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Exploring the usage of supervised driving automation in naturalistic conditions

Jork Stapel, Riender Happee, Michiel Christoph, Nicole van Nes, Marieke Martens

• A naturalistic dataset comparing manual and SAE2 automated driving was en-
riched with automation status and driver attention

• Effects of road type, driving speed, time of day, trip duration and experience on
automation use were examined

• Automation was used around 60% of time on highways and was rarely activated
on roads with speed limits below 70km/h

• Automation use increased with time in trip while showing minor changes with
time of day and automation experience

• Automation use and automation experience showed small but significant effects
on head pose variance, indicating subtle changes in monitoring strategies

Electronic copy available at: https://ssrn.com/abstract=4076765



Exploring the usage of supervised driving automation in
naturalistic conditions

Jork Stapela, Riender Happeea, Michiel Christophb, Nicole van Nesa,1, Marieke
Martensc,1

aTU Delft University of Technology, The Netherlands
bSWOV Institute for Road Safety Research, The Hague, The Netherlands

cTNO Traffic & Transport, The Hague, The Netherlands
dEindhoven University of Technology, The Netherlands

Abstract

This study reports usage of supervised automation and driver attention from a longitu-
dinal naturalistic driving study. Automation inexperienced drivers were provided with
instrumented vehicles with adaptive cruise control (ACC) and lane keeping (LK) features
(SAE level 2). Data was collected comparing one month of driving without support to
two months where drivers were instructed to use automation as desired.

On highways, automation was used respectively 63% and 57% of the time by Tesla
and BMW users, increased with driving speed and was used the least while driving
10-60 km/h, where especially ACC usege reduced. On roads with speed limits below
70 km/h, automation was used less than 6%, and use on urban roads was incidental
rather than habitual. Automation usage was higher during commute hours compared to
other moments for the BMW group, and increased slightly with time in trip. Head pose
without gaze data could not classify driver attention. Head pose deviation was selected
as alternative indicator for monitoring activity. Comparing among forms of automation
usage on the highway, head heading deviation was smallest during ACC use, but did not
differ between automation and baseline manual driving. Head heading deviation during
manual driving was smaller in the baseline than the experimental phase, which suggests
that motives for manual highway driving may be attention related. Automation usage
did not change much over the first 12 weeks of the experimental condition, and there
were no longitudinal changes in head pose deviation. We recommend not to rely on
head-pose for attention classification and consider gaze instead.
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1. Introduction

Supervised, or SAE Level 2 partial automation (SAE, 2021) is rapidly deployed in com-2

mercial cars. Current systems automate longitudinal control with adaptive cruise control
(ACC) and support lateral control with lane keeping (LK). While Level 2 automation is4

active, the driver has to supervise the automation, and intervene when needed to ensure
safety. Safe use requires that the driver is aware of these responsibilities, has an accurate6

understanding of how the vehicle may respond to the situation at hand, and maintains
sufficient situation awareness to respond when necessary. However recent accidents in-8

dicate that drivers are not always monitoring the environment sufficiently (Dutch Safety
Board, 2019). Harms et al. (2020) found that drivers are not always aware of the abilities10

and limitations of current systems. There are also clear indicators that automation can
have a negative effect on driver vigilance, for instance when sleep-deprived, though12

automation can initially improve alertness when well-rested (Ahlström et al., 2021). If
and how drivers experience system limitations can be inferred from how these systems14

are used, and how drivers monitor the automation distributing visual attention between
driving-related and other tasks. Several studies have used such measures to evaluate16

safe usage of automated driving features. Jamson et al. (2013) found that the use of
driving automation reduced the number of lane changes, whereas drivers spent more18

time on secondary tasks but adjusted their attention to the road depending on traffic.
Similarly, Naujoks et al. (2016) demonstrated in a 2013 Mercedes E-class that drivers with20

prior ACC experience perform more secondary tasks while using driving automation,
whereas drivers without ACC experience did not. Farah et al. (2021) found that drivers22

over-estimated the operational design domain as defined by the vehicle manufacturer
in an on-road study with a Tesla model S. Banks et al. (2018) performed thematic video24

analysis of behaviours observed during on-road driving in a Tesla model S and identified
multiple occurrences of missed notifications from the HMI leading to mode confusion.26

The distribution of visual attention between driving-related and secondary tasks
can be inferred from gaze or head movement (Lee et al., 2018) and provides guide-28

lines for driver distraction from in-vehicle displays (Strickland, 2013). Park et al. (2017)
demonstrated that a reduction of on-road glance duration impairs hazard detection per-30

formance. Glaser et al. (2017) demonstrated that eyes-off-road time negatively impacts
driver performance when resuming manual control in critical scenarios. Additionally,32

gaze can be indicative of cognitive load or distraction (Wang et al., 2014), fatigue and
intoxication (Victor et al., 2005).34

As drivers’ understanding of the automation develops with experience, so will their
usage and monitoring behaviour (Sullivan et al., 2016). On road and simulator studies36

demonstrated substantial differences between drivers with and without driving automa-
tion experience. Larsson et al. (2014) compared control transition performance in a38
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simulator between ACC users and drivers without prior driving automation experience
and found that experienced users responded faster in cut-in scenarios. Victor et al. (2018)40

however demonstrated in a 30 minute test track drive in a Volvo XC90 that expectation
mismatch during first-failures can result in a crash even with attentive drivers. Stapel et al.42

(2019) demonstrated that Tesla owners experienced with driving automation perceive
a lower workload during automation use compared to first-time users. However, this44

perception was contrasted by a slower response time on an auditory detection-response
task, indicating an increased objective workload when using automation. Hancock and46

Matthews (2018) provide further reflections on the occurrence of this dissociation. Large
et al. (2019) performed a 5-day longitudinal simulator study on conditional automation48

without supervision showing high automation usage, trust and secondary task uptake.
Time spent attending the road during automation use reduced from 30% to 20% over the50

five days accompanied with reduced driving performance after resuming manual control.
The latter improved after introducing a routine for regaining situation awareness.52

While several studies were conducted in controlled or semi-controlled on-road con-
ditions, only few investigated the use of and adaptation to automated driving in a54

naturalistic setting. Beggiato et al. (2015) performed a longitudinal on-road study where
they found that drivers developed their trust and functional understanding of ACC over56

ten drives while establishing a high acceptance within two drives. Morando et al. (2019)
investigated how SAE2 driving automation influences attention during 10 months of58

naturalistic manual and automated driving by 17 participants. They found longer on-
road glances and lower percent eyes on road centre during automated driving (ACC and60

LK) compared to manual driving. The latter was interpreted as a reduced task demand
during automation use. Russel et al. (2018) conducted a naturalistic driving study with62

120 participants driving vehicles equipped with adaptive cruise control and automated
lane keeping for 4 weeks. They report effects of traffic stability, road type and weather64

conditions (no-precipitation vs precipitation) on automation use and found that drivers
were performing secondary tasks 60% of the observed time regardless of automation66

use and found no difference in percentage eyes-off-road time, off-road glance duration
or type of secondary task. Reaction times to the ‘hold steering wheel’- requests did not68

change over the four weeks of use, but instances occurred in the first week where such
requests were intentionally ignored to investigate the vehicle’s response. While these70

studies provide useful insights, the evolution of behaviour from manual to automated
driving has mainly been examined for the first experience with automation, or lack72

observations of baseline manual driving prior to developing experience with automated
driving.74

In this study we report automation use and driver attention from a longitudinal
naturalistic driving study conducted in the Netherlands. The study is unique in its76
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inclusion of a one month manual driving baseline followed by a two month experimental
phase with the same participants and vehicles where participants were allowed to use78

the vehicle’s automation, enabling a within-subject analysis of behavioural adaptation
over the first two months of automation usage.80

We addressed the following three research questions:

1. When and in which conditions do drivers use ACC and LK support?82

2. Is driver attention different during manual driving compared to driving with su-
pervised automation?84

3. Do these behaviours change with automation experience?

We studied automation use and driver visual attention allocation as a function of86

road type, speed, time in trip, time of day and time after first automation use. In order to
perform these analyses, we explored to which extent the visual annotation of automation88

status and driver attention can be automated. We trained a classifier to identify system
icons in the instrument panel using video and to classify driver attention distributions90

among attentive regions and regions associated with non-driving tasks using head pose
estimated from video. Both classifiers were trained and evaluated on manually annotated92

data from the naturalistic study.
This study focuses on within-subject effects of automation use. We do not analyse94

differences or similarities between vehicle types, since they were not driven by the same
participants or in the same conditions.96

2. Methods

2.1. Data description98

In a collaborative project conducted by TNO, SWOV and the Dutch ministry of Infras-
tructure and Watermanagement, the RDW (Dutch Vehicle Authority) and RWS (Dutch100

Road Authority), recent passenger cars with SAE level 2 automation were equipped
with instrumentation to observe the driver and the environment. Naturalistic driving102

data was collected by providing these vehicles for daily use to drivers having no prior
experience with SAE level 2 automation. The naturalistic dataset is unique in that it104

includes one month of manual driving (baseline condition) followed by two months of
use with automation under naturalistic driving conditions (experimental condition),106

allowing for a longitudinal within-subjects analysis of how automation use changes
over time. The full dataset includes five vehicle types (BMW 540i, Tesla S, Mercedes E,108

Volkswagen Golf E, Audi A4 Avant) driven by 20 participants. However, due to efforts
needed for CAN data interpretation, the data from only two vehicle types (Tesla and110

BMW) and 9 participants could be analysed for this paper. An overview of the kilometres
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driven is provided in Table 1. For the Tesla drivers, data was collected successfully for112

357 baseline and 431 experimental trips, while BMW drivers recorded 1044 baseline and
1387 experimental trips. For the remaining recordings automation status was either114

unavailable or inaccessible at the time of this analysis.
Both the BMW and Tesla were equipped with full-range ACC and LK. The BMW116

ACC operated for speeds between 0-180km/h while the Tesla ACC operated between
0-150km/h. In the BMW, LK permits hands off steering wheel for up to 25 seconds. While118

enabled, the BMW system provides supporting steering inputs whenever system require-
ments are met (e.g. clear lane markings) and allows the driver to provide corrective120

steering without disabling the automation. We refer to standby when it is enabled while
operating conditions are not met. Tesla LK (at the time) permitted 15 seconds of hands122

free driving and becomes unavailable for the remainder of a drive when this limit is
exceeded 3 times. Tesla’s LK has to be engaged by the driver and turns off when the driver124

provides corrective steering or braking. The BMW allows LK use with or without ACC
enabled. The Tesla only allows LK while ACC is on.126

Table 1: Overview of the data collected.
Baseline Experimental

trips days trips days

Tesla1 131 26 131 35
Tesla2 177 35 228 44
Tesla3 112 22 129 30
Total 402 83 488 109

BMW1 32 48 196 48
BMW2 111 34 154 50
BMW4 133 35 201 65
BMW5 62 21 109 36
BMW6 147 34 132 40
BMW7 1 1 137 46
BMW8 85 23 211 66
Total 571 196 1140 351

Participants
For two participants (1 BMW, 1 Tesla), the demographic data was not available. The128

remaining 7 participants were all male, mean age 49 years (σ 5.2 years), licenced for
29.1 years (σ 6.2 years) and had driven 30,000km to 40,000km in the 12 months prior to130

the experiment. All participants indicated they felt “very interested" and “averagely"
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to “well" informed about the latest technological developments in the vehicle sector.132

Prior to the experiment, all but one participant normally used a vehicle equipped with
cruise control, zero with adaptive cruise control or lane keeping assistance and three134

with lane departure warning. One participant (Tesla group) indicated to frequently use
lane keeping assistance.136

Instrumentation
Each vehicle was retrofitted with eight cameras observing the driver, instrument138

cluster, exterior in forward, left, right and rear directions, pedal bay and a top-down view
towards the driver seat. The drivers were observed with 325x288 resolution at 10Hz. The140

Tesla instrument panel was observed with 720x576 resolution at 25Hz. Figure 1 provides
an overview of the available video feeds. A smart camera system (MobilEye) recorded142

lane position and surrounding road users. For map-matching, GPS and IMU data were
collected at 1Hz and 10Hz respectively.144

CAN-bus data was collected, from which various signals were reverse-engineered,
including velocity, accelerations, steering wheel angle and torque, brake and accelerator146

pedal, turn indicator, lights, wind screen wipers, and (for the BMW) status information
on the automation and warning systems (lane departure; collision). For the purpose of148

this study, only velocity and automation status were used. All signals except video were
time-stamped. Video recordings were not synchronised but were watermarked with a150

human-readable timestamp.
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Figure 1: Overview of the eight camera perspectives recorded by the TNO instrumentation in the
time-synchronized visualisation by SWOV for each vehicle. In reading order: right mirror view, forward
view, left mirror view, driver face, instrument panel, rear view, driver seat, pedal bay. The driver’s face is
occluded for privacy reasons.

2.2. Data preparation152

A number of challenges emerged after data collection. Reverse engineering of CAN
bus data to identify automation status was successful for the BMW but not for other154

vehicle types. GPS tracking, used for obtaining road type data, was not always available
with sufficient accuracy. Additionally, some videos were corrupted and had to be omitted156

from the analysis. Table 2 shows data availability after filtering, synchronisation and
re-sampling.158

Two data enrichment efforts were performed for the analysis in this study. The first
was to retrieve Tesla automation status by automatic detection of icons in the video160
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of the instrument panel. Details on the implementation, training and validation are
available in Appendix A and obtained 99.33% accuracy.162

The second enrichment aimed to automatically annotate driver attention from video.
Head pose was inferred instead of driver gaze because we were unable to measure164

this reliably. Several studies have suggested that head pose can be an acceptable gaze
substitute when classifying attention into relevant regions of interest. Lee et al. (2018)166

have demonstrated that attention classification from head pose is feasible for on-road
driving and obtained classification accuracies in the order of 83% and higher. Similarly,168

Braunagel (2017) used head pose as a fall back for eyes-on-road classification when
gaze data was unavailable. Henni et al. (2018) showed that eye based features and head170

based features can achieve a similar classification performance for on-road drowsiness
detection. Further implementation and validation details are available in Appendix B.172

While we were able to reproduce the per-class performance reported by Lee et al. (2018),
overall classification accuracy was 69% and intersections over union metrics were below174

50%, which is insufficient for attention analysis. This suggests that inferring attention
from head pose is not feasible for driving scenarios, and demonstrates the importance of176

using appropriate performance metrics to judge classifier performance with unbalanced
data. Lacking the means to classify driver attention per region of interest, this paper uses178

head pose variance as indicator for possible changes in attention behaviour.

Table 2: Data fraction available after pre-processing.
Tesla BMW

Automation status 100% 61.8%
Speed km/h 80.3% 61.8%
Allowed speed km/h 65.9% 60.4%
Road type 63.4% 52.3%
Head pose 72.4% 56.6%

3. Results180

3.1. Automation usage

For the Tesla drivers, there were 16 baseline trips with very brief moments (0.2% of182

time on highways) of ACC or ACC&LK use. These are attributed to status classification
faults. For the BMW drivers, there were 15 baseline trips (10 by one participant, 4 by184

another) where some form of automation was used (55% of time on highways). Trips
where automation was used during Baseline were excluded from analysis.186
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For automation use during the experimental condition, we first describe the dis-
tributions for both the Tesla and BMW drivers and then provide a statistical analysis.188

Automation status is observed with respect to road type, road speed limit, driving speed,
time since the start of a trip and time of day.190

During the experimental condition, Tesla users drove manually 55.8% of the time,
8.9% with ACC and 35.3% with ACC&LK. BMW users drove 52.8% manually, 0.9% with192

ACC, 2.6% with ACC + LK on standby (ACC&LKsb), 27.9% with ACC + LK, 6.7% without
ACC but with LK on standby (LKsb), and 9.1% with LK active. Speed limiting was not194

used. Figure 2 shows automation use by speed limit and road type. For both vehicles,
most driving time was spent on the highway, and ACC&LK was used most here (Tesla:196

63.0% , BMW: 55.7%). Manual driving was however preferred when negotiating highway
links. Automation was used very little on roads with speed limits below 70 km/h. In both198

vehicles, preference seems to be towards using ACC&LK over using either ACC or LK.

