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Abstract— Despite the success of deep learning, human pose
estimation remains a challenging problem in particular in dense
urban traffic scenarios. Its robustness is important for follow-
up tasks like trajectory prediction and gesture recognition. We
are interested in human pose estimation in crowded scenes with
overlapping pedestrians, in particular pairwise constellations.
We propose a new top-down method that relies on pairwise
detections as input and jointly estimates the two poses of such
pairs in a single forward pass within a deep convolutional neural
network. As availability of automotive datasets providing poses
and a fair amount of crowded scenes is limited, we extend
the EuroCity Persons dataset by additional images and pose
annotations. With 46,975 images and poses of 279,329 persons
our new EuroCity Persons Dense Pose dataset is the largest pose
dataset recorded from a moving vehicle. In our experiments
using this dataset we show improved performance for poses of
pedestrian pairs in comparison with a state of the art method
for human pose estimation in crowds.

I. INTRODUCTION

A reliable detection of vulnerable road users, like pedes-
trians and riders, is fundamental in the context of intelligent
vehicles. In particular for fully automated driving systems
understanding the surroundings of the vehicle and estimating
the future behavior of other traffic participants is crucial.
Still, a human driver not only depends on the positions
for predicting the future trajectory of vulnerable road users.
Additional cues like the line of gaze, hand gestures, or the
gait cycle are automatically perceived and processed. To
recreate these capabilities, the pose of persons defined by
the position of the joints can be used as intermediate repre-
sentation for gesture recognition and intention estimation [1].
Mutual occlusions of pedestrians in crowd situations in an
automotive scenario pose challenges not only for detection
but also for deep learning based pose estimation [2]-[13].

This could be the case for a group of pedestrians waiting
at a bus stop. As each member in such a group can suddenly
step out and enter the street, a reliable detection and pose
estimation is equally important for all the pedestrians in
the group, even for the ones further in the back, potentially
occluded by other pedestrians.

Regarding pose estimation, top-down approaches are still
leading on the MSCOCO dataset [16] frequently used for
benchmarking. These methods first detect all persons in an
image and estimate the pose of each person in a second
stage, whereas bottom-up approaches first try to find all joints
within an image, which are then clustered into instances.
Often, the underlying detection methods used in top-down
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Fig. 1: Qualitative pose estimation result of AlphaPose+
[11] (eft) and our Simple Pair Pose method (right) for a
pedestrian pair. In our methodology and experiments we are
particularly interested in such pair situations in dense urban
traffic scenes.

approaches depend on a non-maximum suppression (NMS)
as post processing step, to avoid multiple detections for a
single instance. Interestingly, many of the top performing
methods utilize a simple greedy implementation based on a
single intersection over union threshold (IoU) [19]. Selecting
this threshold for suppression poses a tradeoff between
recall and precision [20] and leads to missing detections in
particular in groups. This threshold is often set to 0.5 for
pedestrians, meaning if two pedestrians have a higher mutual
IoU only one will be detected assuming perfectly localized
detections. Such pedestrians with a higher mutual IoU than
0.5 are defined as pedestrian pair throughout our work. If
there are multiple pedestrians with an IoU higher than 0.5,
only the two pedestrians with the highest mutual IoU are
regarded as pair. The data statistics of our new EuroCity
Persons Dense Pose dataset shows that pedestrian pairs are
still common (5.9%), while only 0.2% of the pedestrians have
a mutual IoU greater 0.5 with at least two other pedestrians.
Therefore, we are mainly interested in detection and pose
estimation of these pedestrian pairs. A lot of work has been
published on improving the detection recall in groups [19],
[21]-[24]. In our methodology, we follow the idea of [24] to
jointly detect sets of pedestrians based on a single proposal.
Therefore, we adapt a YOLOV3 [25] to jointly detect pairs
of pedestrians.

Regarding top-down pose estimation in groups, the
cropped detections used as input often contain parts of other
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TABLE I: Overview of human pose datasets.

