velocity (moving direction) of an
object is highly correlated with its orientation [33][34]. Despite
its advantages, in the few works that used a 3+1D radar sensor,
Doppler was either ignored [12], used to filter static radar
targets [29], or used as an additional input channel in a point
cloud processing network without ego-motion compensation
[13]. Although Doppler has been shown to be beneficial
for multi-class road user detection using traditional 2+1D
automotive radars, 3+1D radars have only been used for single-
class vehicle detection in the literature [13].

D. Radar datasets

Recently, several automotive datasets containing radar data
were published for various tasks such as localization [35][36],
object classification [37], or scene understanding with a sta-
tionary radar sensor [38]. In this section, we focus on detection
datasets that contain realistic recordings from a moving ego-
vehicle. To be suitable for multi-class road user detection tasks
with radar (either pure radar or sensor fusion), we argue that an
automotive dataset should meet the following requirements: 1)
use a next-generation 3+1D radar to provide both elevation and
Doppler information, 2) equip high-end sensors from the other
modalities as well, i.e., a high definition camera and a 64-layer
LiDAR, 3) provide annotations for the objects that include
their extent and orientation (2D or 3D bounding boxes), and
4) should have reasonable number of annotations for the most
important urban road users: pedestrians, cars, and cyclists.

Table I gives an overview of the currently available radar
detection datasets according to these requirements. It can be
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Name Radar data Camera LiDAR Size Vehicles Pedestrians Cyclists Annotation

RadarScenes (2021) [18] 4×2+1D, front/side mono ✗ 832k frames 326636/3889 128197/1529 61051/268 point-wise
CRUW (2021) [19] 2×2+1D, front/side stereo ✗ 396k frames 23330/- 31980/- 13347/- 2D position
RADIATE (2020) [20] 1×2D, surround stereo 32 layers 3 hours 185810/- 10970/- 499/- 2D bboxes
Zendar (2020) [21] 1×2+1D, front mono 16 layers 4780 frames 11300/- 0/- 0/- 2D bboxes
nuScenes (2019) [15] 5×2+1D, surround 6×mono 32 layers 400k frames 598849/- 217913/- 7331/- 3D bboxes

Astyx (2019) [11] 1×3+1D, front mono 16 layers 546 frames 3087/- 39/- 11/- 3D bboxes
View-of-Delft (2021) 1×3+1D, front stereo 64 layers 8693 frames 27273/429 26587/380 10800/183 3D bboxes

TABLE I: Comparison of publicly available radar detection datasets with sensors used, type of annotation, and the number
of vehicle (sum of car, truck, and bus), pedestrian, and cyclist annotations (individual annotations/unique instances, where
unique object id is available). Top/bottom sections are datasets with radars providing 2D/3D spatial coordinates.

seen that both the RadarScenes [18] and CRUW [19] datasets
contain 2+1D radar and camera data, and have large number
of annotations for all three main classes. Unfortunately, they
do not provide LiDAR data or bounding box annotations.
Furthermore, in RadarScenes, only the moving objects are
annotated. The RADIATE dataset [20] contains radar, camera,
and LiDAR data along with 2D BEV bounding box annota-
tions for all three classes. It was collected using a mechanically
rotating 2D radar, which provides a 360° dense image of the
environment, but does not output Doppler or elevation infor-
mation. The Zendar dataset [21] provides Synthetic Aperture
Radar (SAR) data using a 2+1D radar. Unfortunately, it only
has annotations for the car class. The nuScenes dataset [15]
contains data from all three sensor modalities, and they provide
a large number of 3D bounding box annotations. However,
the output of the equipped 2+1D radar sensors is considered
too sparse for radar-only detection methods by some in the
research community [1][18], and the used LiDAR sensor has
only 32 layers. Finally the Astyx dataset [11] is the only
one to use a 3+1D radar, and it also contains data from a
camera and a 16-layer LiDAR. Unfortunately, its limited size
(∼500 frames) and highly imbalanced classes (e.g., only 39/11
pedestrians/cyclists annotations) make it ill-suited for multi-
class object detection research. In conclusion, no existing
publicly available dataset satisfies all the requirements.

E. Contributions
Our main contributions are as follows:
1) We examine road user detection with 3+1D radar using

PointPillars [17], a state-of-the-art multi-class 3D object
detector commonly used for LiDAR. We investigate the
importance of different features of the radar point cloud
in an ablation study, including Doppler, RCS, and the
elevation information that traditional 2+1D automotive
radars cannot provide.