Figure 2: Automation use for road speed limit (top) and road type (bottom). Road type was obtained by
map-matching using OpenStreetMap. LKsb indicates lane keeping on standby.
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Figure 3: Automation use as a function of vehicle speed for all road types (top) and highways (bottom).

Figure 3 shows how automation use changes with driving speed. Usage was generally200

low for driving speeds below 70 km/h. However during highway driving, automation
use remained high at all speeds, with peak usage during slow stop-and-go traffic (0-30202

km/h) and higher speeds (>80 km/h). Drivers of the BMW quite often used LK with
ACC off, especially at reduced speeds (30-80 km/h) on the highway. This suggests that204

longitudinal automation was not preferred or not trusted in dense traffic conditions,
while LK was. This did not happen for the Tesla drivers, since LK is not available while206

ACC is off. At higher speeds a sudden drop in automation use can be observed. This
drop corresponds with the upper limit at which the vehicles make automation available.208

Figure 4 shows how automation use changes over the duration of a drive. After the
first 10-20 minutes, automation use was relatively steady. The scatter at later times is210

an artefact resulting from the low number of long-duration trips. In the BMW data, a
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sudden drop in data availability occurs at 30 minutes. Since recordings are stored in 30212

minute segments, some data loss may have occurred during these transitions. Figure 5
shows that automation use was uniform across the day for the Tesla drivers, while BMW214

users show more automated driving during commute hours (6h-8h and 16h-18h).

Figure 4: Automation usage over time since the start of a trip for all road types (top) and highways (bottom).
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Figure 5: Automation use over time of day (Amsterdam DST) for all road types (top) and on highway
(bottom).

Statistics of automation use216

To evaluate if automation use was influenced by time in trip, time of day and driving
speed, we performed between-trips multilevel ANOVAs with participant as random inter-218

cept variable. Only highway driving is considered for these analyses. Table 3 provides the
means and standard deviations for each category and variable and the statistical results.220

For significant factors, effect sizes are presented as differences in estimated marginal
means in Appendix D. It should be noted that Table 3 and the histograms of figures 5,222

4 and in particular 3 show different distributions. This is because the histograms show
total usage whereas Table 3 uses average usage per trip and does not account for trip224

duration.
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Table 3: Descriptives and ANOVAs for automation use on highway for various effects over experimental
trips. Note that night driving (23-4) is excluded from the ANOVA for the Tesla group because of small
sample size.

Time of day (hour) Time in trip (min) Speed (km/h)

23-4 5-9 10-15 16-18 19-22 0-30 30-60 60-90 0-10 10-60 60-100 >100

nr. trips 3 45 97 60 34 212 103 43 95 155 160 155

Te
sl

a

Manual
µ 72.9% 47.3% 57.1% 55.3% 47.4% 52.2% 36.5% 38.4% 74.1% 79.0% 42.1% 29.2%
σ 34.7% 37.8% 37.6% 40.8% 39.7% 38.9% 35.2% 35.0% 40.1% 32.4% 34.1% 33.4%

ACC
µ 27.1% 10.8% 9.9% 8.2% 10.5% 9.6% 17.7% 13.5% 3.5% 3.9% 13.9% 16.3%
σ 34.7% 13.7% 14.7% 14.6% 17.5% 15.4% 26.4% 22.5% 16.8% 12.9% 19.9% 20.6%

ACC&LK
µ 0.0% 41.9% 33.0% 36.5% 42.1% 38.2% 45.8% 48.2% 22.3% 17.1% 44.0% 54.5%
σ 0.0% 32.9% 31.8% 35.6% 36.0% 34.4% 34.3% 35.4% 37.6% 29.6% 30.9% 33.6%

nr. trips 22 144 197 142 69 526 191 68 334 510 538 523

B
M

W

Manual
µ 25.0% 22.4% 40.0% 29.4% 51.0% 34.3% 29.5% 34.6% 39.4% 48.2% 38.4% 31.0%
σ 25.5% 33.6% 40.9% 39.1% 42.1% 39.8% 38.8% 42.2% 46.9% 46.0% 41.3% 39.9%

ACC
µ 2.3% 1.2% 1.5% 1.1% 0.2% 1.1% 1.7% 1.0% 0.3% 0.4% 1.5% 0.9%
σ 0.9% 6.6% 7.6% 5.8% 0.4% 6.5% 10.2% 4.6% 2.5% 3.1% 7.7% 6.1%

ACC&LKsb µ 7.8% 5.1% 5.6% 4.2% 3.8% 5.0% 5.3% 3.2% 0.8% 2.1% 5.7% 5.8%
σ 5.2% 6.0% 6.6% 5.8% 4.5% 6.5% 10.1% 5.4% 8.1% 10.3% 9.7% 8.3%

ACC&LK
µ 60.5% 56.0% 42.3% 47.9% 34.8% 47.2% 44.7% 40.8% 21.3% 15.7% 38.8% 51.8%
σ 26.2% 29.7% 32.8% 35.7% 33.7% 34.5% 32.0% 31.1% 36.4% 29.9% 33.1% 36.2%

LKsb µ 1.9% 4.7% 4.1% 4.8% 3.9% 4.0% 6.6% 6.9% 22.4% 22.7% 6.7% 2.5%
σ 3.8% 5.2% 8.6% 9.5% 8.5% 8.2% 16.5% 13.2% 39.3% 35.3% 12.5% 6.7%

LK
µ 2.5% 10.7% 6.5% 12.5% 6.3% 8.3% 12.1% 14.0% 15.8% 11.0% 9.0% 8.0%
σ 6.6% 15.8% 11.6% 21.0% 12.7% 15.8% 19.5% 17.6% 32.1% 21.5% 16.3% 17.0%

Time of day Time in trip Speed

F p F p F p

Te
sl

a Manual F(3, 231.2)=0.603 0.613 F(2, 354.0)=5.257 0.006 F(3,559.2)=72.738 <0.001
ACC F(3, 231.4)=0.312 0.817 F(2, 355)=5.689 0.004 F(3,561)=18.937 <0.001

ACC&LK F(3, 231.3)=0.639 0.591 F(2, 354.0)=1.353 0.260 F(3, 559.2)=44.587 <0.001

B
M

W

Manual F(4, 564.1)=5.530 <0.001 F(2,778.3)=9.015 <0.001 F(3, 1895.1)=24.039 <0.001
ACC F(4, 563.6)=0.883 0.473 F(2, 752.3)=0.406 0.666 F(3, 1897.2)=4.376 0.004

ACC&LKsb F(4, 564.9)=2.7.55 0.027 F(2, 780.3)=3.514 0.030 F(3, 1895.5)=34.641 <0.001
ACC&LK F(4, 563.8)=3.574 0.007 F(2, 778.2)=0.268 0.765 F(3,1895.1)=150.453 <0.001

LKsb F(4, 565.9)=0.205 0.936 F(2, 780.4)=11.459 <0.001 F(3, 1895.3)=29.808 <0.001
LK F(4, 564.2)=5.795 <0.001 F(2, 779.4)=4.451 0.012 F(3, 1895.2)=10.861 <0.001

Time in trip was split into three categories of 30 minutes each. For the Tesla group,226

the effect of time in trip was significant for ACC but not for ACC&LK use. Table D.9 shows
that ACC use increased from 9.6% to 17.7% between the first and second 30 minutes of228

driving.
For the BMW drivers, time in trip did not change ACC or ACC&LK use significantly,230

but manual driving reduced by 12% in the second period of 30 minutes. This was
replaced with 4.1% LK, 4.1% LKsb and 1.5% ACC&LKsb.232

Time of day was split into five categories: night (23:00 - 4:59), morning (5:00 - 9:59),
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day (10:00 - 15:59), afternoon (16:00 - 18:59) and evening (19:00 - 22:59). For the Tesla234

drivers, night time driving was omitted from statistical analysis due to low sample
size. Effects of time of day on automation use were not significant. For the BMW236

drivers, automation use significantly changed with time of day for manual driving,
ACC&LCsb, ACC&LK use and LK use. There was no significant difference for ACC or LKsb.238

