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ABSTRACT1
Perceived risk captures the risk during driving perceived by drivers and is crucial for the design2
and evaluation of driving automation systems. Inappropriate perceived risk may cause driver’s3
failure to recognise dangerous situations that need driver’s operation or take-over control in case4
of automated driving. However, real-time perceived risk models have rarely been reported in the5
literature. This study aims to formulate and validate three perceived risk models for drivers of6
SAE level 2 automated vehicles and compare them with multiple performance criteria. Regression7
perceived risk model (RPR), perceived probabilistic driving risk field model (PPDRF), and driving8
risk field model (DRF) were extended based on our previous work and literature. The models9
were calibrated using two different datasets. Results showed that all the models can capture risk10
variation in risky events and quantify perceived risk. The observation-based model RPR and DRF11
perform better in their original datasets. PPDRF has advantages in 2-D computation and prediction12
in the time domain and in explaining the mechanism of perceived risk. The motion prediction of13
other road users is essential for perceived risk computation.14

15
Keywords: Percevied risk, computational models, experimental data16
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INTRODUCTION1
Road crashes are a leading cause of injury and death worldwide, resulting in approximately 1.352
million deaths and 20-50 million non-fatal injuries each year (1). Traffic accidents are mainly3
caused by human misjudgements (2). Specifically, distorted perception of the driving risk by4
human drivers is one of the important causes of road accidents (3).5

Perceived risk captures the level of risk experienced by drivers, which can differ from oper-6
ational (or actual) risk (4, 5). A low perceived risk leads to feeling safe, relaxed, and comfortable,7
while a high risk perception results in cautious behaviour (4). With the advances of active safety8
and driving automation systems, the collision risk is generally reduced but driver’s risk perception9
pattern is also changed. Inappropriate perceived risk may lead drivers to ignore the dangerous10
situations where they have to monitor the operation of the driving automation or take over the11
control, probably causing severe traffic accidents. Therefore, it is essential to understand and com-12
pute drivers’ perceived risk in driving automation and in turn, use it to make driving automation13
perceived safer.14

The zero risk theory postulates that all the motivations for actions are to maintain per-15
ceived risk below a specific threshold (6). We can accordingly predict human driver’s behaviour16
by keeping perceived risk below a certain value (7). In automated vehicles (AV), human drivers17
will inversely perceive a high level of risk if the driving automation does not have appropriate18
driving behaviours, causing decreased trust and low acceptance, and even refusal to use AV (8). In19
this aspect, the design of AVs also needs to estimate human driver’s perceived risk level.20

A few attempts have been made to model and compute perceived risk. They are either phe-21
nomenological models based on observations or mechanistic models based on first-principles. In22
the first category, Kolekar et al. (5) established a driving risk field (DRF) model based on driver’s23
subjective risk ratings and steering responses considering the probability of the event occurring24
and the event consequence. Ping et al. (9) used deep learning methods to model perceived risk25
in urban scenarios including factors related to the status of the subject vehicle and external envi-26
ronment information. Our previous study built a regression perceived risk model to explain and27
compute event-based perceived risk in highway driving reacting to merging and hard braking vehi-28
cles. Among other factors, the model captures the influence of relative motion to other road users29
on drivers’ subjective perceived risk ratings (10).30

Mechanistic perceived risk models are usually based on surrogate measures of safety (SMoS)31
or driving risk theory. For the classic SMoS, minimum time to collision (TTC) can show the32
drivers’ threshold of perceived risk when they take braking actions (11). The inverse TTC repre-33
sents drivers’ relative visual expansion of the obstacle (12). There are more complicated driving34
risk models based on driving risk field theory. Wang et al. (13) use artificial field theory to model35
driving risk considering the influence of driver, vehicle, and road characteristics. Li et al. (14) use36
this theory to develop a warning strategy to prevent traffic accidents. Probabilistic driving risk field37
(PDRF) (15) using the paradigm of artificial field theory, considers the probability of motion pre-38
dictions of other road users and the collision severity to estimate the collision risk in 2 dimensions.39
In fact, all above-mentioned models estimate the actual collision risk rather than perceived risk,40
although there is a connection between the actual collision risk and perceived risk.41