Dataset ECPDP (ours) TDUP [14] PedX [15] MSCOCO [16] MPII[17] AI Chall. [18] CP[11] OP [12]
Domain Autom. Autom. Autom. General General General General General
# Images 47k 21k 5k (stereo) 200k 25k 300k 20k 9k
# Person Poses 279k 93k 14k 250k 40k 700k 80k 18k
Avg. Persons/Img 5.9 4.4 2.8 1.3 1.6 23 4.0 2.0

persons. Sometimes the target pose becomes ambiguous [13],
in particular when the overlap of persons is very high as
in our pair situations. [13] solves the disambiguation by
adding an additional input hint for the target pose, while
other methods optimize poses of multiple persons in a post-
processing step [11], [12]. In our pose estimation approach,
we make use of paired detections and jointly estimate the
two poses within a single network. Thus, we solve the
disambiguation of poses by training separate experts for front
pedestrians and back pedestrians in pairs. For an exemplary
result see Figure 1.

Recently, the EuroCity Persons (ECP) benchmark dataset
[20] has been published to advance progress regarding
bounding box based person detection in automotive sce-
narios. It consists of images recorded with a front facing
camera mounted behind the windshield of a moving vehicle.
We extend this dataset by additional images from two side
facing cameras that have been synchronously recorded. For
the selection of the 47k images that form our new EuroCity
Persons Dense Pose (ECPDP) dataset we focus on crowded
scenes. To enable the advancement in the field of pose
estimation, we provide annotations for all 17 joints of the
pedestrians and riders. See Table I for an overview of human
pose datasets.

II. RELATED WORK

a) Multi Person Detection: Most detection approaches
can be clustered into two-stage approaches [26], [27] or one-
stage approaches [25], [28]. The non-maximum suppression
(NMS) used in a post processing step to suppress multiple
detections per object poses a tradeoff between recall and
precision [20].

There are several approaches to improve the recall in
particular in crowd situations, without losing precision. In
Soft-NMS [19] detections are not discarded, but their class
score is reduced, if they overlap with another detection, that
has a higher confidence. [21] proposes a network architecture
to learn the NMS task using bounding box locations and class
scores as input. Thus, the NMS could be trained in a fully
end-to-end detection framework. In [22] a density value is
estimated per prediction that is used instead of the single
IoU threshold within the greedy NMS. A high density value
leads to less suppression and a higher recall in groups. [23]
builds upon this idea and additionally estimates a diversity
value. This discriminative diversity value is estimated in an
embedded feature space and is fed into the adapted NMS
algorithm. In [29], a special loss coined Repulsion Loss is
used, to push detections of separate instances away from each
other to lower the IoU between such detections. [24] tries to

detect all objects in a group based on a single proposal. These
set detections do not suppress each other within the NMS.

b) Multi Person Pose estimation: Multi person pose
estimation can be clustered into bottom-up and top-down
approaches. Bottom-up approaches [2]-[6] first try to find
all joints within an image, which are then clustered into
instances. Early approaches solve the clustering by integer
linear programming [2], [3]. In [4] part affinity heatmaps are
estimated in addition to the joint heatmaps. The part affinities
are used as edge weights in the graph based clustering.
In [5] pixelwise offset values are calculated pointing from
one joint to another. These offsets are used for grouping.
[6] proposes a graph convolutional network for clustering.
Thus, the clustering can be learned as part of an end-to-end
framework. As stated in [11] and [12], invisible joints and
the small local context used for joint estimation lead to an
inferior performance of bottom-up methods.

Top-down approaches first detect all persons within an
image and then estimate the pose for every instance. Most
works follow the heatmap based approach of [30]. Mask R-
CNN [7] learns both stages in a single end-to-end trainable
network. Recent top-down methods profit from better person
detectors or better network architectures [8]-[10]. Still, dense
person group situations remain challenging for top-down
methods. On the one hand, estimating positions of occluded
joints is difficult. On the other hand, image crops of detected
persons contain parts of other persons as well. In some
cases, the overlapping region between two persons is so
high, that the target pose is ambiguous. [31] proposes a
solution for the handling of occluded joints training separate
heatmap estimators for occluded and visible joints. Thus
they train different experts for different occlusion states but
not for disambiguation of multiple persons within a crop.
[13] tries to solve the ambiguity for multiple persons by
adding the position of a visible joint point for each person
as an additional input. They depend on the results of a
state of the art bottom-up pose estimation approach for
these input hints. In AlphaPose+ [11] detections are handled
independently within the single person pose estimation. A
so called joint candidate loss allows the estimation of all
joints that are within an image crop. The disambiguation
of poses of different persons is part of a post-processing
stage. There, joint candidates from all heatmap estimations
are extracted. In a global graph based optimization procedure
they can be reassigned to different detections based on the
heatmap scores. As it is a fixed algorithm it can not be trained
end-to-end within the framework. [12] depends on initial
pose results of AlphaPose+ [11], that are refined by a graph
convolutional network (GNN) depending on image features

