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Abstract - This study proposes a Lane Change Assistance (LCA) system that provides haptic guidance during lane
changes. This system is fully integrated with Lane Keeping Assistance (LKA) functionality to provide continuous
lateral support during highway driving. Two different system configurations of this LCA are investigated. One is a
generalized LCA and the other is an adaptive LCA that provides personalized lane change reference trajectories
through trial-by-trial adaptation to lane change duration of previous lane changes. The effects of these systems
with respect to mental workload, lateral control performance and user acceptance are investigated. This is done
during an experiment with three different driving sessions, consisting of a manual session and two sessions in
which either the generalized or adaptive LCA is active. The experiments are conducted on a 6 DoF motion-based
simulator with 34 participants, driving in a simulated three-lane highway environment with a scripted traffic scenario.
To measure mental workload, an auditory cognitive secondary N-back task is introduced. The results show that the
introduction of a generalized or adaptive LCA does not significantly influence the measured mental workload. When
the adaptive LCA is introduced, lateral control performance and subjective usefulness is enhanced compared to
the generalized LCA and manual driving.
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Introduction

To enable a transition from automation level 2 to 3,
as defined by t he S ociety o f A utomotive Engineers
(SAE), it is important to consider integration of ADAS.
Level 2 is defined as partial automation, in which the
driver is supported by several automated functions.
Level 3 is defined as conditional automation, in which
the full driving task is automated under certain condi-
tions (SAE, 2021). Most currently available vehicles
are partially automated and have Lane Keeping As-
sistance (LKA) systems installed that do not provide
support during lane changes. Instead, lane keeping
functionality is switched off when the indicator is en-
gaged.

Furthermore, mental workload is found to increase
significantly d uring a L ane C hange ( LC) maneuver
(Kim, et al., 2013). Therefore, the goal of this re-
search is to design a system that can mitigate this
increase of mental workload, thus enhancing safety
and comfort during lane changes. To achieve this
goal, this study proposes a Lane Change Assistance
(LCA) system that provides haptic support during
lane changes. This LCA system is completely inte-
grated with an LKA system to enable continuous lat-
eral support during highway driving.

The increasing amount of installed ADAS in mod-
ern vehicles require an effective collaboration be-
tween these systems and the driver. Haptic Shared
Control (HSC) is a commonly encountered solution
to balance the control authority between ADAS and
drivers (Lazcano, et al., 2021). To enhance smooth
collaboration (van Dintel, et al., 2020) and increase

user acceptance (Chen and Wang, 2018) of such an
HSC system, adaptation to a driver’s personal pref-
erences is desirable. Furthermore, adaptation to in-
dividual driving style can enhance usability and com-
fort, hence preventing disuse of the system (Hasen-
jager and Wersing, 2018). This can be done by im-
plicit or explicit personalization, adapting either to ob-
served user data or explicitly stated preference set-
tings, respectively.

Implicit personalization is expected to be more effec-
tive, since up to 67% of drivers have been shown
to incorrectly identify their own driving style when
explicitly stating their preferred driving style (Basu,
et al., 2017). Driving behaviour varies widely be-
tween drivers, known as inter-driver variability, but
also within a driver, known as intra-driver variability
(Koppel, et al., 2019). Since it is shown that there is
a significant intra-driver modeling uncertainty when
observing driving behaviour during two hours of lane
keeping (Chen and Ulsoy, 2001), continuous adapta-
tion is expected to be more effective than implicit or
explicit personalization

In this study, an LCA system is designed that adapts
its reference trajectory to the moving average of pre-
vious lane change durations. This is implemented by
means of trial-by-trial adaptation, which has success-
fully personalized trajectories for haptic assistance
during a non-driving task (De Jonge, et al., 2016).
The effect of this adaptive LCA system is investigated
by comparing it to manual driving and driving with a
generalized LCA, which is based on a fixed value for
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Figure 1: Schematic of the Lane Change Assistance system

average lane change duration. The research ques-
tion is formulated as follows:

Does trial-by-trial adaptation to lane change duration
of a haptic lane change assistance system reduce
mental workload and increase lateral control perfor-
mance during highway driving?

