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This paper provides a comprehensive comparison of model-based and data-driven 
approaches and analyses the benefits of using measured tyre forces for vehicle sideslip angle 
estimation. The model-based approaches are based on an extended Kalman filter and an 
unscented Kalman filter, in which the measured tyre forces are utilised in the observation 
model. An adaptive covariance matrix is introduced to minimise the tyre model mismatch 
during evasive manoeuvres. For data-driven approaches, feed forward and recurrent neural 
networks are evaluated. Both approaches use the standard inertial measurement unit and the 
tyre force measurements as inputs. Using the large-scale experimental dataset of 216 
manoeuvres, we demonstrate a significant improvement in accuracy using data-driven vs. 
model-based approaches. Tyre force measurements improve the performance of both model-
based and data-driven approaches, especially in the non-linear regime of tyres. 
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1. INTRODUCTION 
The ability to estimate the vehicle sideslip angle in 

real-time is essential to strengthening the performance of 
active vehicle control systems [1]. Various driving 
conditions, such as regular or at the handling limits, 
steady-state or transient manoeuvres, make the 
estimation challenging. Significantly, the highly non-
linear behaviour of tyres leads to a substantial limitation 
in the tyre model accuracy. Many solutions for vehicle 
sideslip angle estimation have been proposed in the past. 
They can be split into model-based [2], and data-driven 
[3] approaches. Both allow the incorporation of tyre 
forces measured by load sensing technology, e.g. load-
sensing bearings or smart tyres [4, 5]. This paper 
provides a comprehensive evaluation of the accuracy of 
each approach and aims to quantify the benefits of adding 
tyre force measurements for each of the proposed 
solutions. Although model-based and data-driven 
approaches have already been analysed in surveys, their 
comparison until now is mainly performed on simulation 
data [6, 7]. Furthermore, we demonstrate the benefits of 
tyre force measurements for each approach, which is not 
previously addressed in the literature. 

This paper compares the approaches using a large-
scale real-world experimental dataset. The dataset 
contains a great diversity of driving situations. It 
considers standard vehicle dynamics manoeuvres, e.g. 
double lane change, slalom, random steer, J-turn, spiral, 
braking in the turn, and steady-state circular tests, 
together with recorded laps at the Papenburg track. The 
dataset includes 216 manoeuvres which correspond to 
two hours of driving. The log distribution of the sideslip 
angle and lateral acceleration is represented in Fig. 1. The 
lower availability of high sideslip angle data points is due 

to the difficulties of driving in such conditions, and it 
influences the training of the data-driven approach. 

An extended Kalman Filter (EKF) and an unscented 
Kalman Filter (UKF) using a single-track vehicle model 
are implemented for the model-based approach. At the 
same time, a Feed Forward Neural Network (FFNN) and 
a Recurrent Neural Network (RNN) are considered for 
the data-driven approach. During the development of the 
estimators, the longitudinal velocity is assumed to be 
known, similar to [3, 8]. 

The contribution of this paper is twofold. First, the 
accuracy of model-based and data-driven approaches is 
compared using the large experimental dataset 
representing various driving manoeuvres. Secondly, the 
benefit of adding tyre force measurements is assessed for 
each approach. 
 

 
 

Fig. 1 Log distribution of sideslip angle and lateral 
acceleration. Each bin corresponds to 1 deg or 1 m/s2. 

 
2. MODEL-BASED APPROACH 

The model-based approach uses the physical 
knowledge of a vehicle model for state estimation. Open-
loop deterministic models are insufficient to provide an 
accurate estimation due to i) the mismatches between the 
physical and modelled vehicle behaviour, ii) the 
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uncontrolled disturbances and the stochastic 
measurement noise [9]. Thus, stochastic closed-loop 
observers, e.g. EKF, UKF, and particle filters, are 
currently applied to estimate unknown variables. EKF 
and UKF are the current industrial state-of-art for vehicle 
sideslip angle estimation because the accuracy of these 
approaches can be guaranteed in a specific operating 
region [10], and their properties can be easily assessed 
[11]. Both algorithms assume the process and 
observation noise parameters as uncorrelated and 
Gaussian. 
2.1 Extended Kalman Filter 