1546

Authorized licensed use limited to: TU Delft Library. Downloaded on July 20,2022 at 19:02:42 UTC from IEEE Xplore. Restrictions apply.



a) Pairwise Detection

" Back predictio

/" Upsamplingand
front pose estimation

w

/" Upsampling and

/" b) Pairwise Pose
Estimation

ResNet-101

i Cropping of
E persons

i (single crop
i for paired
detections)

Class

Darknet53

back pose estimation

Ne

Fig. 2: Overview of our Simple Pair Pose method consisting of a pairwise detection a) and pose estimation method b).

extracted from the base network of AlphaPose+. They also
propose a variant of this GNN, where poses of pedestrian
pairs are jointly refined.

c) Datasets: Progress in deep learning based pose
estimation has been driven by datasets like MSCOCO [16],
MPII [17] and AI Challenger [18]. The CrowdPose [11]
and OCPose [12] datasets focus on crowd situations with
a high amount of pedestrians overlapping each other. These
situations constitute a specific challenge for pose estimation.
The images of the mentioned datasets have been collected
using online search engines, Flickr and YouTube. In terms
of automotive datasets, PedX [15] provides stereo images
recorded from a moving vehicle including LiDAR annotated
with 2D and 3D poses. Still, the diversity regarding context
is rather low as only three urban intersections are covered.
Recently, the TDUP dataset [14] has been announced, that
will provide images recorded from a moving vehicle covering
diverse urban traffic scenes in China. An overview of these
datasets is shown in Table I.

d) Contributions: Our contributions are twofold. First,
we propose a new top-down pose estimation method to
jointly estimate poses of pedestrian pairs in a single network.
It relies on paired detections using an adopted set detection
approach [24] that improves the recall in groups. Our new
method is simple to integrate in existing network architec-
tures for human pose estimation, yet effective and does not
depend on a separate input hint or a post-processing stage
for disambiguation of poses of pedestrian pairs. Second,
we provide a new automotive dataset for pose estimation
extending the original ECP dataset by additional images
from the front-facing and two side-facing cameras. The
detailed annotations including bounding boxes and poses of
pedestrians and riders will be made available on our website®.
The annotations of the test dataset are kept private for fair
benchmarking using our server, that will be extended by an
automatic evaluation protocol.

III. METHOD

Our Simple Pair Pose (SPP) Method for top-down pose
estimation consists of two parts (see Figure 2). For the
pairwise detection, we integrate the idea of set detection of
[24] into our YOLOv3 [25] detector to improve the recall in
groups. In the pairwise pose estimation part, we extend the
single person pose estimation network described in [11] to
jointly estimate the poses of paired detections.

Phttps://eurocity-dataset.tudelft.nl

A. Set Detection Revisited

Deep learning based detection approaches like [25]-[28]
depend on proposals as input. This raises two issues regard-
ing detection in crowds. First, for a single pedestrian there are
usually several overlapping proposals. The pedestrian is used
as training target for all proposals, that are associated e.g.
based on an IoU threshold. During inference, this results in
multiple detections per pedestrian, that have to be suppressed
by the NMS. Depending on the IoU threshold of the NMS,
not all pedestrians within a crowd may be detected.

