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Abstract. This paper proposes a non-linear Model Predictive Contour-
ing Control (MPCC) for obstacle avoidance in automated vehicles driven
at the limit of handling. The proposed controller integrates motion plan-
ning, path tracking and vehicle stability objectives, prioritising obstacle
avoidance in emergencies. The controller’s prediction model is a non-
linear single-track vehicle model with the Fiala tyre to capture the ve-
hicle’s non-linear behaviour. The MPCC computes the optimal steering
angle and brake torques to minimise tracking error in safe situations and
maximise the vehicle-to-obstacle distance in emergencies. Furthermore,
the MPCC is extended with the tyre friction circle to fully exploit the
vehicle’s manoeuvrability and stability. The MPCC controller is tested
using real-time rapid prototyping hardware to prove its real-time capa-
bility. The performance is compared with a state-of-the-art Model Pre-
dictive Control (MPC) in a high-fidelity simulation environment. The
double lane change scenario results demonstrate a significant improve-
ment in successfully avoiding obstacles and maintaining vehicle stability.

Keywords: Model predictive contouring control, obstacle avoidance,
handling limits

1 Introduction

Automated vehicles’ safety relies heavily on their ability to effectively avoid
obstacles through evasive manoeuvres. Nevertheless, tyre non-linearities pose
a significant challenge in this regard. [1]. A hierarchical controller architecture
typically separates motion planning, path tracking, and vehicle stability tasks
[2]. Although each task can be optimised separately, in an evasive manoeuvre,
the three objectives could be in conflict with each other [3]. Therefore, to avoid
potential conflict, we integrate motion planning, path tracking, and vehicle sta-
bility into a single controller for obstacle avoidance at high speed.

Recent studies highlight that vehicle stability constraints could lead to track-
ing errors, potentially causing collisions [3,4]. A potential solution is integrating
an obstacle avoidance controller with objectives including motion planning, path
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tracking and vehicle stability [5]. Model Predictive Control (MPC) based on a
non-linear single-track vehicle model can integrate all the controllers’ objectives
and modify the desired trajectory to keep the vehicle stable and at a safe dis-
tance from the object [3]. In order to run the MPC controller in real-time, the
non-linear single-track vehicle model is linearised into an affine time-varying
model. The longitudinal and lateral control is considered separately. However,
the affine model diminishes the model’s accuracy and limits the control capa-
bilities. Furthermore, the model fidelity is particularly affected when the lateral
and longitudinal dynamics are coupled [1]. Thus, to address these limitations, a
non-linear vehicle model and non-linear optimisation must be adopted [1,6]. The
vehicle and the obstacles are represented as a set of circles, and their distance
is constantly measured in the cost function of the non-linear MPC [1]. Vehicle
kinematics is described using the Frenet coordinate system because it allows an
easy determination of the vehicle location relative to a reference line. Despite
these advantages, when the trajectory has a curvature, the vehicle-to-obstacle
(V2O) distance in the Frenet coordinate system is over-estimated with respect to
the distance in the Cartesian coordinate system. Furthermore, the computation
of the travelled distance of the vehicle with respect to the reference line at every
time step requires an additional optimisation [7].

This paper proposes a Model Predictive Contouring Control (MPCC) based
on a non-linear single-track vehicle model for obstacle avoidance. The MPCC,
recently proposed for robot motion planning at low speed [8] and lap-time op-
timisation for scaled vehicle [7], is extended to consider obstacle avoidance and
vehicle stability. The MPCC, using a Cartesian frame, aims to approximate the
MPC based on the Frenet reference system, thanks to the introduction of the lag
and contouring error in the cost function. Thus, it avoids overestimating the V2O
distance due to the Frenet coordinates, and it eliminates the additional optimisa-
tion to compute the travelled distance of the vehicle with respect to the reference
line. We exhaustively assess the controller performance in a high-fidelity simula-
tion environment designing a double lane change for vehicle obstacle avoidance.