The EKF is the most widely used non-linear observer 
based on the Kalman filter. It linearises about the 
estimate of the current mean and covariance of the non-
linear stochastic model to compute the propagated 
covariance and mean. The EKF linearises up to the 1st 
term of the Taylor series expansion and corresponds to 
the Jacobian matrix calculation: 
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where f(…) is the stochastic model, X are the states, 𝑋𝑋 
represents the estimated ones, u is the input, and t is the 
time. Thus, it requires an analytical derivation of the 
Jacobian matrices, which can be complex and time-
consuming. Furthermore, when the process model is 
highly non-linear and subjected to strong uncertainties, 
EKF can become unstable. This can also happen when 
EKF cannot capture the non-linearities due to local 
linearisation. This problem is visually represented in Fig. 
2. The propagated covariance cannot capture the non-
linearities of the tyre force subjected to high uncertainty 
of the tyre slip angle. 
2.2 Unscented Kalman Filter 

The UKF is based on the unscented transformation, 
which assumes easier an approximation of a probability 
distribution rather than an arbitrary non-linear function 
[12]. Thus, the propagated covariance and mean are 
computed from a sigma point (σ(s)) cloud propagated 
through the non-linear process model. After the non-
linear function has been applied to each of the σ(s), it is 
possible to approximate the propagated mean (𝑋𝑋�) and 
covariance (P) as follows: 
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where n is the number of σ(s), 𝜔𝜔(𝑚𝑚) and 𝜔𝜔(𝑐𝑐) are the sigma 
point weights for the mean and the covariance, 
respectively. The σ(s) and their weights are 
deterministically chosen to enhance the unscented 
transformation performance. Thus, a linearisation up to a 
3rd order term of the Taylor series expansion can be 
achieved. If the model is strongly non-linear and 
subjected to high uncertainties, the broader scattering of 
σ(s) will allow to better capture the non-linearities, see 
Fig. 2. The UKF does not need an analytical derivation 
of the Jacobian matrices, thanks to the unscented 
transformation. 

 

 
 

Fig. 2 Propagated covariance by EKF and UKF. 
 
2.3 Vehicle Model 

The single-track model with tyre axle forces 
computed by the Dugoff tyre is chosen in this study. The 
vehicle states are the lateral velocity (Vy) and the yaw rate 
(𝜓̇𝜓), while the inputs are the road wheel angle (δ) and the 
longitudinal velocity (Vx). Two different vehicle 
measurement sets are considered: the first (Y1) is formed 
by lateral acceleration (ay) and the 𝜓̇𝜓, and the second (Y2) 
is formed by the same measurements of Y1 plus the lateral 
tyre forces, front (FyF) and rear (FyR). The stochastic 
process model is represented as follows: 
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where m stands for the vehicle mass (1970 kg), Izz is the 
vehicle moment of inertia around the vertical axis (3498 
kg m2), LF and LR are the geometrical distances between 
the centre of gravity and the front (1.47 m) and rear (1.41 
m) axle respectively. 𝜎𝜎𝑉𝑉𝑦𝑦 and 𝜎𝜎𝜓̇𝜓 are the process noise 
parameters, which compensate for the model mismatch 
to the actual vehicle and the discretisation error. The filter 
performance is strongly connected with these parameters, 
so they are tuned using a two-stage Bayesian 
optimisation (TSBO) [13].  

The observation model compares the process model 
predictions with the available measurements. It is defined 
as follows:  

(5)

 ( ) ( ) ( )( )

( )
( )

,

.

,

. .

,

,

1 , cos ,

( , , )
,

,

y me

me

yF

yR

y me yF yR a

me

yF me yF F

yR me yR F

a F X u F X um

g X u Y
F F X u

F F X u

ψ

 = δ + +σ



ψ = ψ+σ= 
 = +σ

 = +σ

where 𝜎𝜎𝑎𝑎𝑦𝑦 ,𝑚𝑚𝑚𝑚, 𝜎𝜎𝜓̇𝜓,𝑚𝑚𝑚𝑚, 𝜎𝜎𝐹𝐹𝑦𝑦𝑦𝑦  and 𝜎𝜎𝐹𝐹𝑦𝑦𝑦𝑦  are the observation 
noise parameters of respectively the 𝑎𝑎𝑦𝑦, 𝜓̇𝜓, 𝐹𝐹𝑦𝑦𝐹𝐹 and 𝐹𝐹𝑦𝑦𝑦𝑦 
measurements. Eq. 5 is the observation model for Y2; the 
one for Y1 would be formed only by the first two 
equations of the system. The observation noise 
parameters are tuned by statistical analysis of the vehicle 
sensor measurements. An adaptive noise parameter 
technique is applied to 𝜎𝜎𝐹𝐹𝑦𝑦𝑦𝑦  and 𝜎𝜎𝐹𝐹𝑦𝑦𝑦𝑦  to enhance the filter 
performance. The adaptivity is triggered when the 
vehicle behaves non-linearly to give more trust to the tyre 
force measurements [8]. This is measured through the 
absolute difference between the measured tyre forces and 
the predicted ones (Δ𝐹𝐹𝑦𝑦). When it is higher than a selected 
threshold (Tr = 700 N), the adaption is triggered and to 
avoid the chattering phenomenon, a hysteresis loop is 
implemented (Fig. 3, left). The adaptivity consists of 
reducing the level of noise associated with tyre force 
measurements to increase the value of the feedback 