This leads to the following hypotheses:

1. A trial-by-trial adaptive lane change assistance
system reduces mental workload of drivers during
highway driving.

2. A trial-by-trial adaptive lane change assistance
system increases lateral control performance dur-
ing highway driving.

LCA system design

The novel adaptive LCA system is designed by in-
tegrating the concept of trial-by-trial adaptation in an
LCA system. The planned reference path is adapted
to the duration of previous LC maneuvers. The refer-
ence path is generated by a double fifth order poly-
nomial path planning algorithm and subsequently fed
to a path-following Linear Quadratic Regulator (LQR)
controller. The state-space equations of the lateral
controller are formulated using a bicycle model and
driver model, the resulting gains are scheduled with
longitudinal velocity. All subsystems are schemati-
cally shown in Fig. 1.

Trial-by-Trial Adaptation

Intra-driver variability has been shown to be greater
than inter-driver variability during long driving ses-
sions (Chen and Ulsoy, 2001). Therefore, a learning-
based adaptive system using current driving informa-
tion is preferred rather than a personalized system
that statically characterizes ones driving style based
on historical data. It is shown that trial-by-trial adap-
tation reduces control effort and torque conflict with-
out degrading the performance in a non-driving task
(De Jonge, et al., 2016). Therefore, this method is
chosen for implementation in the proposed LCA to
reduce mental workload during an LC maneuver, in-
crease user acceptance and enhance lateral control
performance. The trial-by-trial adaption is based on
the duration of previous LC maneuvers and is applied
to the planned reference path of the LCA system. The

LC maneuver duration resulting from the collabora-
tive steering behaviour on the HSC interface is reg-
istered by the LCA logic, stored and used to com-
pute a moving average over 10 trials. This computed
value is subsequently used to determine the desired
duration for the reference path planning of the next
LC maneuver. The registration of an LC maneuver in
the LCA logic is initiated by the trigger of the indica-
tor and is considered completed when the absolute
value of both the lateral error AY = Y — Yy, and
lateral preview error AY,, shown in Eq. 9, are within
the lateral margin of 1 meter from the target lane cen-
ter. The lane change is aborted when the indicator is
switched off before crossing the lane boundary, after
which the lane keeping functionality is continued in
the original lane.

Haptic Shared Control

The HSC algorithm is designed according to the vir-
tual spring model (Ghasemi, Jayakumar, and Gille-
spie, 2019), which is expressed in Equation 2. The
HSC stiffness ky,s. is tuned for lateral control perfor-
mance and user acceptance to a value of kjs. = 0.25.
The HSC interface of the steering wheel is used to
combine the inputs of the driver and the LCA system
as follows. First, the front wheel steering angle d.
resulting from the LQR controller is multiplied by the
steering ratio is; to obtain the steering wheel angle
desired by the controller 6., shown in Eq. 1. Subse-
quently, the measured steering input of the driver 6,
is subtracted to determine the steering wheel angle
error 6,,.. This angle is multiplied by the HSC stiffness
to obtain the assistance torque T;.,. This assistance
torque is added to the torque from the multibody vehi-
cle model 7,,,q to obtain the total torque 7}, shown
in Eq. 3. The total torque is sent to the servomotor
that provides torque to the simulator’s steering col-
umn.

ec:(sfc'ist (1)
:rlca - khsc . 087‘ — khsc(gc - ed) (2)
Ttot = Tmod + ﬂ(:a (3)
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Figure 2: Reference path planning of the trial-by-trial
adaptive LCA for the 37 trials of participant 25