The main contribution of this paper is twofold. The first is improving the
overall obstacle avoidance performance of the proposed MPCC over a state-of-
the-art MPC [1]. Both controllers can successfully avoid a collision between the
vehicle and the obstacle in a double-lane change. However, the baseline MPC
cannot keep the vehicle outside the unsafe area close to obstacles or road edges.
The second contribution encompasses improved vehicle stability by minimising
the peaks in sideslip angle and increasing the minimum velocity during manoeu-
vres due to better prioritisation of the obstacle avoidance objective within the
MPCC framework.

2 Prediction Model

A non-linear single-track vehicle model is used in the proposed MPCC. Only the
in-plane dynamics are considered, ignoring the lateral weight transfer and the roll
and pitch dynamics. The vehicle position is described using a Cartesian reference
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frame by the states (x = [X,Y, ϕ, vx, vy, r, θ, δ, Fx]): longitudinal position (X),
lateral position (Y ), and the heading angle (ϕ) of the vehicle centre of gravity
(CoG) relative to an inertial frame. The velocity states are the longitudinal and
lateral velocity at the CoG, respectively (vx) and (vy), and the yaw rate (r).
Furthermore, an additional state corresponding to the vehicle travelled distance
(θ) is introduced, and the MPCC cost function uses it to compute the vehicle
position relative to the reference line. The steering angle (δ) and the longitudinal
force (Fx) correspond to the integral of the control inputs. The implemented state
derivatives, (ẋ), correspond to the following equations:

Ẋ = vx cos (ψ) + vy sin (ψ)

Ẏ = vx sin (ψ) + vy cos (ψ)

ψ̇ = r

v̇x =
−Fyf (x,uv) sin(δ)+Fxf (x,uv) cos(δ)+Fxr(x,uv)−Fdrag

m + rvy

v̇y =
Fyf (x,uv) cos(δ)+Fxf sin(δ)+Fyr(x,uv)

m − rvx

ṙ =
lfFyf (x,uv) cos(δ)+lfFxf (x,uv) sin(δ)−lrFyr(x,uv)

Izz

θ̇ =
√
v2x + v2y

(1)

where Fxi and Fyi are, respectively, the longitudinal and lateral tyre forces, i
stands for front (f) or rear (r), lf and lr are the distance between the front and
rear axle to the CoG, Izz is the vehicle inertia around the z-axis, m corresponds
to the vehicle mass and Fdrag is the aerodynamic drag resistance.

The vehicle model inputs (uv) are the road-wheel angle rate (δ̇), the total
longitudinal force rate applied at the CoG (Ḟx) and the brake repartition between
the front and rear axle (λb). The control input rates are integrated into the
prediction model before being applied to the vehicle. The inputs governing the
longitudinal dynamics are Fx and λb and not Fxf and Fxr. The reason is that the
vehicle must be able to accelerate and brake, but it is forbidden to accelerate
and brake simultaneously [1]. Thus, the constraint (FxfFxr ≥ 0) is commonly
applied. However, it introduces a saddle point when both Fxr and Fxr are equal
to zero, not guaranteeing the Hessian to be positive-definite [1]. For this reason,
the constraint is implicitly formulated inside the prediction model as follows:

Fxf =

{
λbFx if Fx ≤ 0

λdFx, otherwise
Fxr =

{
(1− λb)Fx if Fx ≤ 0

(1− λd)Fx, otherwise
(2)

where λd represents whether the vehicle is front- or rear-wheel driven.
A Fiala tyre model computes the lateral tyre force for each axle, while the

longitudinal force is defined as an input of the system [1]. The non-linear coupling
between Fxi and Fyi is captured according to the friction circle [6]. The tyre
parameters are optimised by performing quasi-steady-state circular driving in a
high-fidelity simulation based on a Delft-Tyre model 6.1.