Differences in estimated marginal means (Table D.8) suggest that ACC&LCsb was used
the most during night time driving, and was used 1.3% more during midday compared240

to evening commute. ACC&LK use did not differ significantly between times of day, with
one exception being that it was used significantly less during evening drives (38.5%)242

compared to all other moments. Compared to midday drives, LK was used 5.1% more
during morning and 7.0% less during afternoon commute hours.244

Highway driving speed was divided into the same categories adopted by Naujoks
et al. (2016). Driving speed had a significant effect on all forms of automation use in both246

the Tesla and BMW users. Estimated marginal means (Table D.10) show that manual
highway driving occurred the most at speeds between 10-60 km/h for both vehicle types.248

Conversely, ACC&LK (and to a smaller extent ACC&LKsb for the BMW) occurred the least
at these speeds. ACC usage increased significantly over speeds between 10 km/h and 100250

km/h for the Tesla drivers, but this trend was much smaller for BMW users. In the BMW
group, LK without ACC was used significantly more while driving 10-60km/h compared252

to when driving 60-100 km/h, but not more compared to when driving >100km/h.
Overall, the trend is towards more automation use (ACC or ACC&LK) at higher driving254

speeds. However, from a duration perspective, the overall ACC&LK usage in Figure 3
suggests that ACC&LK was used at lower speeds as much as at higher speeds. This may256

relate to different behaviour during short and long periods of slow highway driving.
Prolonged low speed driving was rare; only 11% of trips with slow highway driving258

contained more than 3 minutes. This suggests that ACC&LK was especially used during
longer periods of slow highway driving, and less when such speeds were only reached260

momentarily, for instance when entering or leaving a highway at slow speeds, or when
traffic slowed down momentarily.262

3.2. Attention distribution

Since driver attention classification was unsuccessful, we evaluated if automation264

use changed the head pose distribution. This can indicate when and to which extent
automation use changes monitoring behaviour. Head heading and pitch distributions266

(Figures 6 and 7) were centred to the 50-percentile of each trip, and the standard de-
viation was compared across conditions. Statistical differences were explored during268

highway driving with a multilevel ANOVA using participant as a random intercept. For
the BMW group, the standby variants ACC+LCsb and LCsb were excluded from this analy-270
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sis. Table 4) shows that head heading and pitch were significantly affected by conditions
in both vehicles.272

Table 4: ANOVAs for effects of automation use on head heading and pitch deviation.
Heading Pitch

Tesla F(3,583.0)=12.243 <.001 F(3, 581.2)=8.412 <.001
BMW F(4, 1595.4)=79.286 <.001 F(4, 1593.7)=70.542 <.001

Figure 6 shows that large heading angles generally occurred less during automated
compared to manual driving, but this is mainly attributed to road type since heading274

distributions are more centered while on the highway. Figure 7 indicates that Tesla users
tended to face up more and face down less while using automation, whereas BMW users276

tended to have a wider distribution of pitch angles while using automation compared to
manual driving. It should be noted that these behaviours are not informative on where278

the driver is looking, as demonstrated in Appendix B. These effects reduce when only
considering highway driving.280

For highway driving, Table 4 indicates that both heading and pitch deviation differed
significantly between automation use for both vehicle types. The large sample size282

allows for statistically significant results even if effect sizes (Table D.11) are small. The
effects followed the same trends for the BMW compared to Tesla drivers. Head heading284

deviation was smallest during ACC use (Tesla 12.0°, BMW 4.7°) and largest while driving
manually in the experimental condition (Tesla 15.7°, BMW 10.2°). Interestingly, heading286

deviation in the baseline period (Tesla 13.5°, BMW 9.5°) was significantly smaller, but
did not differ significantly from ACC&LK. For BMW users, heading deviation was also288

significantly smaller during LK (7.9°) compared to baseline.
For both groups, head pitch deviation did not differ significantly between baseline290

(Tesla 6.6°, BMW 5.1°) and experimental manual driving and was significantly smaller
during ACC (Tesla 5.6°, BMW 3.2°) compared to all other conditions. Pitch deviation292

during ACC&LK did not differ from the manual conditions (baseline and experimental)
for the Tesla group, but was highest (5.6°) in the BMW group and significantly smaller294

(4.4°) during LK compared to the manual conditions, though the effect sizes are smaller
than one degree (Table D.11).296
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Figure 6: Distribution of head heading on all road types (top) and on highway (bottom). Positive heading
indicates looking to the right and positive pitch indicates looking up.
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Figure 7: Distribution of head pitch on all road types (top) and on highway (bottom). Positive pitch is
upward.

3.3. Effects of experience

We evaluate how automation experience during the first 2 months of the experimen-298

tal condition changes automation usage, and if experience affects attention as indicated
by head pose deviation. To accommodate the limited sample size, experience is exam-300

ined in 3 week periods. The baseline period is included for manual driving. Statistics are
in Table 5 and additional descriptives for automation usage over experience are given in302

Table D.13 which also includes the first day and first week of automation use.
There was no consistent change in automation usage over time. BMW users only304

had a significant change in ACC&LK and manual usage among the three-week clusters.
Estimated marginal means suggest the effect is limited to weeks 6-9 where there was306

9.5% less ACC&LK (p=.004) and 13.5% more manual driving (p<.001) compared to Wk
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1-3 . Since this is the only effect observed, it is likely a consequence of uncontrolled308

differences between conditions, rather than a direct effect of experience.
Longitudinal changes in head heading and pitch deviation are examined as indicator310

for changes in attentive behaviour. Table 5 gives the main effects and Table D.12 provides
pairwise comparisons for statistically significant effects.312

For manual driving by Tesla users, head heading deviation was 3° higher throughout
the experimental condition compared to baseline, but did not change significantly over314

time within the experimental condition. BMW drivers increased head heading deviation
in manual driving only after 3 weeks of automation use, and only by 0.8°. During ACC,316

ACC&LK and LK use, head heading was not affected by experience for either vehicle type.
Head pitch deviation changed significantly over time for manual and ACC use among318

BMW users, and for ACC&LK use for Tesla users. For the Tesla group, head pitch devi-
ation increased by 1.5° after the first 3 weeks of automation use while using ACC&LK.320

Pitch deviation during ACC among BMW users reduced 1.2° after the first 3 weeks of
automation use, and during their manual drives increased 1.5° after 9 weeks of driving,322

which is likely an artifact of the reduced number of participants which participated that
long. Similarly to the observed changes in automation usage, effects are inconsistent and324

occur at different times without explanation. Therefore, they are likely a consequence of
uncontrolled differences between conditions, rather than a direct effect of experience.326

Table 5: Main effects of experience (wk 1-3, wk 4-6, wk 7-9, wk 10-12) on usage and head heading and
pitch deviation for highway driving in the experimental condition. ANOVAs are corrected for individual
differences. Baseline condition is only included for Head variance during manual driving.