Path Planning

The most commonly used method to plan the path of
an LC maneuver is a fifth order polynomial. However,
with a conventional fifth order polynomial replanning
of the path is not possible. This could potentially
lead to unsafe situations, therefore an adjustment is
needed to enable the possibility to abort an LC ma-
neuver after initiation (Zheng, et al., 2019). Further-
more, a human driver uses a higher lateral accelera-
tion for steering out of the initial lane than for steering
back into the target lane (Sporrer, et al., 1998). This
asymmetric human steering behavior cannot be repli-
cated by using a single quintic polynomial. By com-
bining two different quintic polynomials, the asym-
metric path can be generated to represent human
LC maneuvers more accurately. Therefore, a double
quintic polynomial (Heil, Lange, and Cramer, 2016) is
implemented to determine the reference path for the
path following controller.
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Figure 3: Reference path planning of the trial-by-trial
adaptive LCA for the 34 trials of participant 34
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By defining t he m aximum d esired | ateral accelera-
tion as anae = 1 m/s?, the maximum desired lat-
eral jerk as jma: = 1.5 m/s® and the lane width of
w = 3.5 m, the two polynomials are solved with the
symbolic toolbox of Matlab.

2-cat\/4-3—10-c3-¢c5
10 - ¢c5 (5)
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The coefficients can be solved using Equation 5 for
s1 and so, under assumption that the maneuver is ini-
tiated without lateral acceleration, velocity or devia-
tion from the lane center. Continuity is guaranteed by
enforcing that the initial values of the second polyno-
mial s, are equal to the final values of the first poly-
nomial s;. Since the LCA is integrated with an LKA,
lane position metrics such as Time to Lane Cross-
ing (TLC) are expected to cause conflict between the
functionalities of these systems. Furthermore, most
lane change intent prediction algorithms require eye-
tracking or head movement tracking to accurately
predict lane changes in real-time (Xing, et al., 2019),
which were not available for this study. Therefore, the
manual trigger of the indicator is used to switch from
lane keeping to lane changing functionality.

To ensure smooth transition between the two poly-
nomials, especially in the case of replanning, a hy-
perbolic tangent blending function with a one-sided
blending time ¢, = 0.5 seconds is used, as expressed
in Eq. 6. LC maneuver paths are computed for lane
change duration values between - = 1 and 7 = 10
seconds and stored in a lookup table. This lookup ta-
ble enables interpolation for the exact value for 7,4
whilst minimizing computational power during simu-
lation. The fixed value 7,,, = 4 that is used as lane
change duration for the generalized LCA is based
on the distribution of average lane change duration
found in literature (Toledo and Zohar, 2007).

1 ftcmh((t%zsl))

)=
1+ tanh(g(tifl)) ©)
5 b - 59(t)

Controller Design

A state feedback controller was selected as path-
following controller, since it shows similar perfor-
mance to state-of-the-art path-following algorithms in
highway driving conditions (Lu, et al., 2018). The se-
lected state feedback controller is a gain-scheduling
LQR controller (Wang, et al., 2017). State vector x
containing 7 states is used to determine the addi-
tional steering angle é¢. that the controller should
provide to the front wheels of the vehicle, which is
shown in Eq. 710 9.

Spe=k(V,) (7)
z =1V, 7/1 Y Y dpa 5fd AY)] (8)
AYp:Yp_Y—tp'Vx'¢ (9)



By considering multiple objectives including path-
tracking error, driver’s physical and mental workloads
and control effort in the LQR controller, the cost func-
tion described in Eq. 10 is minimized. J; represents
the cost for lateral preview error, Jo and Js repre-
sent the driver’s mental and physical workload, re-
spectively, and J, represents the control effort of the
LCA system. To minimize computational power dur-
ing simulation, the closed-loop control gains are cal-
culated offline for a range of longitudinal velocities
and integrated in the model by means of a lookup ta-
ble. The control equations are formulated to schedule
the gain based on longitudinal velocity. The preview
time is determined to be 2 seconds based on the re-
lation to longitudinal velocity (Schnelle, et al., 2017)
and road curvature (Yang, et al., 2020).

JZ/ (J1+ Jo+ Js+ Jy) dt (10)
0

Experiment Design

Figure 4: A lane change maneuver during the experiment in
the highway scenario on the 6 DoF motion-based simulator

To determine the effect of the adaptive and gener-
alized LCA on mental workload, lateral control per-
formance and user acceptance, experiments with
human participants in the loop are executed on a
motion-based driving simulator. This 6 DoF driving
simulator utilizes a projected view of 210 degrees
horizontally and 50 degrees vertically, two exterior
rear-view mirrors, one interior rear-view mirror and a
dashboard depicting all relevant dials.

