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Abstract—This paper provides an analysis of methods used
in automotive control applications for finding the tyre forces.
An attention is given to three main classes of relevant meth-
ods: tyre-model-based, tyre-model-free, and sensor-based. After
analysis of advantages and disadvantages of each class, an
original application of the approach based on locally weighted
projection regression (LWPR) is discussed. This approach can
find combined use for both model-free and sensor-based tyre
force reconstruction.

Index Terms—tyre, vehicle dynamics, vehicle control, tyre
model, locally weighted projection regression

I. OVERVIEW OF METHODS FOR TYRE FORCE
RECONSTRUCTION

A. Introduction

The problem of tyre force reconstruction belongs to one
of the most important tasks by designing the vehicle motion
control systems. To ensure proper control on the vehicle safety,
comfort, driving efficiency and other functions, corresponding
on-board systems should handle in real-time the information
about longitudinal, lateral and vertical tyre forces. This can
be done either by use of corresponding state observers or
by direct measurement of tyre forces. The latest option is
definitely more advantageous for the system design from
practical viewpoint. However, sensor technologies for tyre
forces and torques have still various technological obstacles for
the use on mass-production vehicles. Available solutions in this
area are therefore mainly implemented on experimental and
test vehicles. As a result, the observation remains as the main
tool for tyre force reconstruction in the automotive controllers.
Here two main techniques can be identified: tyre-model-based
and tyre-model-free. Next sections provide an overview for
the most typical solutions for each class of the methods.

B. Tyre-model-based Force Reconstruction

The tyre-model-based force reconstruction represents a vir-
tual tyre sensor, which observer is using one or another tyre
models. Considering requirements to real-time operation of
virtual tyre sensors, highly precise and complex tyre models
are finding less application here, and the priority is given to
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semi-empirical and sufficiently simplified physical models of
tyre-surface interaction. As applied to longitudinal and lateral
tyre forces, widely-accepted techniques cover predominantly
the Dugoff tyre model (linear and non-linear variants) [1],
[2], [3] and the Magic Formula tyre model [4]. Few studies
are also proposed the solutions with other models of different
complexity as the Burckhardt model [5], the arctan-function-
based model [6], and TMeasy [7].

In most cases the variations of the Kalman filter (extended,
unscented and dual) are applied as the corresponding estima-
tion tools. They require a priori knowledge about relevant tyre
states as tyre longitudinal slip, tyre lateral slip, vertical load
etc. This causes certain limitations of this method. Firstly, not
all the states can be directly measured with the conventional
automotive on-board systems and, as a result, extra estimators
can be required, e.g. for the slip-related parameters. Secondly,
tyre forces are influenced by many operational factors, for
instance, by tyre inflation pressure, contact temperature, and
road surface roughness. Despite the consideration of these
and another factors reduces the tyre model uncertainty, this
increases the model complexity.

C. Tyre-model-free Force Reconstruction

The limitations of the previous class have motivated many
studies, where a tyre model is not required for the force
reconstruction. One of the main ideas behind such tyre-model-
free approach is to emulate the tyre forces as random variables.
These variables can then be embedded into a model-based state
estimator of the vehicle planar dynamics, which is used by the
vehicle motion controller.

The work [8] proposes to identify three methods for build-
ing the tyre-model-free reconstruction of the longitudinal
force: based on vehicle dynamics, based on wheel rotation
dynamics, and stochastic. The methods based on vehicle
dynamics use predominantly the vehicle acceleration sensor
information and GPS signals to derive the forces from the
longitudinal force balance equations with consideration of
driving resistance parameters [9], [10]. The methods based
on the wheel rotation dynamics require the information from
the wheel speed sensors to reconstruct the longitudinal tyre
force, for example, from wheel torque balance equations.
The corresponding examples can be found in [11], [12] and



[13]. Finally, by the stochastic methods, the forces are mainly
interpreted as random-walk or “’black-box” variables and can
be derived using different vehicle planar models [14], [15]. As
for the lateral force reconstruction, both stochastic and vehicle-
dynamics-based methods can be also applied.

The tyre-model-free force reconstruction is especially bene-
ficial in the case of uncertain road friction parameters because
an estimation of a corresponding friction scaling factor is not
required to correct the reconstructed tyre forces. Nevertheless,
this approach can have limitations in terms of complex tuning
and computations costs.