Second, within a group scenario, a single proposal often
overlaps with several pedestrians. Still, many approaches
only select a single person with the highest overlap as target
for every proposal. In inference this may result in some
kind of ambiguity. When a proposal is placed between two
pedestrians the final detection may be influenced by both
pedestrians and has a low localization accuracy [29]. To solve
this issue [24] proposes to predict all objects associated with
a single proposal. Therefore, the predictor head of a feature
pyramid network [32] consisting of a classification and
localisation part is duplicated. During training, all predictions
from a single proposal are matched with the associated
ground truth annotations minimizing an earth mover distance
loss [24]. They also propose a Set NMS at which predictions
from the same proposal do not suppress each other. This
solves the first issue of missing detections within a crowd.
We adopt the idea of [24] in our pairwise detection method.

B. Pairwise detection

YOLOV3 predicts bounding boxes based on three features
layers of its Darknet-53 core network downscaled by a
factor of 8, 16 and 32. Prior boxes of different sizes and
aspect ratios are centered in every cell of these layers and
serve as proposals. For every prior box, the prediction head
estimates four coordinate offsets in the localisation part and
the confidences for the different classes. We configure the
NMS with an IoU threshold of 0.5 in accordance with [20],
resulting in a low recall for pedestrian pairs. In our YOLOv3
extension we apply the idea of set prediction of [24] and
focus on pedestrian pairs, as shown in part a) of Figure 2.
Therefore, we assign a set cardinality of two. This reduction
enables us to formulate the set prediction more explicitly.
For pairs, we define the pedestrian with the lower bounding
box edge to be the front pedestrian, whereas the other one
is the back pedestrian. Following a flat world assumption
this corresponds to the z-ordering in the traffic scene. We
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manually annotate the ordering for pedestrians with an equal
lower bounding box edge or contradicting occlusion levels.

We duplicate the prediction head of YOLOV3. For ev-
ery prior box two predictions including two bounding box
regressions and classifications are estimated. For the first
prediction head we always set the front pedestrian as target,
while the second prediction head is responsible for estimating
the back pedestrian. We do not permutate the matching as
in [24]. Thus, we train separate experts for both cases and
disambiguate the detection task for pedestrian pairs, as it is
defined beforehand which pedestrian has to be detected by
which head. In [24] this has to be learned implicitly.

We model the bounding box regression loss (Lj,c) to
follow a normal distribution as in [33] and the classification
to follow a softmax loss (L), which enables uncertainty
weighting [34]. We receive the following total loss for a prior
box associated with a pedestrian pair,

L(w) =Ll (gt w) + £, (gt w)

, , (1)
+ Ele (gtbﬂ w) + £?oc(gtb’ w)

with gt/ gt® as the ground truth annotations of the front and
back pedestrian, w as the weights of the network, and cforce
as the losses of the first and second prediction head.

If a pedestrian is not part of a pair, we define it to be
a front pedestrian by default. In this case the regression
loss for the second prediction head is zero, and its target
class is background. For inference, similar to [24] we adapt
the NMS in a way, that front pedestrians do not suppress
back pedestrians estimated based on the same proposal (Pair
NMS in Figure 2). If both class confidences of a front and
back prediction from the same proposal are above a certain
threshold, we define this as a paired detection.

C. Pairwise Pose Estimation

We follow the top-down multi person pose estimation
approach: In general, detections are cropped from the input
image and a single person pose estimation (SPPE) network
estimates the n heatmaps of the n joints. If a crop contains
several pedestrians it may be ambiguous which pose has to be
estimated [13]. This is also caused by imperfectly localized
detection boxes.

To avoid confusions of front and back joints of the
front and back pedestrian, we jointly estimate heatmaps for
both pedestrians in a single forward pass. In [11] a pose
head consisting of two upsampling modules and a final
convolutional layer is attached to a ResNet-101 backbone
to estimate the pose heatmaps. We duplicate this pose head
to jointly estimate front and back heatmaps as shown in part
b) of Figure 2. It is possible to split the paths later (or even
earlier) within the network, e.g. by only duplicating the final
layer. The point to branch may be empirically selected, while
an earlier split increases runtime.