The observation-based models can estimate perceived risk quite well in specific datasets42
but are not validated in various scenarios and are not fully explainable; the mechanistic models43
that are explainable can compute actual risk but the mapping between the actual collision risk and44
perceived risk is still unclear and the threshold of the SMoS has not been determined reasonably45
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based on the real driving data for perceived risk. Moreover, no comprehensive comparison has1
been conducted to analyse the different models’ performance.2

To fill the research gaps, this study has two main objectives: Objective 1 is to formulate3
three perceived risk models based on different mechanisms and calibrate them using two different4
datasets; Objective 2 is to analyse and comprehensively compare the three models in a systematic5
way. In this study, other road users’ motion is focused on in all models since it accounts for most6
of driver’s risk perception (10, 16). In recent years, personalised driver models that can describe7
human drivers’ behaviour have gained increasing attention, the parameters of which can vary to8
adapt to individual differences. This study aims to develop general models that can be tuned to9
adapt to different scenarios and individual differences instead of direct personalised modelling.10
Our model parameters will be calibrated based on two different datasets.11

The remainder of this paper is structured as follows. The formulation of three models is12
detailed in Section Model formulation. The methods including perceived risk data, model cal-13
ibration approach and the performance indices are introduced in Section Model calibration and14
performance indices. The calibration and simulation results are represented in Section Results fol-15
lowed by Section Discussions, and the conclusions are given in Section Conclusions and future16
work.17

MODEL FORMULATION18
In this section, two models are formulated by extending our previous studies. A third model is19
adapted based on a state-of-art model from the literature.20

Regression perceived risk model (RPR)21
The regression perceived risk model (RPR) was an event-based perceived risk model established22
from a simulator experiment of us, where 18 merging events with various merging distance and23
braking intensity on a 2-lane highway were simulated. Event-based perceived risk ratings and24
continuous perceived risk measures were collected, based on which the event-based regression25
perceived risk model was established with the corresponding kinematic data (10). The details of26
the data will be introduced later.27

The RPR model builds on several assumptions:28
• Perceived risk stems from the vehicles directly in front of the subject vehicle, which29

means the merging vehicles cause perceived risk only after entering the current lane;30
• Driver can accurately estimate the motion information (e.g., relative position, velocity,31

acceleration, etc.) with the human sensory system.32
• Perceived risk in the forward driving direction is only influenced by the lane change33

vehicle or the leading vehicle, although the general perceived risk is caused by many34
objects (e.g., other traffic vehicles in the adjacent lane, infrastructure, etc.) during the35
drive.36

The event-based regression perceived risk model was built based on the event-based per-37
ceived risk and the corresponding kinematic data in merging and braking events. The original38
model can predict event-based perceived risk (10), as shown in Equation (1)39
perceived_risk = 9.384−2.473 · ln(min_gap)−0.038 ·Y DL−0.201 ·max_BI +0.470 ·GEN (1)40
where perceived_risk is the event-based perceived risk ranging from 0-10; min_gap is the min-41
imum relative gap to the leading vehicle during an event; Y DL represents the years with a valid42
driving license; max_BI denotes the maximum braking intensity of the merging vehicle; GEN43
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represents the gender of the participants with Female = 1 and Male = 0.1
The model can output event-based perceived risk after a certain event but cannot do real-2

time computation. Hence, a necessary extension is needed to compute real-time perceived risk.3
In this study, we replace the minimum gap between the leading and the subject vehicle and the4
average braking intensity of the leading vehicle in one certain event of the real-time values. Y DL5
and GEN are neglected since they are always constant regarding a certain group of participants. In6
this way, RPR is formulated in the continuous time domain as7
RPR(t) =C0 +C1 · ln(gap(t))+C2 ·BI(t) (2)8
where gap(t) is the real-time gap between the subject vehicle and the leading vehicle (m); BI(t) is9
the current braking intensity of the leading vehicle (m/s2); According to the simulator experiment10
settings (10), the validity range of the model is that gap(t)< 33m and −8m/s2 ⩽BI(t)⩽−2m/s2.11
The pattern of perceived risk needs to be verified outside this range. To get better performance,12
parameters C0, C1 and C2 for different datasets will be calibrated later.13