The vehicle model used for the simulation in the ex-
periment is a 13 DoF dSpace multibody ASM with the
parametrization of a generic sedan. The selected sig-
nals of the vehicle model are recorded at a frequency
of 100 Hz. The vehicle is equipped with Cruise Con-
trol (CC), which is set at 100 km/h and can be ad-
justed by the driver when necessary. A traffic sce-
nario with 30 recurring entities is scripted such that
the vehicles in the right lane drive at 90 km/h, 95 km/h
in the center lane and 105 km/h in the left lane. The
participants are instructed to adjust the longitudinal
velocity as infrequently as possible and return to the
right lane after overtaking, such that a high amount
of LC maneuvers is encouraged.

The experiments were executed with 34 participants
in total, of which five measurements contained cor-
rupted signals. To ensure equal distribution over the
three groups described in Tab. 1, two participants

Table 1: Participant groups and corresponding sequence of
system configuration in the different driving sessions

Group Session 1 Session 2 Session 3
A Manual Generalized Adaptive

B Generalized Adaptive Manual

C Adaptive Manual Generalized

were eliminated randomly to obtain 9 participants per
group, thus 27 in total. The demographics parame-
ters of the 27 participants that are used for the anal-
ysis of the results are shown in Tab. 2. The measure-
ments were rearranged such that the results can be
presented per system configuration.

Table 2: Demographic parameters and corresponding
distribution of the 27 participants included in the results

Parameter Mean o Unit
Participant age 36.8 15.6 years
Driver’s license 17.8 16.2 years
Average driving 452  3.90 hours/week
CC driving 2.18  3.22 hours/week
LKA driving 0.50 1.95 hours/week
Simulator driving  0.29  0.57 hours/week

Metrics

Mental workload is measured during the complete
duration of the experiment by means of an auditory
N-back task (Layden, 2018), which is introduced as a
cognitive secondary task.

In this task participants are asked to respond by tap-
ping a touchscreen when the audio fragment of a
recorded letter is identical to the letter played N trials
before. N is chosen to be one, considering the sub-
stantial workload required for the driving task. Fur-
thermore, it is shown that the 1-back auditory task
results in lower variability of lateral position com-
pared to the 0-back, 2-back and baseline measure-
ment (Jaeggi, et al., 2010). The resulting score is ex-
pressed as Discrimination Index (Dl), which is calcu-
lated by using the hit rate H and false-positive rate
F, as shown in Eqg. 11.

(H—F)?+abs(H — F)
4-max(H,F)—4HF
#hits _ #false positives

1
DI = 3 +sign(H - F) -

- #signal trials #noise trials

(11)
Steering Reversal Rate (SRR) can be used as com-
plement or alternative to lane position metrics to
quantify lateral control performance (Markkula and
Engstrom, 2006). It is easier to measure in real-world
scenarios compared to lane position metrics, there-
fore SRR is often used as driving performance met-
ric in field studies (Carsten, et al., 2005). Further-
more, the introduction of an auditory secondary task
does not influence steering wheel angle variability, al-
though it might influence mental workload (Hurwitz
and Wheatley, 2002). Since a cognitive secondary
task is introduced in this study, the corresponding pa-
rameters are used to obtain the highest sensitivity for
this scenario.



The steering wheel angle signal 6 is filtered with a
second order Butterworth filter with a 3dB cut-off fre-
quency of 0.6 Hz to obtain 6y;;,. If the difference in
0+4+ of the current and previous time step is larger
than the gap value 64, = 0.1 deg, it is registered
as a reversal. These are expressed in SRR as rever-
sals per minute. The SRR metric is also computed for
the LC maneuvers only, by extracting the lane change
sections of the steering wheel angle signal.

To express user acceptance of the participants, a
subjective van der Laan (Van Der Laan, Heino, and
De Waard, 1997) questionnaire is used, in which the
generalized and adaptive LCA system configurations
are rated with respect to the manual driving session.
The participants are requested to score the system
configurations on 9 different aspects of the system,
leading to a Usefulness score (USE) and a Satisfac-
tion score (SAT). It is stated that Cronbach’s coeffi-
cient of reliability o should be higher than 0.65 for the
results to be valid. No prior knowledge about the LCA
systems is provided to the participants to ensure un-
biased results.