2) We compare radar based to LiDAR based detection
by training and testing on the same traffic scenes. We
show that currently point cloud based detection on dense
LiDAR still outperforms detection on radar. However,
we also find that the performance gap can be reduced
when radar data includes elevation information, and
when multiple radar scans are temporally integrated.
Additionally, the detection benefits from Doppler mea-
surements, which are unique to radar.

3) We publish the View-of-Delft (VoD) dataset, a novel
multi-sensor automotive dataset for multi-class 3D ob-

Fig. 2: Recording platform. Our Toyota Prius 2013 platform
is equipped with a stereo camera setup, a rotating 3D LiDAR
sensor, a ZF FRGen 21 3+1D radar, and a combined GPS/IMU
inertial navigation system.

ject detection, consisting of calibrated and synchronized
LiDAR, camera, and radar data recorded in real-world
traffic situations with annotations for both static and
moving road users. The View-of-Delft dataset is the
largest dataset containing 3+1D radar recordings with
∼20 times as many annotated frames as the Astyx
dataset [11], and it is the only public dataset containing
camera, (any kind of) radar, and 64-layer LiDAR data
at the same time. Although this work focuses on radar-
only methods, the dataset is also suitable for sensor
fusion, camera-only, or LiDAR-only methods due to this
sensor arrangement, and could be useful for researchers
interested in cluttered urban traffic.

III. DATASET

In this section, we present the View-of-Delft dataset, in-
cluding the sensor setup used and the annotations provided2.
The dataset was recorded while driving with our demonstrator
vehicle [39] through campus, suburb and old-town locations in
the city of Delft (The Netherlands). Recordings were selected
with a preference for scenarios containing vulnerable road
users (VRU-s), i.e., pedestrians and cyclists.

2The VoD dataset, including its annotations for the training and validation
sets, will be made freely available at intelligent-vehicles.org/datasets/view-of-
delft/ to academic and non-profit organizations for non-commercial, scientific
use. The test set annotations will be withheld.

http://intelligent-vehicles.org/datasets/view-of-delft/
http://intelligent-vehicles.org/datasets/view-of-delft/
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Fig. 3: Overall spatial distribution of cars, pedestrians, and cyclists in the dataset as a log plot. The ego-vehicle is positioned
at (0, 0), looking upwards. Each pixel corresponds to one square meter area. Darkest blue means zero annotation.

range velocity azimuth elevation

Accuracy ≤0.02 m 0.01 m/s 0.15° 0.3°
Resolution ≤0.2 m 0.1 m/s 1.5° 1.5°

TABLE II: Native accuracy and resolution along the four
dimensions of our radar sensor configuration. On-board signal
processing provides further resolution gains.

A. Measurement setup and provided data

We recorded the output of the following sensors: a ZF
FRGen21 3+1D radar (see Table II for specifications, ∼13
Hz) mounted behind the front bumper, a stereo camera
(1936 × 1216 px, ∼30 Hz) mounted on the windshield, a
Velodyne HDL-64 S3 LIDAR (∼10 Hz) scanner on the roof,
and the ego vehicle’s odometry (filtered combination of RTK
GPS, IMU, and wheel odometry, ∼100 Hz). All sensors were
jointly calibrated following [40]. See Figure 2 for a general
overview of the sensor setup.

We provide the dataset in synchronized “frames” similar
to [14], consisting of a LiDAR point cloud, a rectified mono-
camera image, a radar point cloud, and a transformation
describing the odometry. Timestamps of the LiDAR sensor
were chosen as “lead”, and we chose the closest camera, radar
and odometry information available (maximum tolerated time
difference is set to 0.05 seconds). The frames are sequential in
time with 10 Hz (after synchronization) and they are organized
into clips with an average length of ∼40 seconds. The LiDAR
and radar point clouds are ego-motion compensated, both
for ego-motion between the capture of LiDAR/radar and
camera data, and for ego-motion during the scan (i.e., one
full rotation of the LiDAR sensor). Our dataset follows the
popular KITTI dataset [14] both in the defined coordinate
systems (see Figure 2) and in the file structure. The main
advantage of this choice is that several open-source toolkits
and detection methods are directly applicable to our dataset.
In addition to this synchronized version of our dataset, we
also make the “raw” asynchronous recorded data available,
including all radar scans at 13 Hz, and rectified camera
images at 30 Hz from both the left and right cameras. This
can benefit researchers seeking richer temporal data for
detection, tracking, prediction, or other tasks.

