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Abstract — Many studies have been recently exploited to 

discuss the path following control algorithms for automated 

vehicles using various control techniques. However, path 

following algorithm considering the possibility of automated 

vehicles with rear wheel steering (RWS) is still less investigated. 

In this study, we implemented nonlinear model predictive 

control (NMPC) on a passenger vehicle with active RWS for 

path following.  The controller was compared to two other 

variations of NMPC where the rear steering angle is 

proportional to the front or fixed to zero. Simulation results 

suggested that the proposed controller outperforms the other 

two variations and the baseline controllers (Stanley and LQR) 

in terms of accuracy and responsiveness. 
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I. INTRODUCTION 

In recent years, automated driving has attracted 
considerable attention due to its potential in improving road 
safety and mobility efficiency. According to Kyriakidis et al. 
[1], most people believe that fully automated driving could 
occupy half the market share before 2050. However, there 
remain ongoing challenges to reach fully automated driving at 
the moment. Great attention has been paid by to tackle the 
technical problems therein.  

One of these problems is to fulfill the path following task 
with by developing steering control methods. As summarized 
in [2] and [3], multiple methods have been developed in the 
past. Some steering laws (e.g., Stanley and pure pursuit) are 
derived from the geometric characteristics, whereas other 
studies adopt control methods including PID, fuzzy control, 
sliding mode control, linear quadratic regulator (LQR) and 
model predictive control (MPC).  

MPC is considered superior to other aforementioned 
control methods thanks to its advantage in handling nonlinear 
dynamic models and constraints [4]. The nonlinear model 
predictive control (NMPC) was first applied to controlling the 
steering of automated vehicles by Falcone et al. [5] in the early 
2000s. They proposed in [6] to use linear time-variant model 
to overcome the problem with numerical efficiency and in [7] 
to further include differential braking for stabilizing the yaw 
and lateral dynamics when tracking a path for emergency 
evasion. Li et al. [8] presented an MPC-based trajectory 
planning and tracking control approach for an automated 
guided vehicle and managed to achieve trajectory tracking 

accurately and smoothly. Guo et al. [9] implemented the 
MPC-based path following controller and proved satisfactory 
control performance under measurable disturbance. Yoshiba 
et al. [10] developed MPC-based steering input for lane-
change maneuver and conducted desired control performance 
with the constraint conditions.  

Apart from the control methods, various advanced vehicle 
actuators have been developed and deployed in recent years 
[11]. Among them, rear-wheel steering (RWS) is closely 
related to the control of the vehicle’s lateral and yaw motion. 
RWS allows the rear wheels to be steered in order to improve 
stability at a higher speed and to enhance maneuver ability at 
a lower speed [12], [13]. The flexibility enabled by RWS in 
modifying the vehicle’s handling characteristics has been 
considered promising [14]. Hence, RWS is expected to be 
widely equipped on passenger vehicles with SAE-level 3 and 
above automated driving system in the future.  

In this paper, we propose a novel combination of NMPC 
and RWS in an attempt to further improve the path tracking 
performance of automated vehicles. The NMPC formulation 
is based on [15] whereas the nonlinear bicycle model is 
extended to incorporate RWS. The prediction model adopts 
Dugoff model to calculate the lateral tire forces. To 
demonstrate the advantage of actively controlling the rear 
wheel angle, three variations of the NMPC were formulated, 
the first one with no RWS, the second one with a rear steering 
angle proportional to the front, and the third one with rear 
steering angle determined in the same way as front steering 
angle by optimization of NMPC. Meanwhile, we further 
adopted two baseline controllers from [16], namely the 
Stanley and LQR controller, to show the superiority of NMPC 
and RWS. 

The rest of the paper is organized as follows. An intro-
duction to vehicle model and tire model is given in section II. 
Then it is explained in section III about how the controllers 
are designed. In section IV, various simulations are carried out, 
and the results are presented and analysed. Finally, 
conclusions and future directions are pointed out in section V. 