The vehicle and obstacles are represented as circles so that their Euclidean
distance can constantly be computed as follows:

DV 2O =

√
(X −Xobs)

2
+ (Y − Yobs)

2 − robs − rveh (3)
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where X, Y and Xobs, Yobs are, respectively, the longitudinal and lateral position
of the vehicle and obstacle centre, and rveh and robs are the radius of the vehicle
and obstacle circles. Thus, the vehicle and the obstacle collide when the V2O
distance DV 2O is lower than zero. The controller aims to keep DV 2O always
positive and above a user-defined safety distance.

3 Model Predictive Contouring Control

This section describes how the proposed MPCC controller integrates motion
planning, path tracking, and vehicle stability objectives.

3.1 Cost Function

The MPCC employs an iterative approach to solve an optimal control problem,
enabling the vehicle to operate at its handling limit while avoiding obstacles.
The cost function objectives encompass several aspects: tracking a reference
longitudinal and lateral position, maintaining a desired velocity, dynamically
adjusting the indicated trajectory to ensure a safe distance from obstacles while
maintaining stability, and guaranteeing the physical feasibility of input signals.
The proposed cost function (J) is:

J =

N∑
i=1

(
qeCon

e2Con,i + qeLag
e2Lag,i + qeV el

(eV el)
2
+ qδ̇ δ̇i

2
+ qḞx

˙Fxi

2
+

+ qλb
e2λb,i

+

Nobs∑
j=1

(
qeV 2O

e2V 2O,j,i

)
+

Nedg∑
j=1

(
qeV 2E

e2V 2E,j,i

)) (4)

where N is the length of the prediction horizon, Nobs is the number of obsta-
cles in the road, Nedg = 2 is the number of road edges, and parameters q∗ are
the weights of the respective quadratic errors, defined below. The weights are
fine-tuned to optimise controller performance by minimising longitudinal veloc-
ity error and sideslip angle peaks [9] and enabling the vehicle to avoid obstacles
maintaining a safe distance from obstacles and road edges.

The reference trajectory is tracked through the introduction of the contour-
ing error (eCon) and the lag error (eLag) [7,8], see Fig. 1. eCon corresponds to the
projection of the vehicle position over the desired trajectory. It is computed as a
function of the vehicle travelled distance with respect to the reference line (θs).
However, based on the Cartesian coordinate frame, the controller cannot deter-
mine the distance θs in the prediction model of eq. 1. Vice versa, it corresponds to
a state when a Frenet reference system is employed [1,6]. Thus in the MPCC, θs
is approximated by the total vehicle travelled distance θ computed as in eq. 1. To
ensure the validity of this approximation, the norm between the two distances,
called lag error, must be minimised. The errors are approximated as follows [7,8]:

ēCon = sin (Ψt (θ)) (X −Xt (θ))− cos (Ψt (θ)) (Y − Yt (θ))

ēLag = − cos (Ψt (θ)) (X −Xt (θ))− sin (Ψt (θ)) (Y − Yt (θ))
(5)
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Fig. 1. A representation of the contouring eCon and lag error eLag. θ and θs are the
vehicle travelled distance and the distance with respect to the reference line.

where Xt, YT , and ΨT are the desired longitudinal, lateral position and heading
angle. It should be noted that ēLag is minimised by following the reference trajec-
tory and modifying the vehicle velocity. Thus, if the desired velocity is unfeasible
for the given trajectory, the controller will reduce it to keep the ēLag close to zero.

The velocity is tracked by computing eV el, which corresponds to the differ-
ence between the vehicle’s velocity and the desired one.

The controller dynamically adjusts the reference trajectory to ensure a safe
distance from obstacles. This is possible by evaluating the V2O distance. The
error function (eV 20 = DV 2O −DSft,O) is computed as the difference between
a user-defined safety distance between the vehicle and the obstacle (DSft,O),
and the V2O distance DV 2O, see eq. 3. It should be noted that when DV 2O ≥
DSft,O, qV 2O is automatically set at zero, while when DV 2O ≤ DSft,O the
error is computed to keep the vehicle always at a safe distance from the ob-
ject. A similar error is introduced to keep the vehicle away from the road edges
(eV 2E = DV 2E −DSft,E). DSft,E is the safety distance between the vehicle and
the road edge, and DV 2E is the distance between the vehicle and the road edge.