B. Annotation

Any object of interest (static or moving) within 50 meters
of the LiDAR sensor and partially or fully within the camera’s
field of view (horizontal FoV: ±32°, vertical FoV: ± 22°)
was annotated3 with a six degree of freedom (6 DoF) 3D
bounding box. 13 object classes were annotated, see Table III
for their object count. For each object, we also annotated the
level of occlusion for two types of occlusions (“spatial” and
“lighting”) and an activity attribute (“stopped”, “moving”,
“parked”, “pushed”, “sitting”). Furthermore, same physical
objects were assigned unique object ids over frames to
make the dataset suitable for tracking and prediction tasks.
Annotation instructions with detailed descriptions of the
classes and attributes will be shared along with the dataset.

IV. METHODOLOGY

This work uses PointPillars [17] as the baseline state-of-the-
art multi-class object detector. While PointPillars is typically
trained on LiDAR data, we instead train it on 3+1D radar
point clouds. In this section we detail the available features of
the radar input, and describe how to encode Doppler. We also
discuss data augmentation techniques and describe temporal
merging of multiple radar scans.

A. 3+1D radar point clouds and Doppler encoding

The 3+1D radar outputs a point cloud with spatial, Doppler
and reflectivity channels for each scan, giving a total of five
features for each point: r range, α azimuth, θ elevation, vrel
relative radial velocity, and RCS reflectivity. Since most point
cloud based object detectors use Cartesian coordinates, we also
transform the radar point cloud: p = [x, y, z, vrel, RCS],
where p denotes a point, and x, y, z are the three spatial
coordinates with x and y axes pointing forward and left re-
spectively w.r.t. the vehicle, see Figure 2. Compensated radial
velocity is a signed scalar value denoted by vr, describing the
ego-motion compensated (i.e. absolute) radial velocity of the
point. To obtain it, we perform ego-motion compensation for
vrel by eliminating the motion of the sensor that comes from

3Annotation was done by understand.ai, a subsidiary of DSpace

https://understand.ai
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car pedestrian cyclist rider unused
bicycle

bicycle
rack

human
depiction

moped
or scooter motor other

∑
# objects 26949 (21.9%) 26587 (21.6%) 10800 (8.8%) 12809 (10.4%) 24933 (20.3%) 12025 (9.8%) 370 (0.3%) 5403 (4.4%) 629 (0.5%) 2601 (2.1%) 123106
# unique obj 423 (22.6%) 380 (20.3%) 183 (9.8%) 222 (11.8%) 372 (19.8%) 156 (8.3%) 10 (0.5%) 80 (4.3%) 13 (0.7%) 36 (1.9%) 1875
% moving 7.2% 73.2% 96.1% 95.5% 0.7% 0.0% 0.0% 10.7% 59.9% 34.5% 37.4%

TABLE III: Dataset statistics: number of annotated objects (top), number of unique objects (middle), and percentage of moving
objects (bottom), per class. The ratios compared to the whole dataset are given in brackets. The “other” column combines the
classes ride other, vehicle other, truck, and ride uncertain.

both the translational and rotational movement of the ego-
vehicle. Examples of such encoding of Doppler for multi-class
object detection include [3] and [5]. vr was used as additional
decoration for the radar points and it was normalized
feature-wise to have zero-mean and unit standard deviation.

B. Accumulation of radar point clouds
We experiment with incorporating multiple radar scans in

our object detector similar to what [15] has been done for
LiDAR and [5] for 2+1D radar data. Aside from the advan-
tage of richer point clouds, merging also provides temporal
information, which may help object detectors not only in
localization but in classification as well. Accumulation is
implemented by transforming point clouds from previous scans
to the coordinate system of the last scan and appending a scalar
time id denoted by t to each point indicating which scan it
originates from. E.g., a point from the current scan has a t = 0,
while a point from the third most recent scan has a t = −2.
The encoder includes this time id as an extra decoration for
the radar points. Note that a “scan” is not the same as a
“frame” defined in Section III. While radar point clouds in
the frames are synchronized with the LiDAR sensor, here we
merge the last scans received from the radar independently of
other sensors.