II. VEHICLE MODEL 

A. Nonlinear Bicycle Model 

For sake of reducing the computational load, a nonlinear 
bicycle model is used for predicting the vehicle’s behavior 
(Fig. 1). The model is not capable of incorporating the lateral 
load transfer, nor the roll, pitch, or heave dynamics. The 
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controller handles the path following at constant velocity thus 
the longitudinal load transfer is also omitted. Hence, the 
vehicle dynamics are described with the following equations:  
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where m denotes the total mass of the vehicle, Izz  the yaw 
moment of inertia of vehicle body around the center of gravity, 

yFF and yRF denote lateral tire force on the front and rear 

wheels, respectively. vx , vy and r are related to the vehicle’s 

longitudinal, lateral and yaw velocity, respectively. 
Additionally, lf and lr are the distance from the vehicle center 

of mass to the front axle and rear axle, respectively. f and r 

denote the road steering angle (RWA) of front wheels and rear 
wheels, respectively.  

According to the geometric relationships in Fig. 1 and by 
using the small angle approximation, the sideslip angles of the 
front and rear tires are given by:  
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where αf  and αr  are the front and rear wheel slip angle, 

respectively.  

The equations above describe the vehicle’s motion in the 
local frame. The local states are then projected to the global 
frame using (3).   
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Where X and Y are the positions of the vehicle in global 
coordinate frame, and ψ is heading angle.  

B. Tire Model 

The Dugoff tire model is used to present the tire nonlinear 
force characteristics more accurately. The parameters have 
been tuned to closely match the simulation model. The 
example lateral forces are shown in Fig. 2. At each time step, 
the local lateral stiffnesses for front and rear axle, Cf and Cr, 
are calculated accordingly by means of linearization at the 
current sideslip angle. The lateral tire forces in the prediction 
model are then given by:  
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III. CONTROLLER DESIGN 

A. System Overview  

The structure of the path following controller is shown in 
Fig. 3. Here, the states of the plant, x(t), are measured by the 
sensors or calculated by the state estimator, and fed into the 
controller as initial state of the prediction model at each time 
step. Meanwhile, parameters related to Dugoff tire model are 
measured by virtual tire force sensors [17] to calculate the 
local lateral stiffness, which are updated in the prediction 
model of NMPC at each time step. The reference of the states 
r(t) contains information about the path to be followed. The 
optimal control problem (OCP) formulated within the NMPC 

CoG

FyR

FyF
x

f

y

X

Y

r



 

Fig. 1. Bicycle model with RWS, here is an example of parallel 

steering 

NMPC Controller

Plant 

vehicle in IPG 

CarMaker

u
*
(t) y(t)

Sensors/

State 

estimator

Dugoff tire 

model

x(t)Cf  ,Cr

r(t)

Optimization 

using ACADO 

S-function

Nonlinear 

bicycle model

Prediction
Control 

action

Initial 

state

Online 

update

Fig. 3.     Structure of NMPC-based path following controller 

Fig. 2. Tire lateral characteristics 



is solved at each time step using ACADO Toolkit [18] to 
determine the optimal control input u*(t) , which is eventually 
transmitted to the steering actuators on the front and rear axle. 

B. NMPC Controller Design 

The NMPC determines the optimal control input by 
solving an OCP at each time step. Given the reference output 
at current time step k, a cost function in the form of (5) 
evaluates whether a control sequence is desirable, based on the 
model of vehicle dynamics described in Section II. The model 
predicts the vehicle’s behavior through the prediction horizon 
of N steps ahead. Therein, x(k) = [vx vy r X Y  f r]