During training, ground truth boxes gt/ and gt* of pedes-
trian pairs are combined to a single pair box gt” enclosing the
two boxes. This combined box is used to crop the image to
ensure that the context of both pedestrians is fully available.
The overall heatmap loss is the sum of the separate heatmap

losses for the joints of the front and the back pedestrian. By
training separate experts for estimating the heatmaps of front
and back pedestrians, we disambiguate the target pose. As
before in the detection method, we define single pedestrians
to be front pedestrians by default and use the single box for
cropping the image. The heatmap loss for the back joints
is zero in this case. During inference, paired detections of
our pairwise detector are combined as in the training before
cropping, while single detections are kept as they are. We
extract the best front and back poses from the heatmaps
using spatial argmax. Hence, we do not depend on a post-
processing step to handle poses of pedestrian pairs. As all
computations are shared apart from the duplicated pose head,
the runtime for pedestrian pairs is lower in comparison with
estimating the two poses based on separate image crops.

IV. DATASET
A. Data selection

The ECP dataset has been recorded from a moving vehicle
in 31 cities of 12 European countries [20]. The two megapix-
els camera (1920x1080) attached behind the windshield has
been operated with 20 frames per second for a total recording
time of 60 hours. For the detection benchmark a fixed sample
rate has been used to extract and annotate images to avoid
any selection bias.

For our EuroCity Persons Dense Pose dataset we shift the
main focus to crowded scenes. In addition to the front facing
camera, two side facing cameras with a higher horizontal
field of view of 85° had been attached at the left and right
door mirrors. They feature the same resolution and have been
synchronously triggered with the front facing camera.

We select images with a high number of persons from
the front as well as side facing cameras. For images already
contained in ECP this is done based on the number of box
annotations. For the remaining images we run a Faster R-
CNN [27] model trained on ECP to detect crowded scenes.

Overall, we select 30,704 images from the front facing
camera, of which 14,438 are already part of the ECP dataset.
Further 8,263 images from the left and 8,008 images from
the right camera are added to the final image set consisting of
46,975 images in total. We ensure that the train-val-test split
of our new ECPDP dataset is aligned with the train-val-test
split of ECP [20].

B. Dataset Annotation

Apart from poses the annotation protocol mimics that of
ECP [20]. For every image all pedestrians and riders of at
least 20 pixels in height are annotated with tight bounding
boxes of the complete extent. If a person is not fully visible,
the extent is estimated. In that case, the level of occlusion
and truncation is annotated. Groups of persons that are
not distinguishable are annotated with boxes enclosing the
groups, serving as ignore regions during evaluation. Ignore
regions are also class-specific for pedestrians and riders.
If the class can not be discriminated by the labeler, it is
annotated as generic person ignore region. In addition, we
annotate the complete poses consisting of 17 joint points as
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Fig. 3: Frequencies of our EuroCity Persons Dense Pose (ECPDP) dataset. The density of pedestrians (right) is only shown

for overlapping boxes, meaning densities greater zero.

in MSCOCO [16] for persons that are greater than 60 pixels
in height. For every joint, it is indicated if it is fully visible,
self-occluded or occluded.

C. Dataset Statistics

Data distributions for pedestrians of our new dataset are
shown in Figure 3. Due to our data selection targeted on
crowded scenes, there is a peak around six pedestrians
per frame. We analyse the overlap between pedestrians, as
mutual occlusions of pedestrians cause major challenges even
for recent deep learning approaches. As in [22], we define
the density of a pedestrian as the highest IoU with any other
pedestrian in this scene. As defined before, if the density is
greater than 0.5, the two pedestrians form a pair. The amount
of pairs in our ECPDP dataset is about one percentage point
higher than in the ECP dataset (5.9% in contrast to 5.0%).
Regarding riders, only 1.2% of these have a mutual IoU
greater 0.5. Therefore, we focus on pedestrians only in our
pairwise experiments.

Compared to other automotive datasets, our new ECPDP
dataset provides the largest number of pose annotated per-
sons (cf. Table I). Furthermore, the ECPDP contains the
largest average number of persons per image overall. Thus,
it enables the targeted evaluation of pose estimation in dense
urban traffic scenes. Detailed statistics of the dataset subsets
are shown in Table II.