D. Sensor-based Force Reconstruction

The force sensing technology has been intensively studied
for the last decades to develop accurate, robust and inexpensive
solution. Due to the fact that transmission of forces and
moments affects all components between tire road contact
and vehicle body, all components carrying the load can be
used to force/torque measurement and reconstruction, e.g. tyre,
rim, bearing and suspension. Several approaches and their
limitations are discussed below:

a) Suspension bushing deformation: the forces transmit-
ted through the suspension bushing can be reconstructed via
direct deformation measurement using eddy-current displace-
ment sensors [16] or the estimation of the relative bushing
deformation based on acceleration measurement [17]. The
main drawbacks are complexity of the approach and the
durability of the bushings.

b) Deformation between knuckle and brake calipers:
this approach is based on the installation of a sensor bracket
with strain resistance elements between knuckle and brake
calipers to measure brake torque [18]. Only brake torque can
be reconstructed in such approach and the method performance
is temperature dependent.

c¢) Wheel force transducer: force/torque measurement is
performed by strain measurements in the wheel rim [19].
Only this method is currently applied for commercial products
(Kistler, MTS, Michigan Scientific Corporation, etc.) Although
it provides high accuracy and bandwidth, the application of
wheel force transducer as a standard vehicle sensor is too
expensive even for premium class vehicles.

d) Tyre sidewall deformation: tyre deformation measure-
ment can be used to reconstruct force using an optical position
detection sensor [20], laser-based sensor system [21], a passive
surface acoustic wave sensor [22] or by combination of a
Hall sensor and magnet [16]. The common drawback of these
approaches is the necessary adjustment and calibration after
tyre replacement.

e) Tyre inner liner accelerometer: a MEMS accelerom-
eter is located and fixed to the inner liner of the tyre
[23]. The reconstruction of longitudinal and normal forces is
demonstrated both in laboratory and road test conditions [24].
Furthermore also the measurement of lateral contact forces
was recently demonstrated [25]. The common limitations
are discontinuous measurement signal and durability of the
approach due to the relatively short lifetime of tyres.

f) Bearing displacement or deformation based: Using
the wheel-end bearing two principally different approaches can
be applied. The first approach is displacement based (relative
inner- to outer-ring displacement) using Hall effect [26], eddy-
current sensors [27] or capacitive [28] sensors. Its limitation
is that a limited number of loads can be reconstructed.
The second approach is to measure outer-ring deformation
using strain gauges [29], [30]. The measured strain should
be translated to the bearing loading using empirical methods,
e.g. least squares fitting or artificial neural networks. However,
due to nonlinear behaviour, such translation is nontrivial and
significantly affects accuracy of force reconstruction. Instead
of empirical methods, the model-based approach for the esti-
mation of bearing forces is proposed [31] using a cascaded
extended and unscented Kalman filtering. An experimental
study covering both laboratory and field tests showed that the
model-based approach led to accurate load estimates in various
conditions and outperforms the data-driven methods.

E. Summarising Remarks

The introduced short overview of basic approaches for the
tyre force reconstruction demonstrates a variety of tools, which
can be used in vehicle motion control systems. Taking into
account such factors as uncertainties of tyre models as well as
for demand on extensive test procedures for proper parame-
terisation of tyre models, the model-free reconstruction can be
considered as a more advantageous candidate. An interesting
advancement can be proposed in the case of development of
hybrid approaches, where the same analytical base can be used
both for the model-free and sensor-based reconstruction. Here
it makes sense to apply not only conventional stochastic meth-
ods but also another variants of computational intelligence
tools. One example of such an approach is discussed in next
section.

II. CASE STUDY : LOCALLY WEIGHTED PROJECTION
REGRESSION

Locally weighted projection regression (LWPR) is an al-
gorithm that supports non-linear function approximation in
high dimensional spaces [32]. The nonlinear system behaviour,
especially steady state, can be accurately captured by using
this technique.

The key idea of this method is to approximate non-linear
functions by using piece-wise linear models. The features of
LWPR are numerical robustness in high dimensional spaces
and the capability to perform incremental online learning with
the predefined learning rate.

A. The LWPR algorithm

A weighting kernel used to determine the locality is defined
in the way that computes a weight wy, ; for each data point
(z4,y;) corresponding to the distance from the centre ¢y of
the kernel within each local unit. Usually, a gaussian kernel is
chosen,

1
W, = 65510(—5(% — cx)" Dy — cx)), (1)



where D), is the distance metric that influences the size and
shape of the region of validity or receptive field (RF). It
is assumed that there are K locally linear models that are
combined to form the prediction. Each linear model calculates
a prediction y; given an input vector x. The net output is the
weighted mean of all the linear models.