𝑇 

contains states while u(k) = [𝑣δ𝑓
  𝑣δ𝑟

]𝑇  denotes the control 

inputs. The last two state variables comes from the fact that, 
instead of directly commanding the steering angle, we opted 
for the steering rate as the control input. Therefore, the actual 
steering angles should be included in the state vector. Such 
choice allows the controller to generate smooth and feasible 
command for the steering actuators.  
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The cost function mainly penalizes the vehicle’s deviation 
from the reference path with positive definite matrices W and 
P for running cost and terminal cost, respectively. The 

reference state vector ( ) [ ]ref ref ref ref T

f rr k Y=     describes the 

desired states from reference path, and vector y(k) = [Y 

  f  r]T describes the output states.  uref(k)  denotes the 
reference control action and is set [0 0]T  to penalize the value 

of control action u(k) through the prediction horizon with 
weight matrix Q. Besides, constraints are set as follows 
considering the restrictions of the steering dynamics: 
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Thus, an OCP is formulated, which is to minimize cost 
function (5), subject to (1) to (4) and (6). In this study, the 
OCP is solved by ACADO Toolkit. To tackle the OCP, 
ACADO performs various nonlinear programming algorithms 
[18] at each time step according to the solver-settings. These 
OCP solving algorithms are exported as C-Code using 
ACADO Code Generation. The generated C-Code is then 
compiled to an S-function using MEX-functions of MATLAB. 
And S-function can be deployed as the control segment into 
the Simulink model.  

Based on this NMPC framework, three variations of the 
NMPC path following controllers are formulated in this 
research in order to demonstrate the benefits of actively 
controlled RWS.  

1) NMPC without RWS: In this variation, the rear steering 

rate is fixed to zero and only the front wheels are turned. The 

vehicle behaves like a conventional one. This variation 

enables a fair comparison to the existing path following 

control methods using only front wheel steering.  

2) NMPC with passive RWS: In this case, the rear wheel 

steering angle is proportional to front wheel steering angle 

and the ratio is dependent on the vehicle’s velocity. 
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 Here, k  is a tuneable parameter that should be chosen 
according to the capability of the RWS actuator. Comparing 
this variation to the one above demonstrates the contribution 
of RWS to vehicle agility and stability.  

3) NMPC with active RWS: In this variant, the rear wheel 

steering angle is derived in the same way as front wheel 

steering angle by solving the OCP online. Front wheels and 

rear wheels of the plant vehicle are steered independently to 

each other, while the front wheel steering should dominant 

like conventional passenger cars when making a turn. 

Comparing this variation to the other two, we can gain some 

insights into the worthiness of increasing computational 

complexity.  

IV. SIMULATIONS 

A. Simulation Environment 

The controllers are tested in a co-simulation setup between 
MATLAB/Simulink and IPG CarMaker. IPG CarMaker 
includes the validated multibody model of vehicle dynamics 
and Delft-tire model to ensure high fidelity. The parameters of 
the vehicle, given in Table I, correspond to a mid-size 
passenger car.  

The simulations were first carried out on a laptop PC with 
Intel® CoreTM i7-4700MQ processor and 8GB RAM and later 
on hard real-time platform dSPACE Scalexio to check real-
time feasibility. 

B. Simulated Maneuvers 

To verify the functionality of the path following 
controllers, the multiple maneuvers have been considered. In 
the first scenario, an objective vehicle with a longitudinal 
speed 60 km/h is driving at a certain distance ahead of the 
controlled vehicle with a velocity of 80 km/h in the same lane. 
If no actions are applied, a rear-end collision would happen. 
Assuming that the adjacent lane is unoccupied, the controlled 
vehicle could perform an overtake maneuver. An overtake 
trajectory is planned as follows. Parameterized Sigmoid 
curves are implemented as overtake reference path to describe 

TABLE I.  PARAMETERS OF PLANT DYNAMICS 

Symbol 
Introduction 

Description Value Unit 

m Mass of the vehicle 1644.8 kg 

Izz Body inertia around z-axis 1921.3 kg*m2 

lf Distance from front axle to CoG 1.223 m 

lr Distance from rear axle to CoG 1.527 m 

Cf Cornering stiffness of front tires 120000 N/rad 

Cr Cornering stiffness of rear tires 190000 N/rad 

 



the relationship between relative longitudinal position and 
lateral offset as adopted from [19]. One parameterized 
Sigmoid curve describes a single lane-change maneuver while 
the entire maneuver consists of two lane-changes. Hence, the 
complete trajectory consists of two sigmoid curves connected 
one after another: 
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Where,  and w are scaling factors in the longitudinal and 

lateral direction, respectively, and x denotes the longitudinal 
distance between the objective vehicle and ego vehicle 
regarding Frenet coordinate, dsafe is the safety margin for 
objective vehicle, and dc is additional overtake distance. The 
lateral reference of the entire reference path is defined as: 