Perceived probabilistic driving risk field model (PPDRF)14
Perceived probabilistic driving risk field model (PPDRF) is built based on the probabilistic driving15
risk field model (PDRF) (15), considering different traffic conditions and drivers’ individual dif-16
ferences. The basis, artificial potential field, is a popular method that can be used to estimate the17
collision risk and control the vehicle motion in driving automation (13, 14, 17).18

The original PDRF (15) includes two components to estimate the collision risk: the poten-19
tial risk from non-moving objects and the kinetic risk caused by other road users. PDRF estimates20
the potential risk by the collision energy and the collision probability that increases with the de-21
crease of relative distance to the non-moving obstacles. For the kinematic risk, PDRF computes22
the collision probability based on the overlap in space with objects at a single future time instant.23
Correspondingly, the predicted position of the subject vehicle according to the current motion state,24
a vehicle dynamics model, and the range of predicted positions of the neighbours are used. The25
risk is estimated by using a stochastic approach where the neighbour’s longitudinal and lateral26
accelerations are treated as random variables, following a Gaussian distribution in stable highway27
driving (18, 19).28

In real driving, human drivers perceive the driving risk by assessing the probability of a29
specified accident and how concerned they are with the possible consequences (20, 21), which is30
the same as the mechanism of PDRF. In this paper, we assume that human drivers’ perception of31
other vehicles’ motion such as the relative distance, velocity and acceleration is accurate but the32
motion uncertainties and behaviours deviate substantially from the real values and vary among33
drivers in different traffic conditions (22–24), leading to discrepancies between the objective risk34
and the perceived risk, and individual differences between drivers. Hence, we have several assump-35
tions to extend the original PDRF as perceived probabilistic driving risk field (PPDRF) considering36
human drivers’ risk perception:37

• The longitudinal and lateral acceleration of the merging vehicle is independent of each38
other;39

• The acceleration of merging vehicles follows Gaussian distribution with the real-time40
acceleration being the mean value of the distribution;41

• The subject vehicle maintains the current state in a short prediction horizon;42
• Different drivers estimate other road users’ acceleration distribution differently, which43

can differ from the real statistics and vary among drivers;44
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• The risk gradient to a static object of human drivers varies among drivers.1
The first three assumptions simplify other road users’ motion and the last two consider2

human drivers’ perception. Based on the discussions and the assumptions above, we can define the3
kinetic risk for PPDRF regarding moving objects as4
Rn,s(t) = 0.5Msβ

2 |∆vs,n(t + τ)|2 · p̃(n,s | t) (3)5
where Rn,s(t) is the kinetic collision risk between the subject vehicle s and a neighbour vehicle n in6
Joules at time t. β = Mn

Ms+Mn
denotes the mass ratio. Ms and Mn are the mass of the subject vehicle7

and the neighbour vehicle. p̃(n,s | t) is the collision probability to the neighbour vehicle estimated8
by drivers ranging on [0,1]. p̃(n,s | t) is constructed as Equation (4).9

p̃(n,s | t) = N
(

∆X(t)−∆VX(t)τ
0.5τ2 | µX(t), σ̃X

)
·N

(
∆Y (t)−∆VY (t)τ

0.5τ2 | µY (t), σ̃Y

)
(4)10

where N is the collision probability density function that is assumed to be Gaussian distribution in11
this study. The acceleration distribution of the neighbour vehicle and the relative spacing between12
the subject vehicle and the neighbour vehicle can be visualised as Figure 1. Parameters µX(t)13
and µY (t) denote the mean of the Gaussian distribution in longitudinal and lateral acceleration,14
which are set to the neighbour’s real-time longitudinal and lateral acceleration at time t; σ̃X and σ̃Y15
are the respective standard deviations of the Gaussian distribution in the longitudinal and lateral16
directions, which are different from the real statistics and vary among drivers, representing drivers’17
different judgement of other road users’ motion uncertainties. ∆X(t) and ∆Y (t) denote the relative18
spacing in X and Y direction between the subject vehicle and the neighbour vehicle; ∆VX(t) and19
∆VY (t) denote the longitudinal relative velocity and lateral relative velocity. τ is the prediction20
time horizon in second. τ = 3s performs best in estimating the collision probability in rear-end21
conflict in stable highway driving up to 108 km/h (15). Note that the prediction horizon τ can vary22
among human drivers.23