Kalman gain. Thus, state estimation is sped up during 
manoeuvres at the handling limit and does not follow 
noise during normal driving situations. 𝜎𝜎𝐹𝐹𝑦𝑦𝑦𝑦  and 𝜎𝜎𝐹𝐹𝑦𝑦𝑦𝑦  are 
reduced according to the following equation: 
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where 𝜎𝜎𝑛𝑛𝑛𝑛𝑚𝑚 is the nominal value of 𝜎𝜎𝐹𝐹𝑦𝑦𝑦𝑦  or 𝜎𝜎𝐹𝐹𝑦𝑦𝑦𝑦 , 𝑟𝑟𝑚𝑚𝑎𝑎𝑚𝑚  
(12.5 N) is the maximum reduction possible, and 𝜎𝜎 is a 
parameter which defines the slope steepness (800). A 
visual representation of Eq. 6 is shown in Fig. 3 right. All 
the user-defined parameters are tuned using a TSBO. 
 

 
 

Fig. 3 Left: hysteresis loop for 𝜎𝜎𝐹𝐹𝑦𝑦𝑦𝑦  and 𝜎𝜎𝐹𝐹𝑦𝑦𝑦𝑦 . Right: 
shape of the adaptive 𝜎𝜎𝐹𝐹𝑦𝑦𝑦𝑦  and 𝜎𝜎𝐹𝐹𝑦𝑦𝑦𝑦 . 

 
3. DATA-DRIVEN APPROACH 

A model-based approach is restricted by model 
assumptions and model parametrisation. The data-driven 
approach is model-free and relies only on the universal 
approximator property of neural networks (NN). 
However, a data-driven approach requires high-quality 
data points to perform correctly. Furthermore, its 
properties are almost impossible to assess [11]. This 
work analyses two of the most common NN 
architectures: FFNN and RNN. Both are compared using 
two input sets. The first one (I1) considers only 
measurements from the inertial measurement unit (IMU), 
which are 𝑉𝑉𝑚𝑚, longitudinal acceleration (𝑎𝑎𝑚𝑚), 𝑎𝑎𝑦𝑦, 𝜓̇𝜓 and 𝛿𝛿. 
The second input set (I2) considers the same five 
measurements of I1 plus the longitudinal, lateral and 
vertical tyre forces for each of the four wheels. Thus, in 
total, seventeen measurements are used. In the pre-
processing phase, the input measurements are normalised 
because each input has a different physical meaning and 
order of magnitude. All the inputs are mapped onto the 
interval [0, 1] to speed up and stabilise the training 
process. 
3.1 Feed Forward Neural Network 

FFNN is the most straightforward NN regarding 
implementation. It usually consists of an input layer, a 
couple of hidden layers and an output layer. The input 
only moves forward, so the time correlation information 
does not have any effect. The FFNN based on I1 is formed 
by two hidden layers with 250 and 100 neurons each and 
Rectified Linear Unit (ReLU) activation functions, while 
the FFNN based on I2 is formed by two hidden layers 
with 150 and 50 neurons each. Both FFNNs use a dropout 
regularisation technique equal to 0.2 and a Xavier weight 
initialisation to avoid overfitting. 