 1 2

ref
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Where, yo is the original lateral offset of both vehicles 
regarding Frenet coordinate. To determine the exact time of 
executing overtaking maneuver, the criterion time to collision 
(TTC) is introduced to describe the time before collision: 
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Where, l is chosen as the typical length of a passenger car, ve 
and vo denote longitudinal velocity of ego vehicle and 
objective vehicle, respectively. By assuming the objective 
vehicle’s motion is accurately known by the controlled vehicle, 
Algorithm 1 determines the initiation of the overtake 
maneuver. Besides the reference lateral position, the reference 
yaw angle is calculated accordingly to achieve a better path 
following performance as: 
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In the second simulation scenario, the step lane-change 
maneuver is carried out with different road conditions to 
verify the designed controllers in a more critical way. 

Normally in an automated vehicle system, the reference path 
should be finely planned by front sequences. In this test 
scenario, there is a static obstacle ahead of controlled vehicle 
at the speed of 80 km/h but planning sequence of automated 
system failed unexpectedly. The step lane-change maneuver 
may be performed as an evasive maneuver, where a step signal 
of lateral offset is given to the controller to make the 
controlled vehicle suddenly change driving lane to avoid 
collision. Different road friction conditions such as dry asphalt, 
wet asphalt and asphalt with snow and ice are investigated in 
the simulation scenario.  

In the third test scenario, the three designed controllers and 
two other path following controllers based on Stanley and 
LQR respectively from the work [15] are tested to follow the 
same path, respectively. The test path is defined using a 
customized road geometry in IPG CarMaker with some 
additional customized disturbance like gust wind and various 
road friction as shown in Fig. 4. The reference information of 
desired path is obtained by road sensor, which generates 
current lateral and heading deviation between the vehicle and 
the preview point on the desired path regarding Frenet 
coordinate. The preview distance is set to 3 meters, and 
longitudinal speed is set to 30 km/h.  

C. Simulation Results  

The first simulation scenario is visualized in Fig. 5(a), 
which affirms that the overtaking trajectory and the moment 
of initiation are properly chosen. The front and rear steering 
angles are given in Fig. 5(b) and Fig. 5(c), respectively.   

As a result, it is intuitive to recognize the steering pattern 
of two adjacent lane-change maneuvers. In Fig. 5(d) we can 
observe a higher tracking accuracy achieved by combining 
NMPC with active RWS, compared to the passive- and non-
RWS variations.  

The simulation results from the step lane-change scenario 
are presented in Fig. 6. The criteria including overshoot, rise 
time and settling (within 2% range) time are adopted to 
evaluate performance of the controllers.  

The results presented in Table II demonstrate that the 
proposed variations with RWS yield quicker response in all 
friction conditions compared to the variation without RWS, 
despite the higher but still acceptable overshoot especially in  

Algorithm 1: Overtaking algorithm 

 Input:  longitudinal velocity of ego vehicle ve and  
  objective vehicle vo, time to collision TTC,  
  original lateral offset yo 

 Output: lateral reference offset refY  

1  t ← 4 

2  if 0e ov v−   then 

3        
ref

oY y  

4  else 

5        if TTC t  then 

6   
ref

oY y  

7     else 

8   1 2

ref

oY y y y + +  

9        end if 

10  end if 

 

 
Fig. 4.     Road geometry in the simulation scenario 



the low-friction case. It implies that, in the case of an evasive 
maneuver, RWS may improve the agility of the vehicle with a 
little risk of exceeding the road boundary. Compromising 
among all the criteria, the proposed controller, NMPC with 
active RWS, has the best control performance in the medium- 
and high-friction cases.  