C. Data augmentation
Not every data augmentation method used in LiDAR re-

search is directly applicable to radar point clouds since the
vr measured by the radar should remain correlated with the
angle at which the object is observed. The same object with the
same kinematics (speed and direction) would be detected with
different velocity measurements at a different azimuth or ele-
vation angle, i.e., after being translated during augmentation.
Similarly, it is not possible to rotate the ground truth bounding
boxes and the points within them locally (around their vertical
axis), as this changes the radial component of the object
velocity in an unknown way. Finally, rotating the radar point
cloud around the sensor (e.g., around its vertical axis) does
not affect the measured relative radial velocities. However, this
is not true for the ego-motion compensated radial velocities,
since the compensation uses the angles between the motion
vector of the radar and the direction of the objects. Therefore,
commonly used augmentation methods such as translation and
rotation of the point cloud or rotation of the ground truth boxes
can even be detrimental in the case of radar point clouds.
However, mirroring the point cloud to the longitudinal axis and
scaling are applicable, as the (absolute) observation angles of
radar points do not change. Note that augmentation by scaling
is only valid if the origin is the radar sensor itself.

V. EXPERIMENTS

We consider object detection performance on three object
classes: car, pedestrian and cyclist. The spatial distributions of
these classes are shown in Figure 3. Unlike [3][5][18][23], we
considered both static and moving objects in our experiments.
We split the dataset into a training, validation, and testing set
in a ratio of 59%/15%/26% such that frames from the same
clip will only be present in one split. The clips are assigned
to splits such that the number of annotations (both static
and moving) of the three main classes (cars, pedestrians, and
cyclists) are proportionally distributed among the splits.

We use two performance measures following the KITTI
benchmark [14]: Average Precision (AP) and Average
Orientation Similarity (AOS). For AP, we calculate the
intersection over union (IoU) of the predicted and ground truth
bounding boxes in 3D, and require a 50% overlap for car, and
25% overlap for pedestrian and cyclist classes as in [14]. Mean
AP (mAP) and mean AOS (mAOS) are calculated by averaging
class-wise results. We report results for two regions: 1) the
entire annotated region (camera FoV up to 50 meters) and 2) a
more safety-relevant region called “Driving Corridor”, defined
as a rectangle on the ground plane in front of the ego-vehicle
as [−4 m < x < +4 m, z < 25 m] in camera coordinates.

In our experiments, we will refer to several sensor data
and feature combinations: PP-LiDAR is PointPillars trained on
LiDAR data, with the 4 typically used input features: spatial
coordinates and intensity. This method will serve as a baseline
for our radar-LiDAR comparison experiment. PP-radar is also
a PointPillars network, but trained on 3+1D radar data with all
5 features, using spatial coordinates, reflectivity, and Doppler.
In contrast, PP-radar (no X) has the feature X removed and
is trained only with 4 features. Finally, PP-radar (N scans) is
a PP-radar using N accumulated radar scans as described in
Subsection IV-B. The implementation is built on OpenPCDet
[41]. All networks are trained in a multi-class fashion.

A. Ablation study: PP-radar

See Table IV for the performances of the various PointPil-
lars networks in our ablation study, for the entire coverage
area and within the “Driving Corridor” region. The results
show that removing the Doppler information (PP-radar (no
Doppler)) significantly degrades performance for the two VRU
classes (pedestrian: 34.9 vs. 21.3, cyclist 43.1 vs. 30.4 for the
entire annotated area). Furthermore, it hampers the orientation
estimation overall (mAOS: 30.5 vs. 22.1). The results also
show that removing either elevation information or RCS (i.e.
PP-radar (no elevation) or PP-radar (no RCS)) hurts the
performance (mAP: 38.0 vs. 31.9 vs. 36.6 for the entire
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Method Features Entire annotated area In Driving Corridor

Car Pedestrian Cyclist mAP mAOS Car Pedestrian Cyclist mAP mAOS
PP-radar (no elevation) x, y, RCS, vr 32.4 28.8 34.6 31.9 25.1 68.2 44.2 63.6 58.6 50.1
PP-radar (no Doppler) x, y, z, RCS, 35.6 21.3 30.4 29.1 22.1 67.3 31.0 58.7 52.3 41.0
PP-radar (no RCS) x, y, z, vr 33.9 33.1 42.7 36.6 30.3 66.8 45.3 67.2 59.8 55.6
PP-radar x, y, z, RCS, vr 35.9 34.9 43.1 38.0 30.5 74.1 47.8 67.1 63.0 56.8