Furthermore, an early stopping method with patience 
equal to 20 is applied to avoid overfitting. A mean 

squared error (MSE) loss function is used for the training, 
and its gradients for NN parameters are computed 
following the back-propagation algorithm. The loss 
function is minimised using a mini-batch stochastic 
gradient descent algorithm based on a standard ADAM 
optimiser with a learning rate of 0.0008. The mini-batch 
size is 1024. The training procedures' user-defined 
parameters are optimised through a Bayesian 
optimisation. 
3.2 Recurrent Neural Network 

Measurements at previous time steps possess 
predictive power on the current sideslip angle, so a RNN 
architecture is considered. A long short-term memory 
(LSTM) cell is used to avoid the vanishing/exploding 
gradient problem. The RNN based on I1 uses two hidden 
layers of 100 and 80 LSTM cells. The RNN based on I2 
uses two hidden layers of 100 and 50 LSTM cells. The 
first layers use a hyperbolic tangent activation function, 
while the second uses a sigmoid activation function. The 
LSTM time window is 0.20 s. Both RNNs use a dropout 
regularisation technique equal to 0.2 and a Xavier weight 
initialisation to avoid overfitting. An early stopping 
method with patience equal to 4 is applied to avoid 
overfitting. A MSE loss function is applied for the 
training, and its gradients for NN parameters are 
computed following the back-propagation through time 
algorithm. The loss function is minimised using a mini-
batch stochastic gradient descent algorithm based on a 
NADAM optimiser with a learning rate of 5e-4. The 
mini-batch size is 256. All the user-defined parameters of 
the training procedures are optimised through Bayesian 
optimisation. 
 
4. EXPERIMENTS 
4.1 Dataset 

This work uses an experimental dataset recorded at 
the Automotive Testing Papenburg GmbH with a BMW 
Series 3. The vehicle was instrumented with the standard 
IMU, wheel force transducers and load sensing bearings 
for each wheel, GPS and a Corrsys-Datron optical sensor 
to measure the sideslip angle (accuracy ±0.2 deg). The 
optical speed sensor measurement is used as ground truth 
to train the NN and tune the EKF/UKF. The tyre forces 
used in the dataset are from the wheel force transducers 
because they are more common sensors in the research. 
However, load-sensing bearings demonstrate a similar 
accuracy. 

The dataset consists of 216 manoeuvres covering 
standard vehicle dynamics manoeuvres, e.g. double lane 
change, slalom, random steer, J-turn, spiral, braking in 
the turn, and steady-state circular tests, together with 
recorded laps at the Papenburg track. The vehicle was 
driven on dry asphalt with tyres inflated according to the 
manufacturer's specifications. Two different settings 
(On, Off) of electronic stability control were used. 

All signals were recorded at 100 Hz, the standard 
frequency for vehicle state estimation. The 
measurements are considered only when the Vx is higher 
than 2.5 m/s. A statistical outlier removal has been 
applied to remove extreme outliers. However, particular 
attention is paid not to delete edge case measurements 



which are the most precious data. Regardless, all the 
manoeuvres are visually inspected.  

For the data-driven approach, the measurements are 
filtered using a low-pass zero-phase filter with a cut-off 
frequency of 5 Hz [14]. The filter is designed using a 
finite impulse response technique. 

The dataset is split into three subsets: training (75%), 
validation (15%) and test (10%). The test set contains 
manoeuvres representing the entire driving behaviour, 
but more focus is paid to highly non-linear situations. It 
includes 23 manoeuvres: 2 braking in the turn, 2 skidpad, 
5 J-turn, 4 slalom, 4 lane change, 2 random steers, 1 lap 
track and 3 spiral. The NN training and the EKF/UKF 
tuning use only the data from the training and the 
validation set. 
4.2 Key Performance Indicators 

The performance of the different approaches for 
vehicle sideslip angle estimation is assessed through four 
key performance indicators (KPIs). 
• The root mean squared error (RMSE) assesses the 

overall estimation performance as follows: 
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where L is the length of a manoeuvre, and 𝛽𝛽 is the 
sideslip angle. 

• The non-linear RMSE (RMSEnl) corresponds to the 
RMSE computed only when the �𝑎𝑎𝑦𝑦� ≥ 4 m/s2. It 
measures the estimation performance when the 
vehicle behaves non-linearly. 

• The absolute maximum error (ME) measures the 
worst estimation performance. 

• The non-linear ME (MEnl) measures the worst 
estimation performance when the vehicle behaves 
non-linearly. 

4.3 Results 
The hereafter analysis is conducted on the test set. 

The overall comparison of the model-based approaches 
is presented in Table 1. The comparison between EKF 
and UKF shows that the latter outperforms the EKF for 
all four KPIs. The UKF improvement of the RMSEnl 
(12.1%) is particularly relevant. It highlights how the 
UKF behaves better when the vehicle is in a non-linear 
operating region. This is not only visible from the 
RMSEnl, but also from the improvement in the MEnl 
(21.8%). The UKF’s improved performance finds an 
explanation in the aforementioned linearisation 
technique. 