The other cost terms focus on the smoothness and feasibility of control in-
puts. Thus, the cost terms are introduced to the steering angle rate and the
longitudinal force rate applied at the vehicle CoG. Furthermore, the controller
minimises the error (eλb

) between the actual brake repartition and the ideal one,

similar to the ideal brake force distribution. The ideal brake repartition,
Fzf

Fzr
/

Fzf+Fzr

Fzr
, corresponds to the percentage of the total braking force that should

be applied to the front axle to lock the front and the rear axle simultaneously.
The error eλb

helps the controller provide the ideal braking repartition. It also
allows a variation depending on various factors, e.g., the tyre saturation in the
front and rear axle or the value of the steering angle.

3.2 Constraints

The cost function is constrained based on actuator limitations, vehicle stability
and road track width. The road-wheel steering angle, the total longitudinal force
and their respective rates are limited by upper and lower constraints.

The vehicle stability is enforced by restricting the total available tyre force
at each axle using the tyre friction circle. At first, the longitudinal force (Fx) is
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restricted considering |Fx| ≤ sfµFz. Given the difficulties of estimating the road
friction coefficient (µ), the tyre friction circle is multiplied by a safety coefficient
(sf) equal to 0.95, which limits the available longitudinal force. The Fiala tyre
in the prediction model limits the maximum lateral tyre force according to the
tyre friction circle at a given Fx.

The vehicle is enforced to stay on the track using the following constraint:∥∥∥∥[XY
]
−

[
Xcen

Ycen

]∥∥∥∥2 ≤
(
Wt

2

)2

(6)

where Xcen and Ycen are the longitudinal and lateral location of the centre of
the track, and Wt is the width of the road track [7].

3.3 Obstacle Avoidance Prioritisation

The cost function combines different objectives and needs to prioritise collision
avoidance during an evasive manoeuvre. Thus, the weights associated with the
V2O or vehicle-to-edge (V2E) distance vary dynamically, according to:

qV 2O =


Pk, if DV 2O < 0

Pk e
− 2D2

V 2O
D2

Sty,O , elseif 0 ≤ DV 2O ≤ DSty,O

0, otherwise

(7)

where Pk represents the maximum value that qV 2O can reach. This value priori-
tises collision avoidance as the V2O distance decreases. It increases up to Pk in
a Gaussian shape curve. This prioritisation approach is more gradual than the
step growth from [1], which results in faster and more robust convergence of the
MPCC solver. It is important to note that prioritising collision avoidance may
result in a larger tracking error and deviation from the vehicle’s desired velocity.

4 Experimental Setup

The proposed control is tested on the SCALEXIO dSPACE real-time plat-
form, based on a multi-core DS6001 processor (2.8GHz quad-core, 1GB DDR2
SD RAM). The MPCC is set up in a separate core from the vehicle plant.
The prediction model is discretised using Runge-Kutta 2 for its proper trade-
off between accuracy and simplicity [1]. A 0.05 s sampling time and 50 steps
prediction horizon is selected to make the controller real-time implementable.
The optimisation problem is solved using the non-linear interior point solver
of FORCESPro [10]. The optimisation Hessian is approximated using the Broy-
den–Fletcher–Goldfarb–Shanno algorithm, and a user-defined initial Hessian ma-
trix is provided to speed up the solving time. All the other solver parameters
are kept as defaults. The platform successfully solves the non-linear optimisation
with an average time of 15.6ms and max solving time of 18.6ms. However, there
is no mathematical guarantee that the solver will converge in time. The vehicle
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plant runs in a separate core at 1000Hz. It is a high-fidelity BMW Series 545i ve-
hicle model based on an IPG CarMaker simulation platform. Its parameters are
determined through experimental inertia measurements, while the suspensions
are characterised using a Kinematics & Compliance test rig. The tyre dynamics
are based on a Delft-Tyre 6.1. The actuator dynamics are included through a
second-order transfer function to increase the simulation accuracy [6].