The potential risk taken by vehicle s due to a static object o can be modelled as24

Ro,s(t) = 0.5kM (Vs,o( t))2 ·max
(

e−|rs,o|/D,0.001
)

(5)25

where Ro,s(t) denotes the potential risk casued by the static object o; M denotes the mass of s; |rs,o|26
is the relative distance between the subject vehicle s and the non-moving object o; Vs,o denotes27
the relative velocity; 0.5kM(Vs,o)

2 represents the expected crash energy scaled by the parameter28
k, with range [0−1], which is set to 1 in this study representing the neighbour is immovable; the29
term e−|rs,o|/D is the collision probability ranging between [0-1], where D determines the steepness30
of descent of the potential field.31

Accordingly, at a given moment t, human drivers perceive a total risk consisting of kinetic32
risk and potential risk as follows33
R(t) = Rn,s(t)+Ro,s(t) (6)34
R(t) is an energy value that can reach 3× 104 J in stable motorway driving (15). To compare35
the output with perceived risk ratings in specific ranges, PPDRF(t) for moving objects can be36
normalised as Equation (7)37
PPDRF(t) =Cgain ·R(t)/max(R(t0, tend)) (7)38
where max(R(t0, tend)) represents the maximum Rn,s(t) in a certain period from t0 to tend . Cgain39
depends on the range of perceived risk data, which is 0−10 in this study.40
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FIGURE 1: The acceleration probability distribution of neighbour vehicle

Driving risk field model (DRF)1
DRF describes a 2D risk field around obstacles consisting of a 2-dimensional field to represent the2
driver’s belief about the probability of an event occurring (probability field) and its consequence3
(severity field)(5), which are multiplied to provide an estimation of driver’s perceived risk. The4
establishment of DRF is based on the following assumptions:5

• Perceived risk is the product of the possibility of a hazardous event occurring estimated6
by drivers and the event severity;7

• The risk field becomes wider as the longitudinal distance from the subject vehicle in-8
creases;9

• The height of the risk field decays as the lateral and longitudinal distance from the vehicle10
increases;11

The 2D probability field has a Gaussian cross-section laterally. The height of the Gaussian h and12
the width σ are separately modelled as a parabola and linear function of longitudinal distance x in13
front of the subject vehicle. Since there is only straight driving in this study, the probability field14
can be simplified as15

p = h · exp
(
−y(t)2

2σ2

)
(8)16

17
h = s · (x(t)− v(t) · tla)2 (9)18

19
σ = m · x(t)+ c (10)20
where the subject vehicle is at the original point (0,0); p is the probability of an event happening at21
position (x(t),y(t)); h and σ are the height and the width of the Gaussian at longitudinal position22
x(t); s defines the steepness of the height parabola; tla is the human driver’s preview time (s); m23
defines the widening rate of the 2D probability field; c is the quarter width of the subject vehicle24
(m). At time t, x(t) and y(t) represent the longitudinal and lateral distance to the subject vehicle;25
v(t) is the subject vehicle’s velocity (m/s);26

With the 2-D probability field, perceived risk can be computed if the event severity is27
defined. Hence, the severity field of the events in this study can be defined as28

sev(t) =

{
2500, (x(t),y(t)) ∈ AO,

0, (x(t),y(t)) /∈ AO.
(11)29
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where AO represents a neighbour vehicle’s spatial area. Note that the severity value 2500 can vary1
in different datasets.2

According to the definition of DRF, the continuous perceived risk quantified by DRF can3
be modelled as4
RDRF(t) = ∑ p(x(t),y(t)) · sev(t) (12)5
In order to compare RDRF with the scaled perceived risk data, DRF(t) can be formatted as Equation6
(13).7
DRF(t) =Cgain ·RDRF(t)/max(RDRF (t0, tend )) (13)8
where max(RDRF (t0, tend)) represents the maximum RDRF in a certain period from t0 to tend; Cgain9
is 10 in this study.10