Usage Heading Pitch
F p F p F p

Te
sl

a Manual F(3, 145.2)=0.241 0.868 F(4, 309.0) = 3.659 0.007 F(4, 316.1) = 1.329 0.259
ACC F(3, 156.0)=1.196 0.313 F(3, 129.0) = 2.032 0.113 F(3, 121.2) = 2.206 0.091
ACC&LK F(3, 114.3)=1.001 0.395 F(3,121.6) = 2.528 0.061 F(3, 128.0) = 7.611 <0.001

B
M

W

Manual F(3, 513.7)=5.266 0.001 F(4, 628.6) = 15.234 <0.001 F(4, 627.9) = 2.687 0.030
ACC F(3, 516.9)=1.968 0.118 F(3,151.7)=2.112 0.101 F(3, 150.99)=4.812 0.003
ACC&LK F(3, 513.6)=2.851 0.037 F(3,379.6)=0.504 0.680 F(3, 379.4)=0.481 0.696
LK F(3, 515.4)=0.623 0.601 F(3, 342.4)=0.181 0.909 F(3, 341.5)=0.083 0.969

4. Discussion

This study analysed automation use across road types and speeds over the first two328

months of naturalistic use. Attention was evaluated using head pose deviation in heading
and pitch.330
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4.1. Automation use

Across all road types, automation usage increased with speed for both vehicle types,332

with 92.5% manual driving at speeds below 70km/h for the Tesla users and 69.7% for
the BMW users. The use of map matching for road type classification allowed us to334

analyse automation use per road type and discriminate low speed driving in congested
highways from low speed driving related to the allowed maximum speed. Automation336

use differed substantially between these conditions, as illustrated in Figures 3 and 2.
Automation (ACC and ACC&LK) was used most on highways, where it was used across338

all speeds including slow highway driving, but the least in congested traffic (10-60 km/h).
Differences between total use time and per-trip averages suggest that manual driving is340

especially preferred when slow driving lasts shortly. This may include momentary slow-
downs in traffic, but also transitions where the vehicle is entering or leaving the highway.342

Data of the BMW group suggests that ACC is used less in congested traffic, whereas LK is
used. This suggests that unstable traffic flow impairs trust in longitudinal but not lateral344

automation performance. Otherwise, full automation (ACC&LK) is preferred over only
using ACC for all road types, and speed limiting was never used. It is not clear if the346

latter means that ACC is preferred over speed limiting, since the participants have not
experienced that system. This does not mean this system is not preferred in general;348

we can expect that OEMs know which features are desired among their user groups.
These findings suggest that users were generally comfortable using automation during350

most highway conditions, and that automation was mostly used on road types for which
the systems are intended. Automation use on urban roads was limited and incidental,352

which suggests that users are aware of the system’s general limitations and typically act
accordingly.354

The effects of time of day did not show a clear circadian rhythm or other patterns.
BMW drivers used ACC&LK least in the evening, most at night and did not differ sig-356

nificantly among morning, midday and afternoon drives. They used ACC more during
morning and afternoon commute hours which could relate to road familiarity. Time of358

day effects were not observed for Tesla drivers. Time-in-trip effects suggest there was less
manual driving after 30 minutes for both driver groups. However time-on-task effects360

did not occur for the dominantly used form of automation (ACC&LK) and effect sizes
were small.362

Similarly, no longitudinal experience effects on automation use were observed over
the first 12 weeks of automation use. It is possible that most experience effects occur364

over a shorter period, possibly within a small number of trips. For instance, Beggiato
et al. (2015) demonstrated that drivers converge a mental model of ACC within 3.5 hours366

of use. On the other hand, Larsson (2012) demonstrated that ACC users keep refining
their awareness of system limitations over the first 10 months of use. It is possible that368
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such adaptations are not expressed through overall metrics such as system usage.

4.2. Head pose deviation distributions370

While we were unable to classify driver attention among attentive and driving unre-
lated areas, the analysis of head pose deviation identified small but significant trends in372

visual monitoring.
On the highway, head heading and pitch deviation were smaller during ACC use374

compared to other driving modes, including baseline. Deviations during ACC&LK did
not differ from baseline manual driving, but heading deviation was larger during manual376

driving in the experimental phase compared to baseline driving. This difference between
baseline and experimental manual driving could be caused by strategic automation use:378

drivers may prefer to drive manually in situations which require more head deviation,
such as when changing lanes. Important to note is that the effect of ACC&LK on heading380

deviation depends on whether it is compared against baseline-manual (no difference)
or experimental-manual (ACC&LK reduces heading deviation). This may raise caution382

for studies which compare attention between manual and automated driving without
providing a manual baseline. Further research is needed to determine if this is an384

experience effect or a consequence of voluntary vs. instructed usage. Automation effects
on head pitch deviation were very small and unlikely to carry practical significance.386

Collectively, these findings suggest that the amount of attentional activity in terms of
head pose deviation may be similar between ACC&LK use and baseline manual driving.388

This differs from Morando et al. (2019), who found that the median percent at road
centre of glances was 3% smaller during SAE2 compared to manual driving. Possible390

explanations for this difference include the used metrics (gaze vs. head pose) and not
controlling for periods of following a lead vehicle (which for Morando et al. increased392

percent road centre by 4%).
Besides the difference in head heading deviation between baseline and experimental394

manual driving, no longitudinal changes in head pose deviation were found which could
indicate an effect of experience.396

Whether the lower head pose deviation during ACC should be interpreted as an
increase or decrease in monitoring intensity remains to be investigated. If drivers were398

mostly monitoring attentively during automation, lower deviation could indicate an
increase in attention to road centre or cognitive narrowing due to an increased mental400

demand. However, it can also be caused by cognitive load from driving-unrelated
thoughts (Victor et al., 2005; Wang et al., 2014), a reduced perceived need for visual402

scanning, or an increase in mind wandering (He et al., 2011). Even when gaze had been
obtained in addition to head pose, identification of the correct cause may be challenging404

since even for gaze dispersion it is not certain if a wider deviation represents more
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distraction or a better monitoring strategy (Grüner and Ansorge, 2017). Classification of406

attention to driving related and unrelated areas may provide better insights.

5. Conclusions408

5.1. When and in which conditions do drivers use ACC and LK support?

ACC and LK were mostly used on road types for which the systems are intended. On410

highways ACC&LK was used 63% of the time by the Tesla group and 57% of time by the
BMW group. On highways, automation use generally increased with driving speed. It412

was used least in congested traffic (10-60 km/h) where ACC&LK was mainly replaced
by LK (BMW) or manual driving (Tesla), which could mean that especially ACC is not414

preferred in unstable traffic. On urban roads and roads with speed limits below 70 km/h,
automation was used less than 6% of the time, which suggests that users were aware416

of the system’s general limitations in those conditions. Automation use was not clearly
affected by time of day. Time-in-trip suggests that manual driving occurs less after 30418

minutes of driving, but this did not lead to a significant increase in any of the separate
forms of automation use.420

5.2. Is driver attention different during manual driving and driving with supervised
automation?422

We found limited changes in monitoring behaviour with supervised automation.
Head movement activity was smaller on highways compared to other road types. On424

highways, head pose activity during ACC&LK did not differ from baseline manual driving,
but was smaller during ACC use. Head heading deviation was larger during manual426

driving in the experimental phase compared to manual driving in the baseline phase.
This also means that studies can risk making incorrect inferences about automation428

effects on attention when only sampling manual and automation conditions during
voluntary use without a baseline condition with instructed manual driving.430

5.3. Do these behaviours change with automation experience?

There was no consistent change in automation usage over time. Similarly, changes in432

head motion activity could not be attributed to a simple experience effect, and are more
likely a consequence of uncontrolled differences between conditions.434

5.4. Limitations

This study includes 11 participants and two vehicle types. This sample size is too436

small to generalise the findings. Driver behaviour is generally more complex than
what can be captured by the conditions examined here. Therefore, only the larger and438
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consistent effects should be considered indicative. Another limitation is the use of head
pose as indicator of attention. We demonstrated that driver head pose is not predictive of440

attended region of interest. While we argue that a change in head deviation can indicate
a different monitoring strategy, we provide no suggestions on how such change should442

be interpreted with regards to better or worse monitoring, or its safety implications.

5.5. Suggestions for future research444

Since few effects were observed for aggregate factors such as experience, time of day
and time on task, future work could more closely examine motivations for automation446

use and disuse. Such information could be acquired through interviews with drivers or a
close examination of the traffic situation when control transitions are taking place.448

Our second recommendation is related to head pose. Since head pose tracking
without gaze direction was insufficient for attention classification, we recommend gaze450

monitoring for future work on naturalistic attention monitoring.
Finally, for future research it would be interesting to study if different system interac-452

tion designs impact the effectiveness and usability of the systems, and how this differs
across various user groups. Such insights could help formulate design choices that454

benefit safety and ease of use. Intuitiveness and ease of use of the systems are crucial for
the adoption and safety of the system. Systematic evaluation can aid design guidelines456

for safe user interaction. Such guidelines would be of great value for both industry and
policy. It would support industrial parties in designing safe and intuitive interfaces and458

it would support policy makers to evaluate new systems and set clear requirements for
admission on their roads.460
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Appendices to be published on-line only.