A double lane change manoeuvre with two obstacles is considered to assess
the proposed controller’s capabilities in avoiding obstacles at the limit of han-
dling. The manoeuvre contains multiple obstacles because it is crucial to assess
how the re-planning to avoid the first obstacle influences the vehicle’s capac-
ity to avoid the second one. A coarse trajectory is provided, corresponding to
the desired path from the behaviour planner. The desired path indicates which
side of the obstacle the collision avoidance controller needs to follow. Thus, the
proposed controller follows the desired trajectory while also making necessary
adjustments when the trajectory is too close to an obstacle or deemed infeasible.
Considering the initial vehicle position and orientation, the desired trajectory is
determined as a function of the road curvature and the distance along the refer-
ence line. The desired vehicle velocity is constant along all the manoeuvres [1].

5 Results

This section compares and analyses the performance of the MPCC with a base-
line MPC for collision avoidance [1].

5.1 Cartesian vs Frenet Reference Frame

The proposed MPCC controller computes the V2O and V2E distances using a
Cartesian reference system. Vice versa, the baseline is an MPC built on a Frenet
reference frame. The difference in the coordinate system implies a disagreement
on how distance is measured. Fig. 2a and Fig. 2b show a vehicle driven on a 20m
radius circular road in the Cartesian and Frenet reference system. An obstacle
is located on one side of the circle, with a normal displacement from the refer-
ence line equal to the radius of the obstacle. Assuming the vehicle drives on the
reference line, the V2O distance is computed using both coordinates at every
instance. Fig. 2c shows how the two distances vary depending on the vehicle’s
distance driven on the reference line. The distance in Frenet coordinate frame [1]
is similar to the one computed in the Cartesian coordinate frame only when the
vehicle is close to the obstacle. Vice versa, when the vehicle still needs to drive
along the reference line, the V2O distance in the Frenet reference frame is over-
estimated compared with the Cartesian distance. Thus, the MPCC can prioritise
the obstacle avoidance objective before the MPC based on the Frenet reference
frame, improving the chances of safely avoiding the obstacle while keeping the
vehicle stable. The difference between the Frenet and the Cartesian V2O dis-
tances depends on the road’s curvature and the obstacle’s normal distance from
the reference line. Fig. 2d shows how the difference in V2O distance between
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(a) Scenario in Cartesian coordinates. (b) Scenario in Frenet coordinates. (c) 20m radius trajectory. (d) V20 overestimation in Frenet frame.

Fig. 2. Fig. 2a and Fig. 2b show the scenario in Cartesian and Frenet coordinates. Fig.
2c - the V2O distance in a 20m radius circular trajectory using Frenet coordinates.
Fig. 2d - effect of trajectory curvature on the V2O distance overestimation.

Frenet and Cartesian changes with the road curvature. It can be observed that
the higher the road curvature, the greater will be the overestimation.