For all presented mean results, a linear mixed-effect
model regression analysis is applied to obtain the
statistical significance o ft he m etrics. | nt his way,
the individual participants were regarded as a ran-
dom effect with no a-priori expectations. Since the
data is obtained with repeated measurements of
one individual participant and different system con-
figurations, repeated-measures ANOVA is more suit-
able than a one-way or two-way ANOVA. However,
mixed-effect modeling is more robust against system-
atic inter-driver variability than repeated-measures
ANOVA (Van Dongen, et al., 2004). Since inter-driver
variability is expected to be an important influence,
linear mixed-effect model regression analysis is used
to determine the statistical significance of results.

For all presented variance results, Levene’s test of
homoscedacity is applied to investigate the homo-
geneity of variances across system configurations. It
is chosen over the two-sample F-test of equality of
variance due to its robustness against non-normality
in the data and the possibility to compare the vari-
ance of three system configurations. F or b oth the
linear-mixed regression analysis and Levene’s test of
homoscedacity a 95% confidence interval is applied,
resulting in a significance level of 0.05.

Results

The means and statistical significance of the objec-
tive metrics for each system configuration a re pre-
sented in Tab. 3. The variances of the objective met-
rics and corresponding statistical significance are
presented in Tab. 4. The means, statistical signifi-
cance and Cronbach’s coefficient o f r eliability « for
the subjective metrics are shown in Tab. 5. The re-
sults are displayed graphically in Fig. 5 to Fig. 8 by
means of boxplots. These show the median of partic-
ipants in red, the Interquartile range (IQR) in blue and
the whiskers in black, of which the maximum length is
defined as 1.5 times the IQR. Furthermore, the mean
results of individual participants are shown in differ-
ent colours, connected by dotted lines between the
different system configurations.

Table 3: Resulting means of objective metrics and statistical
significance obtained by mixed-effect linear regression

Metric Man Gen Ada F p

DI 0.808 0.8170 0.810 0.216 0.806
SRR 34.67 33.22 32.34 9.390 <0.001
[C-SRR 56.48 54.03 5355 2961 0.058

Table 4: Resulting variances of objective metrics and
statistical significance obtained by Levene’s test of
homoscedacity

Metric MAN GEN ADA F p

DI 410-* 2.100* 1-.100* 3.57 0.033
28.93 29.37 28.28 0.021 0.980

Mental Workload

In Tab. 3 it is shown that the small change of mean
DI after introducing an LCA system compared to the
manual driving session is regarded insignificant by
the mixed-effect linear regression analysis. The vari-
ance of mean DI decreases across the three system
configurations, as can be seen in Fig. 5. This is re-
garded as a significant change in variance according
to Levene’s test with an associated p-value of 0.032,
as shown in Tab. 4.
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Figure 5: Mental workload measured by the cognitive N-back
task per system configuration for 27 participants

Lateral Control Performance

As can be seen in Fig. 6 and in Tab. 3, the mean value
of SRR decreases when the adaptive LCA is intro-
duced compared to the generalized LCA and manual
driving. In Tab. 4 it can be seen that the variance of
SRR remains unchanged across the system config-
urations with a p-value of 0.98. Therefore, it passes
Levene’s test for equality of variances.

It can be seen in Fig. 7 that the variance of SRR dur-
ing LC maneuvers increases from manual to general-
ized LCA. The variance of SRR during LC maneuvers
of the adaptive LCA decreases compared to both the
generalized LCA and the manual driving session. In
Tab. 4 it is shown that this reduction of variance is
sifgnificant according to Levene’s test, with a p-value
of 0.032.