Algorithm 1 shows how an incrementally locally weighted
variant of partial least squares (PLS) is used to generate linear
model parameters within the LWPR scheme. In the algorithm
I, A € [0,1] is the forgetting factor that decides amount of
the old data of the parameters used in the regression will
be forgotten. The PLS predictor adds linear projections in
an incremental fashion until the point where adding further
projections does not improve the accuracy.

The distance metric D influences the shape and size of each
RF and thus also influences the effectiveness of each local
model. This distance metric is optimized separately for each
RF using an incremental gradient descent based on stochastic
leave-one-out cross validation criterion. This is shown in the
algorithm 2.

An incremental learning system which embeds the above
update laws, and generates additional locally linear models as
and when needed is shown in algorithm 3.

B. Current state of the art

The LWPR algorithm has been used to learn the dynamic
model of a robot manipulator [33]. In comparison to other
classical learning controllers, it was reported that the LWPR
provides best performance when there is no a-priori knowledge
of the system dynamics. The application of this algorithm
for real-time robot learning has been presented in [34]. The
results demonstrates the successful application of autonomous
learning to complex robotic system. It was also concluded
that this technique, using its learning abilities outperforms
traditional control techniques. Comparison of the LWPR with
a few other regression techniques to estimate the inverse
dynamic model of a robot from measured data is demonstrated
in [35]. This is mainly done in order to capture non-linearities
arising from dynamics of hydraulic cables, actuator dynamics
or complex friction dynamics.

Regarding automotive domain, this method has been only
applied for the scaled off-road vehicle [36]. Based on the
authors’ knowledge, this paper is the first application of LWPR
for tyre force reconstruction. Taking into account the above-
mentioned advantages, it can be an interesting candidate for
tyre force reconstruction, especially, regarding steady-state
tyre properties. To evaluate the LWPR capability for tyre
force reconstruction, two main features should be discussed:
(i) capability to reconstruct tyre force based on offline training
similar to data-driven learning techniques required a large data
set; (ii) capability to learn tyre characteristic online assuming
a repeatable track, e.g. racing laps. The following discussion
is organized according to these features.

C. Offline learning

1) Pure longitudinal force reconstruction: The algorithm
is presented with training data comprising of the longitudinal

force F, behaviour with longitudinal slip . See Table I for
the parameters set during training. The longitudinal slip is set
to k € [-0.5 0.5] and the algorithm is trained with the
corresponding longitudinal force behaviour obtained from the
baseline Delft-tyre model. The LWPR model is presented with
test data and the result of reconstruction is shown in Fig. 1.
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Fig. 1. Longitudinal force reconstruction Fi(k))

TABLE I
PARAMETERS FOR LONGITUDINAL FORCE RECONSTRUCTION
Parameter Value | Unit
Normal load 4000 N
Initial distance metric (LWPR) 5000 [-1

2) Combined force reconstruction: The combined force
behaviour with longitudinal slip «, slip angle o and normal
load F, is presented as the training data set to the algorithm.
The corresponding lateral and longitudinal force behaviour
from the Delft-tyre model is used while training. The LWPR
tuning parameters and the ranges for the three inputs (x, o, F,)
are set as per Table II. The results of reconstruction are shown
in Fig. 2 and Fig. 3.

TABLE I
PARAMETERS FOR COMBINED FORCE RECONSTRUCTION

Parameter Value Unit
Normal load [2000 8000] N
Longitudinal slip [-0.5 0.5] -]

Slip angle [-15 15] deg

Initial distance metric (LWPR) | [1le+3 0 0; O le+3 0; 0 0 Se+1] [-]

D. Online learning

To analyse the online learning capabilities of the LWPR
method for tyre force reconstruction, a badly trained model as
shown in Fig. 4 is used to train the LWPR learning module
before learning commences. The model is then updated online
with the sensing force information (based on the Delft-tyre
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Fig. 3. Lateral force reconstruction Fy(k, o, F))

model) corresponding to the slip angle range used for training
and the predicted result is compared to the badly trained model
without adaptation or learning. The simulation parameters used
can be seen in Table III. It can be inferred from Fig. 4 that the
LWPR algorithm is able to learn the true tyre behaviour online
when initialized with a poor tyre model. To assess real-time
capability, simulation was conducted using dSPACE real-time
(DS1006) machine with IPG/CarMaker HIL.

A significant improvement in tyre force reconstruction, due
to online learning, can be inferred from Table IV.