Appendix A. Automation status for the Tesla group574

Because CAN data was not successfully decoded for the Tesla, automation status
was retrieved from the instrument cluster video through icon template matching and576

a simple neural network classifier. This approach was deemed infeasible for the other
vehicles due to poor icon visibility in the recordings (which were challenging to discern578

even for manual annotation). The Tesla uses four icons to indicate system status: ACC-
on, ACC-available, LK-on and LK-available. For each icon, three template images were580

selected to represent different light conditions and camera perspectives (which tended
to change over the duration of the study). A confidence value for the presence of each582

template in the instrument cluster video was obtained every 12 frames (2.1 Hz) through
OpenCV template matching performed on a 150 by 245 px search space to account for584

camera movement. These confidence values were presented to a simple neural network
consisting of two hidden layers and leaky ReLu activation functions with a 0.1 negative586

slope. The full network and template icons (relative size as depicted) are illustrated in
Figure A.8.588

To train the classifier, 1628 status transitions were manually annotated among 121
randomly sampled recordings. This resulted in 206,653 frames for training. An additional590

test set with 445 transitions was annotated on 27 other videos, resulting in 108,396 frames
for testing. Classification performance on the test set is shown in Table A.6 and resulted592

in an overall accuracy of 99.33%, which was considered sufficient for the current analysis.
Since performance on the test set was used as a stopping criterion for classifier design594

efforts, performance of the final classifier was verified on another set of 69 randomly
sampled videos through visual inspection. Among these, 1342 minutes of manual,596

57 minutes of ACC and 257 minutes of ACC&LK use were observed. Approximately
3 minutes (0.2%) was mis-classified. Misclassification occurred when the icons were598

particularly challenging to detect from the video. Common artefacts include rolling
image, occluding specular reflection and intensity overflow, as illustrated in Figure A.9.600

Specular occlusion typically resulted in momentary misclassification of a single frame.
Pixel overflow could last for several seconds but was found to have negligible impact602

on classification performance. When rolling images occurred, they affected an entire
recording. Based on frequency patterns in the classification, the 100 most suspect videos604

were manually checked for rolling image and 45 videos were removed from further
analysis based on this check.606
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Figure A.8: Illustration of the classifier setup. Template matching was performed with 12 icon samples.
The maximum normalized correlations were used as the input features of a neural network with two
hidden layers (leaky ReLu activation functions with a negative slope of 0.1)

Table A.6: Confusion matrix comparing automation status between manual labelling and classifier on the
test set. Accuracy is 99.33%.

Predicted

Manual ACC ACC&LK

Manual 54347 55 100
Annotated ACC 195 10592 101

ACC&LK 55 218 42733
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Figure A.9: Examples of glitches in video data on which icon recognition failed. Left: rolling image of the
instrument panel as result of lost vertical sync and compression artifacts. Middle: specular reflection of a
hand occludes the ACC icon. Right: byte overflow turns over-exposed white areas black in the in the icon.

Appendix B. Head motion tracking & regions of interest classification

To annotate driver attention behaviour, Head motion was tracked from the driver608

facing camera footage using OpenFace 2.0, an open-source facial behaviour analysis
toolkit. It maintains a mean absolute error of 3° under various light conditions and610

facial expressions (Baltrusaitis et al., 2018). While OpenFace can also estimate eye gaze
direction, it was found to perform poorly on the database and therefore not extracted.612

Following promising results from Lee et al. (2018), We attempted to use head pose
as substitute for gaze in our attempt to classify driver attention into relevant regions of614

interest.
We attempted to classify attention allocation in the Tesla to the regions of interest616

(ROI) defined in Figure B.10. Regions were selected for their functional purpose during
driving; Left, right, windshield and instruments represent regions that are relevant for618

the driving task while distracted and centre console are not relevant to the driving or
monitoring task.620
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Figure B.10: Illustration of the approximate head pose regions of interest (ROI).

Since OpenFace estimates head pose relative to the driver-facing camera, association
of these head poses to regions of interest requires calibration. Calibration had to be622

performed for each trip, because the camera tended to move over the duration of the
study. Typical driver behaviour was used for calibration. A common approach is to create624

a histogram of all head poses and assume that the distribution modes (the most frequent
direction) corresponds to facing the road centre on a straight road. One challenge with626

this approach is that it does not account for momentary postural changes, which may al-
ter the relation between head pose and gaze direction. To account for this, Ahlström et al.628

(2012) identified multiple peaks as road-centre facing poses, amongst other refinements.
In this study, we adopted a geometric solution in which the head heading and pitch are630

compensated for movement of the head’s location. We determine the facing direction’s
intersection with a sphere with a 2 m radius centred at the 50-percentile head origin.632

This origin is determined for each trip and uses periods of highway driving if available,
or all data otherwise. This intersection is then expressed in polar coordinates to retrieve634

a heading and pitch compensated for head origin. These angles can then be expressed
relative to the forward facing reference angle, which we defined as the 50-percentile636

head pose while on the highway, or of the full data set when no highway data is available.
To create a ground-truth classification of head poses, we manually labelled 10,552638

images from the driver-facing camera into six attentive and distractive regions, following
the scheme in Appendix Appendix C. To balance the distribution of samples across640

regions, frames were sampled to obtain a uniform distribution of head poses. For the
second half of the annotations, we filtered to only annotate stationary head poses since642

we found transitions between regions were often hard to classify. Since only very few
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poses were labelled as attending the instruments, this class was merged with windshield-644

forward, with which the samples overlapped best. Figure B.11 shows a scatter of all
annotated head poses for sphere-projected heading and pitch angles.646

Figure B.11: Scatter of all annotated head poses. Values are compensated for head location through
sphere projection, but orientations have not been corrected for camera placement. Hence zero heading
is directed towards the camera and a heading around –35° is forward. Positive pitch represents facing
upward.

Head pose was classified using a radial basis function support vector machine. 60% of
the annotations were used for training and 40% for testing. Table B.7 shows the confusion648

matrix of the classifier on the test set. While accuracies between windshield-forward
and other regions (Left: 92.7%, console: 86.4% and 95.7%) are similar to those reported650

by Lee et al. (2018) under similar conditions and methods, our overall accuracy is only
69%. Despite balancing head poses through uniform sampling, windshield forward652

received 6 times more annotations during manual labelling compared to the other
categories on average. As a consequence, the classifier is biased towards this category654

and inflates accuracy for paired comparisons with that category. The intersection over
union rates indicates performance without rewarding true negatives and thus provide a656
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Table B.7: Confusion matrix and intersection over union (IOU) for head pose classification, comparing
human annotations to RBF SVM classifier over 4214 test images in the Tesla. Each cell indicates the
number of images (top), percentage of ground truth annotated class (bottom left) and percentage of
predicted class (bottom right)

Predicted

Windshield
forward

Left Right
Windshield

other
Centre

console
Distracted

other
IOU

A
n

n
o

ta
te

d

Windshield forward 2200 30 12 3 74 11 69.8%
Left 152 124 0 0 1 2 39.9%
Right 29 0 199 7 68 4 49.5%
Windshield other 234 1 44 6 87 4 1.5%
Centre console 318 1 23 11 285 29 29.8%
Distracted 90 0 16 0 60 89 29.2%

better indication of classification performance per category. Even a binary classification
between driving related and unrelated attention does not perform well. Grouping the658

interior-facing categories (distracted and centre console) results in an intersection over
union of 41.3% which is insufficient for reliable distraction identification. The main660

source of confusion is the ambiguity between head facing direction and direction of
gaze, which is especially large in pitch but also in heading for angles further away from662

road centre.
Due to the disappointing classification performance, the effects of naturalistic au-664

tomation use on driver (in)attention distribution could not be analysed. Instead, head
pose deviation is used as an indicator of attention.666

Appendix C. Code book for annotating head orientation in the Tesla

Is frame suitable for annotation:668

• Is driver present, and is driver’s facing direction clear? No → Space

• Is another person’s face clearly visible? Yes → Space670

• Is driver’s head pose hard to classify or exceptional/unconventional?∗ Yes → Space