Steering Reversal Rate [n/min]
w
(3]

251

Manual Generalized LCA Adaptive LCA

Figure 6: Steering reversal rate during complete driving
sessions per system configuration for 27 participants

~
o
T

[}
(8,
T

[}
o
T

)]
)]
T

z
>

4

a1
o
T

IS
[¢;]
T

Steering Reversal Rate [n/min]
N
o

w
o
T

Manual Generalized LCA Adaptive LCA

Figure 7: Steering reversal rate during lane change
maneuvers per system configuration for 27 participants
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Figure 8: Subjective usefulness score and satisfaction score
per system configuration for 27 participants

Table 5: Resulting means of subjective metrics and
statistical significance obtained by mixed-effect linear
regression

Metric GEN ADA « F p

USE 3.444 4.407 0901 7.7/73 0.007
SAT 1.889 2.667 0.765 2.338 0.132

In Fig. 8 it is shown that both the subjective useful-
ness score and the subjective satisfaction score in-
crease with the introduction of the adaptive LCA sys-
tem compared to the generalized LCA system. How-
ever, in Tab. 5 it is shown that this increase is only
significant for the subjective usefulness score USE
with a p-value of 0.007. Furthermore, it can be seen
in Fig. 8 that the usefulness score for both the gen-
eralized and the adaptive LCA are higher than the
respective satisfaction score values. The subjective
results are regarded as valid since Cronbach’s co-
efficient of reliability « is higher than 0.65 for both
system configurations, as is shown in Tab. 5.

Discussion

The unchanged mental workload measured by DI af-
ter introduction of the trial-by-trial adaptive LCA sys-
tem does not agree with the expectations expressed
in hypothesis |, thus the hypothesis is rejected. The
negligible change in mean DI might be explained by
the fact that the N-back task was executed continu-
ously with random hits to prevent an expectation pat-
tern. Therefore workload was measured during both
lane keeping and lane changing, possibly reducing
visibility of the effect during LC maneuvers. Addi-
tionally, it could be explained by the low error rate
measured for the auditory 1-back task (Mehler, et al.,
2009) in a lane keeping task. Alternatively, the small
change in measured mental workload across system
configurations could be explained by the large de-
pendence on traffic environment complexity (Patten,
et al., 2006). This is in agreement with observations
made during the experiment, in which it seemed that
secondary task performance degraded in situations
with high traffic complexity.

Lateral control performance and SRR are inversely
related, since the performance is considered to be
reduced when many steering corrections have to be
made. Therefore, the lateral control performance is
increased by introducing the adaptive LCA system
compared to manual driving and the generalized LCA
system. This in agreement with hypothesis Il, which
is therefore accepted. The validity of SRR as metric
representing absolute steering performance can be
questioned, since it is affected by the steering task
difficulty. However, it is found that the metric is a valid
representation of driving performance and can there-
fore be used to compare different drivers or condi-
tions (McLean and Hoffmann, 1975).

The increased steering wheel activity may be as-
sociated with both increased cognitive load and re-
duced lateral control performance (Markkula and En-
gstrém, 2006). However, literature shows that SRR
is not significantly affected by a cognitive secondary
task (Knappe, et al., 2007), indicating that the change
in SRR is more probable to be an effect of the differ-
ent system configurations or traffic complexity rather
than the introduced secondary task.

The reduction in variance of SRR during lane
changes indicates that the inter-driver variability of
performance is reduced by introducing the trial-by-
trial adaptation. This could result from the fact that
the adaptive LCA accommodates to the personal
preferences of different drivers, thus increasing the
lateral control performance resulting from the HSC
interface of the steering wheel. This is in agree-
ment with previous studies that applied a personal-



ized driver model to both an LKA and an Adaptive
Cruise Control (ACC) system (Lefevre, et al., 2015)
and a personalized LCA system based on identifica-
tion of cautious, normal and aggressive driving style
(Zhu, et al., 2018). These studies also show that the
differences in driving behaviour were accommodated
and thus inter-driver variability could be reduced.

The significantly increased usefulness score of the
adaptive LCA compared to the generalized LCA
system is in agreement with results from a previ-
ous study that applied continuous adaptation to per-
sonal preference of the longitudinal assistance sys-
tem ACC to Time to Collision (TTC). This study also
showed a higher user acceptance compared to a
standard ACC (Wang, et al., 2013). The unchanged
user acceptance expressed as satisfaction score is
not in agreement with the expectations, this might
be explained by conflicts of lane change intention
caused by the limitations of the LCA logic.