Interestingly, the EKF with tyre force measurements 
reaches an overall performance very close to the UKF. 
The reason is that the tyre force measurements help 
reduce model mismatches, especially when the vehicle 
behaves non-linearly. Fig. 4 shows the experimental and 
estimated 𝐹𝐹𝑦𝑦𝑦𝑦. It is visible that when the 𝑎𝑎𝑦𝑦 is higher than 
5 m/s2 (indicated by the dashed threshold), the tyre model 
mismatch is growing. However, the EKF with tyre force 
measurements has a lower mismatch than a EKF with 
only IMU measurements. Moreover, the difference 
between estimated and measured tyre force triggers the 
observation noise parameters adaptation. The latter 

pushes the Kalman gain's magnitude and improves the 
sideslip angle estimation. 

On average, the UKF with tyre force measurements 
outperforms all other model-based algorithms for all four 
KPIs. Despite this, the tyre force measurements benefits 
for the UKF are lower than for the EKF because the first 
has a better ability to deal with vehicle non-linearities. 

A comparison between the four model-based 
algorithms is presented in Fig. 5. It shows the sideslip 
angle estimation in a J-turn manoeuvre at the handling 
limit. The UKF with tyre force measurements better 
estimates the sideslip angle, especially in the peak area 
(from 3.5 s to 4.5 s). The EKF with tyre force 
measurements performs similarly to the corresponding 
UKF but cannot estimate the peak correctly. 
 

 
 

Fig. 4 Skidpad manoeuvre. Top: measured and 
estimated front tyre lateral force. Bottom: vehicle lateral 

acceleration and observation noise parameters flag. 
 

Table 1 Model-based approach comparison. 

KPIs 
[deg] EKF EKF 

Tyre UKF UKF 
Tyre 

RMSE 0.421 0.391 0.394 0.370 
RMSEnl 0.563 0.488 0.490 0.448 

ME 1.368 1.257 1.180 1.113 
MEnl 1.271 1.169 1.068 0.994 

 

 
 

Fig. 5 J-turn manoeuver. Comparison of the sideslip 
angle estimation between the model-based approaches. 

 
The overall comparison of the data-driven 

approaches is summarised in Table 2. FFNN and RNN 
without tyre force measurements have similar 
performances, but some crucial outcomes are noticeable. 
The overall RMSE of the FNNN is lower (3.4%) than the 
RNN one. This result is counterintuitive because the time 
information exploited by the RNN contains some 



predictive power. However, when the RMSEnl of the 
RNN is compared with the one of the FFNN, it results in 
an improvement of a 13.2%. Thus, the RNN predictive 
power is exploited when the vehicle behaves non-
linearly. On the contrary, in a linear operating region, the 
simplest structure of a FFNN results beneficial compared 
to the highest number of parameters of a RNN with 
LSTM cells. Similar conclusions are visible for the ME 
and MEnl analysis. 

If the tyre force measurements are included in the 
NN input sets, the overall RMSE performance of the 
FFNN and RNN improves by, respectively, 44.9% and 
42.6%. This is coherent with the literature because tyre 
force measurements contain precious information to 
describe vehicle dynamics. The benefits of tyre force 
measurements are even more visible when the RMSEnl is 
compared. The overall RMSE performance of the FFNN 
and RNN improves by 68.1% and 58.2%, respectively. 
The reason is that the data-driven approach with the 
standard IMU measurements was poorly performing 
when the vehicle was in a non-linear operating region due 
to a lower amount of data in the training set. If the number 
of recorded manoeuvres is not increased with the tyre 
force measurements, vice versa, the amount of 
information is highly increased. Particularly important is 
the fact that a simple FFNN reaches a better performance 
than a RNN when the tyre force measurements are 
included in the input set. This is explained by the fact that 
the RNN prediction power is insufficient to compensate 
for the higher numbers of parameters to be trained. 

 
Table 2 Data-driven approach comparison. 

KPIs 
[deg] FFNN FFNN 

Tyre RNN RNN 
Tyre 

RMSE 0.379 0.209 0.392 0.225 
RMSEnl 0.645 0.206 0.560 0.234 

ME 1.635 0.784 1.649 0.783 
MEnl 1.509 0.592 1.495 0.643 
 
The log distribution of the sideslip angle error for all 

the data-driven NNs is represented in Fig. 6. It highlights 
how the FFNN and RNN with tyre force measurements 
have a smaller standard deviation than the respective NN 
with only IMU measurements. Furthermore, it highlights 
how FFNN and RNN are subjected to high ME and MEnl. 
A possible explanation is that NN learns only from the 
data, so the estimations are not validated by a vehicle 
model. 