Model properties11
The risk field of three models for moving objects is detailed in Figure 2 based on different braking12
intensities (−2 m/s2, −5 m/s2 and −8 m/s2) of the neighbour and Figure 3 shows the risk field13
for static objects. In this section, we qualitatively analyse and compare the properties of the three14
models based on the model formulation and the visualisation.15

RPR is an observation-based model with a 1-D risk field using the relative gap to and16
braking intensity of the leading vehicle to compute perceived risk. Only when both variables are17
defined in the same lane, can RPR have output. RPR risk field has a width in Figure 2 and 318
since we considered the dimension of the vehicles or obstacles but RPR is still 1-D because the19
lateral threats are not included. With the braking intensity increasing, RPR has a larger risk area20
in front of the subject vehicle (Figure 2 (a-c)), meaning that human drivers perceived more risk of21
the object at the same position but with a stronger brake.22

PPDRF is a mechanistic model with a 2-D risk field as it considers other road users’ motion23
in two directions simultaneously and the potential risk in 2-D of the fixed objects. The shape of24
the risk field is different between moving and non-moving objects since the risk field is generated25
from the kinetic risk component in Figure 2(d-f)) but from the potential risk component in Figure26
3 (b).27

DRF is an observation-based model and it also has a 2-D risk field as its probability field28
and severity field are both 2-D. The risk field does not change with different braking intensities29
(Figure 2(g-i)) since no motion information of other road users is considered in the model. The30
risk area in front of the subject vehicle is larger with a longer preview time tla of the driver and a31
higher subject vehicle’s velocity.32

Both PPDRF and DRF use the risk field theory to compute the driver’s perceived risk33
but their formulation is different. For the non-moving objects, both PPDRF and DRF compute34
perceived risk based on a probability field and a severity field in 2-D. PPDRF considers the relative35
velocity to the object, changing the shape of the probability field and the severity field in real time36
but DRF’s risk field is fixed once the parameters are pre-calibrated based on certain datasets. For37
other road users, PPDRF computes kinetic perceived risk based on motion prediction but DRF38
lacks the kinetic risk part. In other words, DRF is a static model heavily dependent on pre-known39
knowledge but PPDRF can adapt to different scenarios and datasets easier.40

Based on the discussion above, the model features are summarised as follows:41
• RPR: A regression model in highway driving reacting to merging and hard braking vehi-42

cles.43
– Attributes: Observation-based44
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– Dimension: 1-D1
• PPDRF: A probabilistic driving risk assessment approach based on risk field theory con-2

sidering collision probability and consequences3
– Attributes: Mechanism-based4
– Dimension: 2-D5

• DRF: A perceived risk model consisting of a risk field and a severity field of conse-6
quences based on risk field theory7
– Attributes: Observation-based8
– Dimension: 2-D9

(a) BI = −2 m/s2 (b) BI = −5 m/s2 (c) BI = −8 m/s2

RPR risk field

(d) BI = −2 m/s2 (e) BI = −5 m/s2 (f) BI = −8 m/s2

PPDRF risk field

(g) BI = −2 m/s2 (h) BI = −5 m/s2 (i) BI = −8 m/s2

DRF risk field

FIGURE 2: Risk field of human driver’s longitudinal and lateral risk perception to traffic objects
on a 2-D plane (with the subject and merging vehicle’s velocity 27m/s). The subject vehicle is at
the original point. Each row shows the risk field of one model with different braking intensity of
leading vehicle. Model parameters are calibrated in Section Model calibration.
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(a) RPR risk field (b) PPDRF risk field (c) DRF risk field

FIGURE 3: Risk field of human driver’s longitudinal and lateral risk perception to traffic objects
on a 2-D plane (with fixed obstacles and the subject velocity 25m/s). The subject vehicle is at the
original point. Model parameters are calibrated in Section Model calibration.