TABLE II: Statistics of the subsets of our new ECPDP
dataset regarding the number of images and the amount of
boxes, poses and ignore regions of pedestrians and riders
and the number of generic person ignore regions that may
contain pedestrians as well as riders.

train val test total
# images 29,570 5,150 12,255 46,975
# pedestrian boxes 251,654 47,530 99,529 398,713
# pedestrian poses 167,066 30,960 65,698 263,724
# pedestrian ignore 17,140 3,394 7,255 27,789
# rider boxes 21,617 3,624 8,458 33,699
# rider poses 10,164 1,704 3,737 15,605
# rider ignore 943 150 347 1,440
# person ignore 9,158 1,783 3,605 14,546

D. Metrics

For evaluation of the detection performance, we apply the
log average miss rate (LAMR) as in [20]. In many pair

situations one of the two pedestrians has a rather low while
the other has a high level of occlusion. Hence, pedestrians of
a pair would be divided into the reasonable and the occluded
subsets as defined in ECP. To have a common subset for
pairs we add another subset named relevant. It consists of
all pedestrians of at least 40 pixels in height and less than
80% occlusion.

We use the object keypoint similarity (OKS) from [16]
to evaluate pose estimation accuracy. In our pairwise pose
evaluation we match objects based on their IoU and measure
the average OKS for true positives.

In [16], objects are matched based on their OKS instead
of the IoU, as not all of the bottom-up methods provide
bounding boxes. They calculate the average precision (AP)
for different OKS matching thresholds. We apply the same
evaluation procedure for the overall pose estimation per-
formance that serves as baseline for benchmarking on our
new pose dataset. Instead of calculating the AP we use the
LAMR. We adapt the LAMR implementation of [20] by
matching objects based on their OKS instead of the IoU.
Samples without pose annotations or that are not part of
an evaluation subset serve as ignore instances and are still
matched based on the IoU if there is no other non-ignore
instance that exceeds the OKS threshold for matching.

V. EXPERIMENTS

We first focus on training and evaluation of our pairwise
detection method for pedestrians. Then, we describe our
training setup for the pairwise pose estimation, and show
results of the pose estimation for pedestrian pairs. Finally
we show the overall pose estimation performance on the
complete ECPDP test dataset that serves as baseline on our
new pose benchmark. We also include riders in the training
of all our models. Still, as rider pairs are rare, we only train
the front prediction head and the front pose heatmaps with
riders and focus on pedestrians in the evaluation.

A. Pairwise detection training

We adopt the YOLOV3 tensorflow implementation of [33].
The nine prior box sizes are optimized on the ECP training
dataset as in [20]. Flipping and crop and scale augmentation
is used for all trainings.

We first train a model on the ECP day-time training subset
with the default prediction head of YOLOV3, that estimates
a single detection per prior box. The Darknet-53 part of this
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Fig. 4: Qualitative results of AlphaPose+ (left) and our pairwise pose estimation (right) for back pedestrians (red) and front
pedestrians (green) of valid paired detections (green and red bounding boxes). The first two rows show samples where our
method surpasses AlphaPose+, while the last row shows error cases.

network is initialized with weights trained on ImageNet for
classification [35]. We train for 33 epochs in total, decreasing
the initial learning rate of le-5 after 13 and 25 epochs by a
factor of 0.1. The best performing checkpoint is selected on
the ECP validation dataset and serves as Init model.

For our Base model the training of the Init model is
continued on the training subset of our new ECPDP dataset.
It is trained for 50 epochs, reducing the initial learning rate
of le-5 after 30 and 44 epochs by a factor of 0.1.

Finally, we train our pairwise detection network also on
ECPDP. The Init model is used for initialization. The weights
of the additional convolutional filters of the second prediction
head for estimating the classification and bounding box re-
gression of the back pedestrian are randomly initialized. We
achieved best results with a fixed weighting for the losses of
the second prediction head instead of uncertainty weighting
[34] that is used for the losses of the first prediction head.
The Pair model is also trained for 50 epochs with the same
learning rate strategy as the Base model.

B. Pairwise detection results

The detection performance for pedestrians is evaluated on
the relevant subset of our ECPDP test dataset.