Online learning performance
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Fig. 4. Online learning performance of LWPR module

TABLE III
PARAMETERS FOR ONLINE LEARNING OF LATERAL FORCE
Parameter Value | Unit
Normal load 5000 N
Initial distance metric (LWPR) 5000 [-]

Initial component-wise learning rate (LWPR) 40 [-]
Pre-factor of smoothness penalty (LWPR) 0.01 [-]
True force data input rate 100 Hz

TABLE IV
AVERAGE ERROR DURING ONLINE LEARNING OF LATERAL FORCE

Learning duration [s] | Average Error [N]
10 523.1
60 180.0

III. DISCUSSION

The paper discusses various methods for tyre force recon-
struction and summarizes three major directions: tyre-model-
based, tyre-model-free, and sensor-based approaches. Besides
the state-of-the-art overview, the application of a new method
named as locally weighted projection regression is considered
for tyre force reconstruction.

The main advantage of the considered method is a capability
to perform learning through both offline and online training.
Among various other techniques, a common approach is the
use of neural networks to estimate tyre forces [37]. However,
as stated in [36], neural networks are prone to catastrophic
forgetting which can be described as the tendency to forget
old data when fed new data from another distribution. Being
immune to this problem, LWPR is an interesting alternative.
The simulation results demonstrate that the proposed method
can be effectively used to learn steady-state tyre characteristics
with a high accuracy as well as real-time feasibility.

A possible application of this algorithm is in autonomous
racing. Since it is difficult to predict the tire behavior during



the race, online learning of the tyre properties can be consid-
ered [38]. Throughout the course of the race, the algorithm
can continuously update the tyre model in the controller
with sensor data, thereby making it adaptive to changing tire
behaviour. This is a potential method of improving tracking
performance and minimizing lap time for autonomous racing.
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APPENDIX

Algorithm 1 Incremental PLS

Given : A training point (z,y)
Update the means of input and output :
n+1 AWmzg+wz
W
ﬁn—i-l _ AW ﬁo +wy
- n+1
where W™t = AW™ + w and zf = u
Update the local model :

1. Initialize : z = z,res; =y — G5!

BO _ WO =0

2. Fori=1:r
@) 1/—”1 = \u; + wzres;
(i) s = ZTU"'H

(iii) ST = ASS!" + ws?
(iv) SR?Jrl = ASR} + wsres;
(V) SZHE = \SZI + wzs

] 1 SR H
(Vl) Bﬁ+ = SS:HA

1 Zn+1
(vii) pn+ Ssn+1

(vill) 2 = z — sp”+1

(ix) res;+1 = res; — sﬁ?“
(x) MSE = AMSE} + wres?,
Predicting with novel data :
Initialize : y = By, 2 = — g
Fori= 1k

(i) s = usz

(i) y =y + fBis

(iii)) 2 = z — spi’

SS,SR and SZ are memory terms that help perform uni-
variate regression using recursive least squares as shown in
step (vi) in the model update. Step (vii) helps regress the
projection from the current input data z and the current
projected data s. This ensures that u;,; is orthogonal to u;.
There are two important properties of the local projection
scheme. Firstly, if we have statistically independent input
variables, PLS takes only a single iteration to find the optimal
projection direction u,. This corresponds to the gradient of the
locally linear function to be approximated. Secondly, step (i)
in the model update in algorithm 1 ensures that the projection
direction is chosen by correlating the input and output data.
This results in the automatic exclusion of input dimensions
that do not contribute to the output. Finally, since the uni-
variate regressions will never be singular, there is no concern
of numerical problems in PLS.

Algorithm 2 Distance metric update

D=MTM, where M 1is upper triangular
ML= M — 5 M where the cost function to be minimized
is chosen to be,

w; 7“(351‘_*_1 i
J_sz 1Zk ST T,

sTWsy,

N
i1 D?

The first term in the cost function represents the mean leave-
one-out cross-validation error of the local model. The second

term is a penalty term which ensures that the receptive fields
do not shrink in case of huge amounts of training data.

Algorithm 3 LWPR Outline

1. Initialize the LWPR with no receptive fields
2. For every new training sample (z,y)

-For k=1:RF

(i) Calculate the activation from eq. (1)

(i1) Update according to algorithms 1 and 2

- End

- If no linear model was activated by more than wgep,
create a new RF with r = 2,c =, D = Dy
- End

End

The major assignment within the LWPR framework consists
of determining the number of local models k, computing
the regression coefficient 3, and the weight wy for the k*"
locally linear model. Additionally, it consists of regulating the
local model’s receptive field. In the algorithm 3, a threshold
Wgen 1s predefined. This determines when to create new
receptive fields. The closer this value is to 1, the more overlap
local models will have, but will be more costly to compute.
The distance metric D is initialized to Dgcy and is usually
diagonal.