A comparison between the data-driven approaches is 
presented in Fig. 7. It shows the sideslip angle estimation 
in a J-turn manoeuvre at the handling limit. The FFNN 
and the RNN with tyre force measurements better 
estimate the sideslip angle, especially in the peak area 
(from 2.5 s to 3.5 s). Moreover, the FFNN with tyre force 
measurements has a perfect estimation of the following 
J-turn section (from 4 s to 10 s), while the corresponding 
RNN has a slight bias. Both NNs with only IMU 
measurements cannot capture the sideslip angle peak due 
to the limited data in the training set, representing this 
condition. 

 

 
 

Fig. 6 Distribution of the sideslip angle error for every 
data-driven approach. Each bin is 0.25 deg wide. 

 

 
 

Fig. 7 J-turn manoeuver. Comparison of the sideslip 
angle estimation between the data-driven approaches. 

 

 
 

Fig. 8 Left: log distribution of the sideslip angle error 
for every approach with IMU measurements. Right: log 

distribution of the sideslip angle error for every 
approach with tyre force measurements. Each bin is 

0.25 deg wide. 
 
Below the model-based and the data-driven 

approaches are compared using Table 1 and Table 2. At 
first, both approaches are compared when only IMU 
measurements are available. The RMSE of the data-
driven approaches are lower than the model-based 
approaches, but the RMSEnl shows an opposite trend. The 
reason is that data-driven approaches are dependent on 
the quality/quantity of the data. They are less when the 
vehicle behaves non-linearly, and the sideslip angle is 
high (>5 deg), see Fig. 1, so the performance of the data-
driven approach decreases in this situation. Moreover, 
data-driven approaches are more prone to high ME and 
MEnl than model-based approaches. This can be also seen 
in the log distribution of the sideslip angle error, (Fig. 8, 
left). EKF, FFNN and RNN present few very high 
sideslip angle errors (>3 deg), while UKF has a shorter 
range. However, the data-driven approach has more 
samples in the small error bins (>1 deg). 

A different conclusion emerges if both approaches 
are compared when adding tyre force measurements. In 
this case, the data-driven approach outperforms the 
model-based one for all four KPIs. Thus, the tyre force 



measurements majorly improve the data-driven 
approach's performance. This can also be observed in the 
log distribution of the sideslip angle error (Fig. 8, right). 
The standard deviation of the FFNN and RNN is clearly 
lower than the one of the model-based approach. 

Fig. 9 shows the sideslip angle estimation in a J-turn 
manoeuvre at the handling limit with tyre force 
measurements. The overall performance of the 
considered algorithms is similar, but the FFNN has a 
more accurate estimation. Similar considerations can be 
seen in Fig. 10. On the right, a slalom manoeuvre is 
represented, while on the left, a portion of the Papenburg 
track. Fig. 10 shows how both approaches reach a very 
high estimation accuracy also in a very high dynamic 
manoeuvre and when the sideslip angle peaks up to 11 
deg. 
 

 
 

Fig. 9 J-turn manoeuver. Sideslip angle estimation 
comparison between approaches with tyre force 

measurements. 
 

 
 

Fig. 10 Left: Papenburg track corners. Right: slalom 
manoeuver. Comparison of the estimated sideslip angle 
between the approaches with tyre force measurements. 

 
5. CONCLUSIONS 

This paper presented a comprehensive comparison 
between model-based and data-driven approaches for 
vehicle sideslip angle estimation. Moreover, the benefits 
of adding measured tyre forces are demonstrated. Using 
an extensive experimental dataset, it has been shown that 
the UKF is more accurate than the EKF, but their 
performance becomes similar with the usage of 
additional tyre force measurements. FFNN and RNN 
have similar performance, and the RNN prediction power 
is perceptible only when the vehicle behaves non-
linearly. When the data-driven approaches rely on the 
tyre force measurements, it strongly outperforms the 
model-based approach. In this situation, the simpler 
structure of the FFNN yields a better estimation than the 
RNN. However, the data-driven approach can still suffer 
from the low amount of data in the training set. Future 

work involves combining the pros of the model-based 
and data-driven approach to develop a hybrid approach 
for vehicle sideslip angle estimation. 
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