We evaluate a version of the Pair model discarding all
back predictions (coined Pair w/o back). This removes the
influence of back predictions, that on the one hand increase
the recall in groups but on the other hand decrease precision
due to false positives. A greedy NMS with an IoU threshold

of 0.5 is applied for this version of the Pair model and the
Base model. The full Pair model including back predictions
makes use of our adapted NMS as described in Section III-B.

Quantitative results are shown in Table III. The LAMR
of the two Pair model variants is 0.8 points higher than
of the Base model. The additional prediction head slightly
reduces the overall detection performance. Still, the recall for
pedestrian pairs can be increased by the back predictions.
Despite the NMS threshold of 0.5, the recall of the Base
model for pairs at a false positive per image (fppi) rate of 1.0
is also greater 50%. This is caused by imperfectly localized
predictions that are not suppressed by the greedy NMS.

Results of valid paired detections are shown in Figure 4.
In Figure 5 the recall is shown for different density ranges
of the test samples for a fppi rate of 1.0. The Pair model
achieves the highest recall for density ranges above 0.5.

TABLE III: Detection results for pedestrians of the relevant
subset on the ECPDP test subset. All values are given in
percentage points. Recsq 57, is the recall for pedestrians of
pairs with a mutual IoU greater 0.5 for a given false positive
per image (fppi) rate of z.

Model LAMR Rec>o0.55.0.1 Recsosy:1
Base 28.2 51.7 62.1
Pair w/o back 29.0 49.1 62.0
Pair 29.0 55.5 70.0
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Fig. 5: Recall of pedestrians normalized per bin for our three
detection models in dependence of the density of the test
samples. The density is defined as the highest IoU with any
other test sample.

C. Pairwise pose training

For better comparability with AlphaPose+ [11] we use
the provided source code® and integrate our pairwise pose
estimation method. Therefore, we duplicate the pose head
consisting of two upsampling modules and a final convolu-
tional layer attached to a ResNet-101 [36] backbone, com-
bine pedestrian pairs before cropping, and simply skip the
graph based optimization of AlphaPose+. (Only duplicating
the final convolutional layer has lead to inferior results in our
experiments.) By using the framework of AlphaPose+, we
verify the straightforward integrability into other methods.
The joint candidate loss proposed in [11] is not provided
in their framework. For training of the AlphaPose+ baseline
and our pairwise pose estimation we use the mean squared
error as heatmap loss. The training settings are identical for
both methods. The person crops from the input image are
rescaled to 320 x 256. The output heatmap resolution is 80
x 64. We train for 110 epochs, reducing the initial learning
rate of le-4 to le-5 after 80 epochs.

TABLE IV: Pose results in terms of mean OKS (median in
brackets) for detected pedestrian pairs of the ECPDP test
subset. All values are given in percentage points.

Model OKS/,, OKS!, OKS%, OKSY,

AlphaPose+ 85.6 (93.3) 83.8 (88.9) 68.7 (75.8) 65.5 (68.7)
SPP (ours) 86.9 (94.3) 84.9 (89.7) 75.9 (81.9) 68.3 (71.7)

D. Pairwise pose results

For evaluation of our SPP method on the test dataset, we
run the pairwise pose model on the detections of our Pair
detection model including back predictions. Paired pedestrian
predictions are combined first to jointly estimate the front
and back pose. The predictions of the Pair model are also
used as input for AlphaPose+ for better comparability and
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Fig. 6: Mean OK S}, improvement u for back pedestrians of
our method in comparison with AlphaPose+ in dependence
of the density of the paired predictions binned over different
density ranges r with # as the number of samples per bin.

the OKS values for front and back pedestrians. All joints or
only visible joints are taken into account for OKS,; and
OK S,;s. Our model performs best for front as well as back
pedestrians of pairs. Most significant improvement can be
observed for back pedestrians, which is 7.2 percentage points
for the mean OKS evaluated on visible joint points (OK S2;,)
and 2.8 points on all joints (OK S?,). AlphaPose+ performs
similarly for poses of front pedestrians. In the qualitative
results in Figure 4 there are several cases where AlphaPose+
confuses poses of the front with the back pedestrians. This is
caused by missing joint candidates for the pedestrians in the
back, whereas our model profits from the expert knowledge
for the back pedestrians. We show the OKS improvement of
our method in comparison with AlphaPose+ for these back
pedestrians in dependence of the IoU between the paired
detections in Figure 6. Apart from the last bin, that only
contains seven samples, a higher IoU between the detections
results in a higher average improvement by our method.
This can be expected as a higher overlap between detections
may also induce more difficulties in discriminating the two
pedestrians within the pose estimation. This higher overlap
can be also caused by a low localization accuracy of the pair
detector, e.g. when the pair detector itself confuses extents
of front and back pedestrians. Our method suffers less from
these localization errors of the underlying detector as the two
boxes are combined and the disambiguation is solved by the
different experts.