PP-radar (3 scans) x, y, z, RCS, vr, t 44.4 40.4 54.2 46.3 39.1 78.4 56.9 76.6 70.6 67.1
PP-radar (5 scans) x, y, z, RCS, vr, t 44.8 42.1 54.0 47.0 39.6 78.8 59.2 76.1 71.4 68.2

PP-LiDAR (LiDAR) x, y, z, intensity 75.6 55.1 55.4 62.1 49.4 90.8 71.4 82.5 81.6 70.3

TABLE IV: Results for all tested methods on the entire annotated area and within the “Driving Corridor” only. Top: Ablation
study of radar features. Middle: study of temporal information. Bottom: LiDAR based detector. Bold face highlights best radar
results per section. All class-specific columns involve AP calculated with a 3D IoU (0.5 for car, 0.25 for pedestrian/cyclist).
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Fig. 4: Performance of PP-LiDAR (dashed, diamond) and PP-
radar (solid, circles) over distance for each class (3D IoU=0.5
for car, IoU=0.25 for pedestrian/cyclist).

annotated area). Finally, we examined whether including radar
targets from previous scans to provide temporal information
makes a significant difference. We trained and evaluated two
additional networks using points from the last three and five
scans, respectively, to create PP-radar (3 scans) and PP-
radar (5 scans). Adding further scans increased the overall
performance (mAP: 38.0 vs. 47.0 for single/five scans) and
improved orientation estimation (mAOS: 30.5 vs. 39.6 for
single/five scans).

Examples of correct and incorrect detections by PP-
radar are shown on Figure 6 and 7 for all road user classes.

B. Performance comparison: PP-radar vs. PP-LiDAR

We subsequently compare the object detection performance
of PP-radar and PP-LiDAR, see Table IV. PP-LiDAR outper-
formed PP-radar in all three classes by a clear margin (mAP:
62.1 vs. 38.0). The relative performance gap decreases when
we consider only the “Driving Corridor” region (mAP: 81.6 vs.
63.0). Figure 4 provides performance as a function of distance.
See next section for an interpretation of these results. Figure 5
shows performance as a function of required IoU overlap. An
interesting trend that can be seen is that the performance of
radar drops off earlier than LiDAR at higher IoU thresholds.
This suggests that radar correctly detects and classifies many
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Fig. 5: Performance of PP-LiDAR (dashed, diamond) and PP-
radar (solid, circles) with different 3D IoU thresholds.

objects but has difficulty determining their exact 3D position,
which hampers overall performance.

On average, PP-radar inference took 40% less time than
PP-LiDAR inference (7.8 ms vs. 12.9 ms on average measuring
only the feed-forward step).

VI. DISCUSSION

In general, object detection performance will be determined
by multiple factors: the number of 3D points lying on a
particular object of the target class, their individual positional
accuracy, their spatial configuration and additional attributes
(e.g. velocity), their saliency vs. objects of the non-target class,
and lastly, the size of the training set.

All radar based methods using Doppler performed best on
the cyclist class. In contrast to pedestrians, and especially
cars, the vast majority of cyclists in the dataset are moving,
see Table III. The circular motion of the wheels and pedalling,
plus the highly reflective metal frame near the center causes
a clear and distinctive reflection pattern that radar can more
reliably detect. On the car class the radar methods performed
more poorly relative to the large size of these objects. This can
be explained by the few moving cars in the dataset, and by the
fact that many are parked on the other side of the road or canal
at larger distances (see Figure 3), and thus have few reflections.
Figure 4 confirms that nearby cars are detected better. When
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 6: Examples of correctly detected objects by PP-radar projected to the image plane. Car/pedestrian/cyclist detections are
shown as blue/green/red bounding boxes. Dots are radar targets colored by distance from the sensor.

(a) (b) (c) (d)

Fig. 7: Examples of incorrect detections by PP-radar: (a)
merged smaller objects (two pedestrians are detected as a
single cyclist, (b) larger objects split into smaller ones (one
cyclist is detected as two pedestrians), (c) strong reflections
and clutter nearby (metal poles and high curbs) and (d) distant
objects with too few reflections (far away pedestrian).

focusing on just the safety-critical “Driving Corridor” region
in front of the vehicle, radar performs considerably better for
all classes, see Table IV. This performance is more relevant
for driver assistance or automated driving.