Limitations

For the purpose of this study, longitudinal control is
supported by means of a CC instead of an ACC
system. This was done to stimulate lane changing
rather than car-following behaviour. However, it was
observed during the experiments that the longitudi-
nal control task required a lot of additional mental
workload capacity in situations with high traffic den-
sity. Therefore it is expected that this has distorted
the measurements of multiple metrics, which could
have been mitigated by integration of the LCA sys-
tem with an ACC system.

In this study it was chosen to embed a safety feature
in the LCA logic, by aborting a lane change if the indi-
cator is switched off before crossing the lane bound-
ary. However, aborted LC maneuvers were almost
never encountered during the experiments, whereas
many people switched off the indicator before cross-
ing the lane boundary during an intentional LC ma-
neuver. This led to a relatively large number of con-
flicts between the LCA logic and the participants.
These conflicts could have been mitigated by enlarg-
ing the time duration in which the lane boundary has
to be crossed.

Furthermore, two subsequent left or right LC ma-
neuvers could not be identified as such if the indi-
cator was not switched off between the maneuvers.
The conflicts resulting from this could have been pre-
vented by executing the simulation on a two-lane
highway. More preferably, the LCA logic should be
able to detect the intention of two subsequent lane
changes.

Conclusion
The hypotheses of this study were stated as follows:

1. A trial-by-trial adaptive lane change assistance
system reduces mental workload of drivers during
highway driving.

2. A trial-by-trial adaptive lane change assistance
system increases lateral control performance dur-
ing highway driving.

The first hypothesis is rejected, since there is no sig-
nificant change in mental workload, measured by the
mean discrimination index of the cognitive secondary

N-back task, when the generalized or adaptive LCA
system is introduced.

The second hypothesis is accepted, since the lateral
control performance, measured by the mean steering
reversal rate, is increased significantly when intro-
ducing trial-by-trial adaptation to lane change dura-
tion in the adaptive LCA when compared to the gen-
eralized LCA and manual system configuration.

Furthermore, inter-driver variability of lateral control
performance during lane changes is reduced signif-
icantly by introducing trial-by-trial adaptation to lane
change duration in the adaptive LCA compared to the
generalized LCA and manual driving. In addition to
this, user acceptance expressed as subjective use-
fulness is increased significantly by introducing the
adaptive LCA system.

Future Work

During this study, several observations are made of
aspects that could be improved upon and topics to
be researched in future studies. First of all, to achieve
fully integrated longitudinal and lateral functionality of
lane change assistance, implementation of HSC on a
longitudinal control interface such as the acceleration
or brake pedal would be preferable. By doing this, ex-
cessive braking or acceleration to complete a safe
lane change could be made redundant. By integrat-
ing longitudinal control as proposed in (Dang, et al.,
2015), the functionalities of these systems could be
optimized to complement one another and thus lead
to more consistent results with reduced effect of traf-
fic complexity.

Furthermore it is recommended to adjust the LCA
logic to enable a more universal detection of lane
change intention. It is expected that this will further
enhance user acceptance and driving performance,
whilst ensuring safe driving behaviour. For example,
the lateral margins defining the end of an LC maneu-
ver could be reduced to a smaller value to capture
more of both the intra-driver and inter-driver variabil-
ity. Alternatively, different metrics could be chosen to
define the start and end of an LC maneuver.

To improve upon the learning speed of the adaptive
LCA system, naturalistic driving data of participants
could be used to obtain initial values for the adap-
tive LCA, opposed to the generalized value for lane
change duration of 4 seconds. Additionally, the ef-
fect of different values for the moving average win-
dow length could be investigated. Alternatively, other
learning algorithms could be applied to obtain the
desired value of lane change duration. Also, fur-
ther research could be done to investigate the effect
of adaptation to driver parameters other than lane
change duration, such as preferred lateral acceler-
ation (Fleming, et al., 2019).
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