If driver faces away:672

• Is driver facing or glancing through left window or to left mirror? Yes → Left

• Is driver facing or glancing through right window? Yes → Right674
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• Is driver clearly looking away from any exterior view, mirror or vehicle display?∗∗
Yes → Distracted676

If driver faces forward:

• Does driver glance to instrument panel? Yes → Instruments678

• Does driver glance well below instrument panel? Yes → Distracted

• Does driver glance towards the rear view mirror? Yes → Windshield other680

• Otherwise: Windshield forward

If driver faces towards the camera:682

• Does driver glance (just) above the camera’s origin? Yes → Windshield other

• Does driver glance at, slightly below or slightly right of camera?∗∗ Yes → Centre684

console

• Does driver glance slightly left and slightly below camera? Yes → Distracted686

• Does driver glance through right half of windshield or right mirror? Yes → wind-
shield other688

∗ Examples include sneezing, being mid-motion and severe head tilt
∗∗ When holding nomadic device, consider the direction of attention rather than the690

activity.
692

Appendix D. Paired comparisons of estimated marginal means for significant effects

The following tables provide further details on the significance of differences between694

conditions for significant effects.
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Table D.8: Differences in estimated marginal means for significant effects of time of day on highway
automation use. Only shown for BMW as Tesla shows no significant effects. See Table 3 for descriptives.

a - b ∆µ (a-b) SE p

B
M

W

M
an

u
al

5-9 h - 10-15 h -10.5% 3.5% 0.003
5-9 h - 16-18 h 5.1% 3.7% 0.167
5-9 h - 19-22 h -18.8% 4.6% <0.001
5-9 h - 23-4 h 4.4% 7.5% 0.558
10-15 h - 16-18 h 5.4% 3.5% 0.125
10-15 h - 19-22 h -8.3% 4.4% 0.060
10-15 h - 23-4 h 14.9% 7.4% 0.044
16-18 h - 19-22 h -13.7% 4.4% 0.004
16-18 h - 23-4 h 9.5% 7.5% 0.207
19-22 h - 23-4 h 23.2% 7.9% 0.003

LK

5-9 h - 10-15 h 5.1% 1.6% 0.001
5-9 h - 16-18 h -1.9% 1.7% 0.270
5-9 h - 19-22 h 3.9% 2.1% 0.065
5-9 h - 23-4 h 4.2% 3.4% 0.219
10-15 h - 16-18 h -7.0% 1.6% <0.001
10-15 h - 19-22 h -1.2% 2.0% 0.540
10-15 h - 23-4 h -0.9% 3.3% 0.782
16-18 h - 19-22 h 5.7% 2.1% 0.007
16-18 h - 23-4 h 6.0% 3.4% 0.077
19-22 h - 23-4 h 0.3% 3.6% 0.933

A
C

C
&

LK
sb

5-9 h - 10-15 h -0.4% 0.6% 0.470
5-9 h - 16-18 h 0.8% 0.6% 0.217
5-9 h - 19-22 h 0.7% 0.8% 0.420
5-9 h - 23-4 h -2.9% 1.3% 0.026
10-15 h - 16-18 h 1.2% 0.6% 0.043
10-15 h - 19-22 h 1.1% 0.8% 0.155
10-15 h - 23-4 h -2.5% 1.3% 0.054
16-18 h - 19-22 h -0.1% 0.8% 0.857
16-18 h - 23-4 h -3.7% 1.3% 0.005
19-22 h - 23-4 h -3.6% 1.4% 0.026

A
C

C
&

LK

5-9 h - 10-15 h 5.3% 3.0% 0.078
5-9 h - 16-18 h 6.1% 3.1% 0.051
5-9 h - 19-22 h 13.1% 3.9% 0.001
5-9 h - 23-4 h -4.4% 6.4% 0.490
10-15 h - 16-18 h 0.9% 3.0% 0.769
10-15 h - 19-22 h 7.8% 3.7% 0.036
10-15 h - 23-4 h -9.7% 6.3% 0.124
16-18 h - 19-22 h 7.0% 3.9% 0.077
16-18 h - 23-4 h -10.5% 6.4% 0.100
19-22 h - 23-4 h -17.5% 6.7% 0.009
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Table D.9: Differences in estimated marginal means for significant effects of time-in-trip on highway
automation use. Time indicates duration into trip. See Table 3 for descriptives.

a - b ∆µ (a-b) SE p

Te
sl

a

A
C

C

0-30 min - 30-60 min -8.1% 2.4% 0.001
0-30 min - 60-90 min -3.8% 3.3% 0.253
30-60 min - 60-90 min 4.2% 3.6% 0.246

B
M

W

M
an

u
al 0-30 min - 30-60 min 12.2% 2.9% <0.001

0-30 min - 60-90 min 7.3% 4.4% 0.094
30-60 min - 60-90 min -4.8% 4.6% 0.293

LK

0-30 min - 30-60 min -4.1% 1.4% 0.004
0-30 min - 60-90 min -2.7% 2.1% 0.194
30-60 min - 60-90 min 1.3% 2.2% 0.544

LK
sb

0-30 min - 30-60 min -4.1% 0.9% <0.001
0-30 min - 60-90 min -4.4% 1.4% 0.002
30-60 min - 60-90 min -0.3% 1.5% 0.841

A
C

C
&

LK
sb 0-30 min - 30-60 min -1.5% 0.6% 0.016

0-30 min - 60-90 min 0.4% 1.0% 0.640
30-60 min - 60-90 min 2.0% 1.0% 0.050
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Table D.10: Differences in estimated marginal means for significant effects of driving speed on highway
automation use. See Table 3 for descriptives.

BMW Tesla
a - b ∆µ (a-b) SE p ∆µ (a-b) SE p

M
an

u
al

0-10 km/h - 10-60 km/h -7.9% 2.4% 0.001 -4.4% 4.4% 0.324
0-10 km/h - 60-100 km/h 2.9% 2.4 % 0.232 32.4% 4.4% <0.001
0-10k km/h - >100 km/h 10.0% 2.4 % <0.001 45.3% 4.4% <0.001
10-60 km/h - 60-100 km/h 10.8% 2.1 % <0.001 36.8% 3.8% <0.001
10-60 km/h - >100 km/h 18.0% 2.1 % <0.001 49.7% 3.9% <0.001
60-100 km/h - >100 km/h 7.1 % 2.1 % 0.001 13.0% 3.8% 0.001

A
C

C

0-10 km/h - 10-60 km/h -0.1 % 0.4 % 0.881 -0.3% 2.3% 0.886
0-10 km/h - 60-100 km/h -1.1 % 0.4 % 0.003 -10.3% 2.3% <0.001
0-10k km/h - >100 km/h -0.6 % 0.4 % 0.133 -12.7% 2.3% <0.001
10-60 km/h - 60-100 km/h -1.1 % 0.3 % 0.002 -10.0% 2.0% <0.001
10-60 km/h - >100 km/h -0.5 % 0.3 % 0.127 -12.4% 2.0% <0.001
60-100 km/h - >100 km/h 0.5 % 0.3 % 0.105 -2.4% 2.0% 0.236

A
C

C
&

LK

0-10 km/h - 10-60 km/h 5.2 % 2.2 % 0.016 4.7% 4.2% 0.264
0-10 km/h - 60-100 km/h -18.7 % 2.1 % <0.001 -22.1% 4.1% <0.001
0-10k km/h - >100 km/h -31.5 % 2.1 % <0.001 -32.7% 4.2% <0.001
10-60 km/h - 60-100 km/h -23.9 % 1.9 % <0.001 -26.8% 3.6% <0.001
10-60 km/h - >100 km/h -36.7 % 1.9 % <0.001 -37.3% 3.6% <0.001
60-100 km/h - >100 km/h -12.8 % 1.9 % <0.001 -10.6% 3.6% 0.004

LK

0-10 km/h - 10-60 km/h 4.7 % 1.4 % 0.001
0-10 km/h - 60-100 km/h 6.6 % 1.4 % <0.001
0-10k km/h - >100 km/h 7.6 % 1.4 % <0.001
10-60 km/h - 60-100 km/h 2.0 % 1.3 % 0.117
10-60 km/h - >100 km/h 3.0 % 1.3 % 0.018
60-100 km/h - >100 km/h 1.0 % 1.2 % 0.412

A
C

C
&

LK
sb

0-10 km/h - 10-60 km/h -1.1 % 0.6 % 0.081
0-10 km/h - 60-100 km/h -4.8 % 0.6 % <0.001
0-10k km/h - >100 km/h -4.9 % 0.6 % <0.001
10-60 km/h - 60-100 km/h -3.7 % 0.6 % <0.001
10-60 km/h - >100 km/h -3.8 % 0.6 % <0.001
60-100 km/h - >100 km/h -0.1 % 0.6 % 0.803

LK
sb

0-10 km/h - 10-60 km/h -0.7 % 1.6 % 0.658
0-10 km/h - 60-100 km/h 15.1 % 1.6 % <0.001
0-10k km/h - >100 km/h 19.3 % 1.6 % <0.001
10-60 km/h - 60-100 km/h 15.8 % 1.4 % <0.001
10-60 km/h - >100 km/h 20.1 % 1.4 % <0.001
60-100 km/h - >100 km/h 4.2 % 1.4 % 0.003
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Table D.11: Differences in estimated marginal means for significant effects of automation use on highway
head heading and pitch deviation during baseline and experimental conditions.