5.2 Double Lane Change

Fig. 3a shows the vehicle trajectories obtained by three different controllers, the
proposed MPCC with and without collision avoidance (CA) objective and the
baseline controller for CA based on an MPC [1]. The MPCC without CA causes
the vehicle to collide with the first obstacle of the double lane change, as visi-
ble from the negative V2O distance, see Fig. 3c. The collision happens because
the controller prioritises vehicle stability and path tracking over obstacle avoid-
ance, even when the desired trajectory passes dangerously close to an obstacle.
This situation can happen when the path tracker and the vehicle stability con-
troller affect the tracking performance without taking into account the position
of obstacles. Alternatively, when the desired trajectory is unfeasible due to a
mismatch in the handling limit of the motion planner and path-tracking predic-
tion model. Vice versa, the MPCC and the baseline, both with CA prioritisation,
successfully avoid both obstacles, see Fig. 3c. Despite the successful avoidance,
the replanning around the first obstacle generated by the baseline negatively
affects the rest of the manoeuvre. Thus, the vehicle trajectory has two notice-
able overshoots at 125m and 135m, which causes the vehicle to enter inside the
unsafe area near the second obstacle and to the right road edge, respectively
Fig. 3c and Fig. 3b. The MPCC with CA can avoid both obstacles and keep the
vehicle outside the unsafe area. This shows that CA prioritisation comes at the
cost of increasing the path and velocity tracking errors and decreasing vehicle
stability, pushing the vehicle to the boundaries of the handling limit. For this
reason, the baseline creates a sideslip angle peak of 9 deg at 130m, see Fig. 3e.
The baseline needs to counter-steer to return the vehicle to linear behaviour; see
Fig. 3f. On the contrary, the MPCC with CA has a higher stability margin than
the baseline by reducing the vehicle sideslip angle peaks and allowing the vehicle
to drive through the manoeuvres at a higher velocity, see Fig. 3d. Considering
Fig. 3g, the MPCC with CA begins braking 20m ahead of the baseline MPC,
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(a) Vehicle trajectories.

(b) Vehicle-to-edge distance. (c) Vehicle-to-obstacle distance. (d) Longitudinal velocity.

(e) Vehicle sideslip angle. (f) Road-wheel angle. (g) Longitudinal force input. (h) G-G diagram.

Fig. 3. States and control inputs for the double lane change manoeuvre.

so the vehicle velocity at the entry of the corner is lower, and the vehicle can
release the brake to fully exploit the lateral tyre force. However, the baseline
applies hard braking during the central part of the corner, reducing the tyre’s
capability of generating lateral tyre force. Thus, the vehicle exceeds its handling
limit obliging the controller to brake for a longer time and to stabilise the vehicle.

The MPCC applies braking before the baseline for two reasons: the Carte-
sian reference frame employed by the MPCC does not overestimate the V2O
distance. The second reason is that the MPCC performs the tracking computing
the contouring and the lag error. When the vehicle needs to replan the desired
trajectory to avoid an obstacle, the MPCC controller tends to reduce the veloc-
ity because it is the only way to decrease the lag error and, consequently, the
contouring error. However, the baseline MPC does not compute the lag error, so
it decreases the vehicle velocity later when it faces a contouring error during the
corner. However, it should be noted that the lag error in the MPCC brings com-
plexity to the cost function weights’ tuning due to the strong coupling between
velocity and path tracking. Considering the available road friction coefficient,
Fig. 3h shows that all the controllers reach the maximum lateral acceleration.
However, the controllers do not fully exploit the maximum braking capabilities.
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6 Conclusion

This paper proposed an innovative approach for obstacle avoidance in automated
vehicles driven at the handling limit. A non-linear MPCC integrates motion
planner, path tracking and vehicle stability objectives into a single controller,
prioritising obstacle avoidance in emergency situations. In a double-lane change
manoeuvre, the MPCC successfully avoids two obstacles, shortly re-planning
the target trajectory from the behaviour planner. At the same time, the same
controller without CA prioritisation collides with the obstacles. The CA priori-
tisation comes with decreased path-tracking performance and increased vehicle
sideslip angle peaks up to 3 deg. However, the vehicle remains stable and manoeu-
vrable along the double-lane change. The state-of-the-art baseline also avoids the
two obstacles but cannot keep the vehicle outside the unsafe area close to the
two obstacles. Furthermore, it loses vehicle stability reaching a sideslip angle
peak equal to 9 deg. Future works involve the implementation of the proposed
MPCC in an experimental vehicle and analysing its performance in different
road conditions.
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