TABLE V: Overall pose performance on the ECPDP test
subset. All values are given in percentage points. For the
LAMR L test samples occluded up to 0% are matched based
on an OKS threshold t. Pairwise training is only applied for
pedestrians in our SPP method.

as YOLOV3 is also the underlying detection method in [11]. ~ Model Class Scores Liy Ly~ Lsy Lgy°
We focus on evaluation of the pair scenarios and show  AlphaPose+  Ped. Box 339 567 41.1 640
mean and median OKS values on the 346 correctly detected AlphaPose+  Ped. Pose 29.8 493 36.1 562
pedestrian pairs in Table IV. The two estimated poses SPP (ours)  Ped. Box 320 563 398  63.8
are associated with the front and back ground truth poses SPP (ours) Ped. Pose 289 488 359 560
optimizing the overall OKS value. OKS? and OKS? are  AlphaPose+ Rider ~Pose 112 190 137 231
SPP (ours) Rider Pose 11.5 19.0 14.1 23.1

Chttps://github.com/MVIG-SJTU/AlphaPose/tree/pytorch
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E. Overall pose results

For benchmarking purposes on our new dataset, we show
the OKS based LAMR (abbreviated as L in the following)
on all test samples annotated with poses for pedestrians and
riders in Table V. We use two different OKS thresholds
for matching: 0.5 for L%® and 0.75 for L7 respectively.
Lyg is calculated for persons less than 40% occluded and
Lgo for less than 80% occlusion. As before, the detections
from the Pair model are used for inference of AlphaPose+
and our pairwise pose model. For pedestrians, we compare
results using the confidences from the box detector and
the confidences from the pose estimation, where heatmap
scores are added to the initial class scores. Confidences from

[3]

[4]
[5]

the pose estimation result in better performance for both 0]
models. In our methodology we focus on pedestrian pair  [11]
situations. As the amount of pedestrian pair situations is low [12]
in comparison with all test samples the overall performance
is only slightly better than for AlphaPose+, e.g. by 0.9  [13]
points for L3y, The performance metric for pedestrians up 14l
to 80% occlusion is similar. Note that we do not make use
of pairwise training for riders in our SPP method due to the  [15]
low relative amount of pairwise rider situations. Therefore,
the results for riders in Table V for our model does not show (¢,
any improvement over AlphaPose+.
17
VI. CONCLUSION "
In this work we presented our new Simple Pair Pose 8]
method for top-down human pose estimation. The underlying  [19]
YOLOV3 detector extended by the set detection idea of [24] 1201
improves the recall in groups by jointly detecting pairs of
pedestrians. We have shown experimental results for our
new pose estimation method, that jointly predicts poses for (211
both pedestrians of these pairs. As all computations are 22
shared apart from the final duplicated layers, it reduces the
runtime for paired detections in comparison with separate (231
pose estimation. Yet, by implicitly training different experts 24
for poses of front and back pedestrians, it is very effective
and surpasses the AlphaPose+ method used for comparison. (23]
Our approach could be easily integrated in other heatmap [2¢)
based single person pose estimation approaches. It could also
be used as input for the recent graph based method of [12] (271
that relies on input poses from AlphaPose+. The combination g
with other detection methods optimized for crowded scenes
is left for future work. Furthermore, we presented our new (29]
EuroCity Persons Dense Pose dataset, which will serve for 30,
benchmarking of pose estimation methods on dense urban
scenarios. By releasing our dataset and providing automatic (31]
evaluation scripts on our server, we hope to further enable  [32
research in this exciting field. -
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