∆µ SE p

Te
sl

a

Heading baseline - Manual −2.2° 0.6° 0.001
Heading baseline - ACC 1.5° 0.7° 0.025
Heading baseline - ACC&LK −0.3° 0.7° 0.682
Heading Manual - ACC 3.7° 0.6° <0.001
Heading Manual - ACC&LK 1.9° 0.6° 0.003
Heading ACC&LK - ACC 1.8° 0.7° 0.008
Pitch baseline - Manual −0.1° 0.3° 0.833
Pitch baseline - ACC 1.1° 0.3° <0.001
Pitch baseline - ACC&LK 0.0° 0.3° 0.945
Pitch Manual - ACC 1.1° 0.2° <0.001
Pitch Manual - ACC&LK 0.1° 0.2° 0.774
Pitch ACC&LK - ACC 1.1° 0.3° <0.001

B
M

W

Heading baseline - Manual −0.7° 0.3° 0.010
Heading baseline - ACC 4.8° 0.4° <0.001
Heading baseline - ACC&LK <0.1° 0.3° 0.936
Heading baseline - LK 1.6° 0.3° <0.001
Heading manual - ACC 5.5° 0.3° <0.001
Heading manual - ACC&LK 0.7° 0.3° 0.004
Heading manual - LK 2.3° 0.3° <0.001
Heading ACC - ACC&LK −4.7° 0.3° <0.001
Heading ACC - LK −3.2° 0.3° <0.001
Heading ACC&LK - LK 1.6° 0.3° <0.001
Pitch baseline - Manual −0.2° 0.1° 0.193
Pitch baseline - ACC 2.0° 0.2° <0.001
Pitch baseline - ACC&LK −0.4° 0.1° 0.001
Pitch baseline - LK 0.7° 0.1° <0.001
Pitch manual - ACC 2.1° 0.2° <0.001
Pitch manual - ACC&LK −0.2° 0.1° 0.046
Pitch manual - LK 0.9° 0.1° <0.001
Pitch ACC - ACC&LK −2.4° 0.2° <0.001
Pitch ACC - LK −1.2° 0.2° <0.001
Pitch ACC&LK - LK 1.2° 0.1° <0.001
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Table D.12: Differences in estimated marginal means for significant effects of experience on head heading
and pitch deviation on the highway. Baseline is only used for the manual conditions.

Heading manual Pitch ACC&LK
Tesla ∆µ SE p ∆µ SE p
Wk1-3 - baseline 1.9° 0.7° 0.006
Wk4-6 - baseline 3.0° 1.2° 0.011
Wk7-9 - baseline 2.9° 1.1° 0.008
Wk10-12 - baseline 0.8° 2.2° 0.716
Wk4-6 - Wk1-3 1.1° 1.2° 0.367 1.5° 0.5° 0.004
Wk7-9 - Wk1-3 1.0° 1.1° 0.370 1.8° 0.4° <0.001
Wk10-12 - Wk1-3 −1.1° 2.2° 0.605 1.2° 1.0° 0.232
WK7-9 - Wk4-6 0.1° 1.4° 0.961 0.3° 0.6° 0.580
Wk10-12 - Wk4-6 −2.2° 2.4° 0.353 −0.3° 1.1° 0.779
Wk10-12 - WK7-9 −2.1° 2.3° 0.364 −0.6° 1.0° 0.542

Heading manual Pitch manual Pitch ACC
BMW ∆µ SE p ∆µ SE p ∆µ SE p
Wk1-3 - baseline −0.1° 0.4° 0.714 −0.0° 0.2° 0.775
Wk4-6 - baseline 0.8° 0.4° 0.020 0.1° 0.2° 0.693
Wk7-9 - baseline 0.6° 0.4° 0.129 0.1° 0.2° 0.528
Wk10-12 - baseline 7.6° 1.0° <0.001 1.5° 0.5° 0.002
Wk4-6 - Wk1-3 0.9° 0.4° 0.013 0.1° 0.2° 0.530 −1.2° 0.3° <0.001
Wk7-9 - Wk1-3 0.8° 0.5° 0.095 0.2° 0.2° 0.425 −1.0° 0.5° 0.030
Wk10-12 - Wk1-3 7.8° 1.1° <0.001 1.5° 0.5° 0.001 −0.8° 1.0° 0.412
WK7-9 - Wk4-6 −0.2° 0.5° 0.696 0.1° 0.2° 0.782 0.2° 0.5° 0.622
Wk10-12 - Wk4-6 6.8° 1.1° <0.001 1.4° 0.5° 0.003 0.4° 1.0° 0.670
Wk10-12 - WK7-9 7.0° 1.1° <0.001 1.4° 0.5° 0.005 0.2° 1.0° 0.851
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Table D.13: Descriptives of automation use over experience during highway driving in the experimental
condition. Automation use during manual baseline of the Tesla drivers is attributed to misclassification
on the video processing. Wk 1-3 includes day 1 and Wk 1.

Baseline day 1 Wk1 wk 1-3 wk 4-6 wk 6-9 wk 9-12
Nr. trips 401 17 105 256 133 69 30

Te
sl

a

manual µ 99.8% 76.5% 77.4% 79.9% 79.2% 72.8% 83.2%
σ 1.5% 27.8% 26.5% 24.9% 25.4% 25.8% 26.8%

ACC µ 0.1% 7.1% 5.1% 4.3% 4.6% 3.5% 1.6%
σ 1.0% 10.1% 8.7% 8.9% 8.4% 6.8% 3.9%

ACC&LK µ 0.1% 16.4% 17.5% 15.7% 16.2% 23.7% 15.2%
σ 1.1% 23.2% 22.1% 20.6% 20.2% 22.5% 24.0%

Nr. trips 286 17 57 188 199 121 14

B
M

W

manual µ 98.1% 36.9% 19.3% 23.4% 28.7% 36.7% 53.8%
σ 11.5% 45.7% 32.8% 36.2% 37.4% 43.9% 45.6%

ACC µ 0.5% 6.8% 0.9% 1.3% 2.3% 0.3% 0.2%
σ 4.2% 16.9% 2.7% 5.7% 12.0% 1.5% 0.6%

ACC&LKsb µ 0.2% 6.2% 5.5% 5.7% 5.2% 4.5% 3.6%
σ 1.6% 7.5% 4.6% 5.3% 6.1% 7.0% 5.6%

ACC&LK µ 1.0% 40.1% 61.6% 58.2% 52.0% 50.7% 39.7%
σ 7.9% 39.0% 31.7% 33.3% 34.7% 38.4% 39.5%

LKsb µ 0.1% 2.5% 3.3% 2.8% 2.6% 1.7% 0.7%
σ 0.6% 4.8% 7.1% 5.7% 8.2% 3.4% 2.6%

LK µ 0.2% 6.6% 9.4% 9.0% 9.2% 6.1% 1.9%
σ 1.7% 13.8% 14.8% 15.2% 17.5% 13.0% 6.5%
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