The comparison of PP-LiDAR and PP-radar showed that
the former has clearly higher overall performance. This can
be attributed to the much higher point density of the specific
type of 64-layer LiDAR sensor used (average number of points
in the annotated area: LiDAR: 21344, radar: 216). Also the
high viewpoint of the LiDAR sensor, on the roof of the
car, benefits object detection performance as there is less
pronounced occlusion. The radar sensor comes, however, with
clear advantages in terms of cost and ease of packaging.

Accumulating multiple radar scans was shown to yield
substantial performance improvements. This is because of
the increased point density, but presumably also because the
past scans provide temporal information, which can help
classification (change in Doppler signature over time is class-
specific, e.g., swinging limbs). Thus using multiple scans
closes the relative performance gap to LiDAR somewhat.

Compromising on object detection performance might be
acceptable if, as a result of the much lower point cloud
density, embedding on special hardware (with certain memory
and processing limitations) becomes possible. Further
improvements of radar resolution and target extraction (i.e.,
peak finding), and/or the availability of low-level data (e.g.
radar cube [3]) could further improve object detection.

VII. CONCLUSIONS

We performed an experimental study on multi-class road
user detection (PointPillars) on 64-layer 3D LiDAR data and
3+1D radar data. In ablation studies, we showed that the
addition of elevation data (as in a next-generation automotive
radar) clearly increases object detection performance (from
31.9 to 38.0 mAP). Doppler information remains essential
for radar based object detection as its removal would greatly
degrade performance (mAP 38.0 vs. 29.1). RCS information
helps too (mAP 38.0 vs. 36.6 if removed).

Results indicate that object detection on 64-layer LiDAR
data still substantially outperforms that on 3+1D radar data,
when using the same PointPillars model (mAP 62.1 vs. 38.0).
However, accumulating successive radar scans closes the gap
to LiDAR to some degree (mAP 62.1 vs. 47.0 for five radar
scans) especially in the “Driving Corridor” (mAP 81.6 vs.
71.4 for five radar scans).

For our experimental study, we introduced the View-of-
Delft (VoD) dataset, a multi-sensor dataset for multi-class 3D
object detection, consisting of calibrated, synchronized, and
annotated LiDAR, camera, and 3+1D radar data. It is the
largest dataset containing 3+1D radar recordings, suitable to
facilitate future research on radar-only, camera-only, LiDAR-
only, or fusion methods for object detection and tracking.

ACKNOWLEDGEMENT

This work received support from the Dutch Science Foun-
dation NWO-TTW, within the SafeVRU project (nr. 14667).



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2022

REFERENCES

[1] F. Engels, P. Heidenreich, M. Wintermantel, L. Stäcker, M. Al Kadi,
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Dataset: Camera and Automotive Radar with Range- Angle- Doppler
Annotations,” Int. Conf. on Pattern Recognition, pp. 5068–5075, 2021.

[39] L. Ferranti, B. Brito, E. Pool, Y. Zheng, R. M. Ensing, R. Happee,
B. Shyrokau, J. F. P. Kooij, J. Alonso-Mora, and D. M. Gavrila,
“SafeVRU: A Research Platform for the Interaction of Self-Driving
Vehicles with Vulnerable Road Users,” IEEE Intelligent Vehicles Sym-
posium, pp. 1660–1666, 2019.

[40] J. Domhof, J. F. P. Kooij, and D. M. Gavrila, “A Joint Extrinsic
Calibration Tool for Radar, Camera and Lidar,” IEEE Transactions on
Intelligent Vehicles, vol. 6, no. 3, pp. 571–582, 2021.

[41] OpenPCDet Development Team, “OpenPCDet: An open-source tool-
box for 3d object detection from point clouds,” https://github.com/
open-mmlab/OpenPCDet, 2020.

https://doi.org/10.5281/zenodo.4559821
https://doi.org/10.5281/zenodo.4559821
https://github.com/open-mmlab/OpenPCDet
https://github.com/open-mmlab/OpenPCDet

	INTRODUCTION
	RELATED WORK
	2+1D radar based multi-class object detection
	3+1D based multi-class object detection
	The use of Doppler
	Radar datasets
	Contributions

	DATASET
	Measurement setup and provided data
	Annotation

	METHODOLOGY
	3+1D radar point clouds and Doppler encoding
	Accumulation of radar point clouds
	Data augmentation

	EXPERIMENTS
	Ablation study: PP-radar
	Performance comparison: PP-radar vs. PP-LiDAR

	DISCUSSION
	CONCLUSIONS
	References