The simulation results of the third scenario, where the 
vehicle drives on an arbitrary path, are shown as Fig. 7. All 
tested controllers are able to follow the designated path 
without exceeding the road boundary. The criteria reflecting 
the tracking accuracy, including the max, mean and standard 
deviation (SD) of the lateral and heading error, are 
summarized in Table III.  

In terms of lateral position, the proposed controller yields 
the smallest error among all the controllers. The other two 

 

(a) Difference of lateral offset 

     (b)  Front wheel steering angle (c) Rear wheel steering angle 

Fig. 6.    Simulation results of step lane-change 

TABLE II.  RESULTS OF SIMULATION: STEP LANE-CHANGE  

Test case 

Criteria 

Overshoot 

(m) 

Overshoot 

(%) 

Rise 

time(s) 

Settling 

time(s) 

arws_μ=0.3 0.39 13.00 1.50 3.21 

arws_μ=0.6 0 0 1.21 1.49 

arws_μ=1 0 0 1.07 1.47 

prws_μ=0.3 0.29 9.67 1.51 2.94 

prws_μ=0.6 0.26 8.67 1.15 1.91 

prws_μ=1 0.07 2.33 1.03 1.94 

norws_μ=0.3 0 0 1.63 2.32 

norws_μ=0.6 0 0 1.56 2.31 

norws_μ=1 0 0 1.43 2.19 

 

(a)  Visualization of overtaking maneuver 

  

(b)  Front wheel steering angle (c) Rear wheel steering angle 

(d) Global position of overall overtaking maneuver 

Fig. 5.     Simulation results of overtaking maneuver 

 
(a) Difference of global position 

     (b)  Front wheel steering angle (c) Rear wheel steering angle 

Fig. 7.     Simulation results of benchmark 

 



variations of NMPC also outperform LQR and Stanley 
significantly despite the absence of actively controlled RWS. 
The controllers show similar performance of heading angle 
tracking, with the proposed solution of combining NMPC 
with active RWS marginally standing out in terms of the mean 
error.  

V. CONCLUSION 

In this study, we developed an NMPC-based path 
following control method for automated vehicles with the 
inclusion of actively controlled RWS. The controller updates 
the tire parameters in a Dugoff model using the measurements 
of virtual tire force sensors. In addition, we formulated under 
the same framework two other variations of NMPC controller 
with passive and no RWS. The performance of proposed 
controllers has been tested in various simulation scenarios and 
compared to baseline controllers including Stanley and LQR. 
The simulation results suggest that the proposed solution has 
the best overall path following performance. The advantage of 
the proposed solution over the variations with limited or no 
RWS functionality demonstrates the benefit of actively 
controlled RWS. Meanwhile, the performance gain over 
Stanley and LQR controllers indicates the strength of the 
NMPC framework. Nevertheless, this paper only focuses on 
controlling the steering of the vehicle. The longitudinal 
dynamics are temporarily neglected, excluding the possibility 
of taking sharp corners with a lower speed and not utilizing 
the differential driving / braking for generating yaw moments.  
The comprehensive use of longitudinal and lateral actuators 
for path following will be investigated in the future works, 
where the objective of the control may further include safety- 
and comfort-related concerns.   
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TABLE III.  RESULTS OF SIMULATION: BENCHMARK 

Criteria 

Considered controllers 
Stan-

ley 

LQR NMPC 

without 

RWS 

passive 

RWS 

active 

RWS 

Max lateral 

error, m 
1.74 1.58 1.53 1.58 1.04 

Mean lateral 

error, m  
0.31 0.24 0.15 0.15 0.07 

SD of lateral 

error 
0.46 0.40 0.26 0.25 0.16 

Max heading 

error, rad 
0.64 0.64 0.62 0.57 0.62 

Mean 

heading 

error, rad  
0.10 0.11 0.11 0.10 0.08 

SD of 

heading error 
0.15 0.17 0.17 0.15 0.15 

 