MODEL CALIBRATION AND PERFORMANCE INDICES1
In this section, the datasets, model calibration methods, and performance indices are introduced.2

Dataset introduction3
Two datasets from literature are used for the model calibration and validation in this study.4

The first dataset (Dataset Merging) (10) is collected from our previous simulator experi-5
ment where 18 merging events with different merging distance and braking intensity on a 2-lane6
highway were simulated. Figure 4 shows an example of the simulated events during the experi-7
ment. The participants were asked to monitor the scenario as fall-back ready drivers for an SAE8
Level 2 driving automation. The participant used a pressure sensor to give perceived risk ratings9
from 0-10 continuously in the time domain (see the lower row in Figure 4), which are the con-10
tinuous perceived risk data. After each event, the participants were also asked to give a verbal11
perceived risk rating from 0-10 regarding the previous event, which is the discrete event-based12
perceived risk data. The corresponding kinematic data (e.g. position, speed and acceleration of13
the subject vehicle and neighbouring vehicles) were collected in the meantime. It has been shown14
that the peak of continuous perceived risk in a specific event should not be much different from the15
corresponding verbal rating (10). With this criterion, the perceived risk data of 220 merging events16
(30 s of each event) with corresponding kinetic data were kept.17

The second dataset (Dataset Obstacle Avoidance) (16) includes drivers’ verbal perceived18
risk ratings and steering angle signals when the participants face static obstacles suddenly appear-19
ing in front with the subject vehicle’s velocity of 25m/s in manual driving mode. The corresponding20
vehicle kinematic data and the position of the obstacles were recorded at the same time.21

In model calibration, for Dataset Merging, we use the event-based perceived risk and the22
peak of the continuous perceived risk in a certain event as the references; For Dataset Obstacle23
Avoidance, we use the event-based perceived risk, and the steering wheel angle peak in a certain24
event as the references.25
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FIGURE 4: The upper row: Video stream of a merging with hard braking event simulated in the
experiment. The lower row: Corresponding perceived risk values indicated by a participant with
the pressure sensor.

Model calibration1
Although we are developing general models considering the average characteristics of all partici-2
pants, the influences of group features and scenarios cannot be ignored. Therefore, a dataset-level3
calibration of parameters is considered for all models to get the best performance. Here, we have4
RMSEi defined as5

RMSEi =

√
∑

N
n=1 (ŷn − yn)

2

N
(14)6

where RMSEi represents the root mean square error between the collected perceived risk data and7
the model output. For Dataset Merging, i = event and i = peak represent the RMSE for event-8
based perceived risk and the peak of continuous perceived risk respectively; For Dataset Obstacle9
Avoidance, i = event and i = peak represents the RMSE for event-based perceived risk and the10
maximum steering wheel angle separately. ŷn is the model output; yn is the referred perceived11
risk data. N is the number of events in different datasets with N = 220 for Dataset Merging and12
N = 2496 for Dataset Obstacle Avoidance.13

The calibration tries to minimise ∑RMSEi for all models by tuning the key model param-14
eters based on perceived risk and corresponding kinematic data. It should be pointed out that the15
first sample point of the kinematic data where the obstacle suddenly appears in Dataset Obstacle16
Avoidance is used for the calibration since the participants were asked to give a verbal perceived17
risk rating as soon as the obstacle appears.18

Performance indicators19
We use five indicators to evaluate the model performance: Prediction accuracy, Detection rate,20
Linear time scaling factor, Dynamic time warping and Time efficiency.21

Prediction Accuracy22
We use Root mean squared error (RMSE) to quantify the model Prediction accuracy, which is the23
same as the model calibration criterion. This indicator reflects the model’s ability to compute the24
overall perceived risk in a certain event. A model with a smaller RMSE can predict the overall25
perceived risk for a certain event more accurately.26
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Detection rate1
The models cannot detect all dangerous events due to model limitations. The Detection rate rep-2
resents the model’s ability to detect a risky event that is also perceived as dangerous by human3
drivers. We defined detection rate as Equation (15)4

Rdet =
Ndetected

Nevent
×100% (15)5

where Ndetected represents the number of events where the model manages to detect the risk with6
non-zero output; Nevent is the total number of the events where human drivers gave perceived risk7
ratings in a certain dataset with Nevent = 220 for Dataset Merging and Nevent = 2496 for Dataset8
Obstacle Avoidance. A model with a higher detection rate can recognise more events that are also9
perceived as dangerous by human drivers.10

Linear time scaling factor11
The perceived risk signal has a time duration in certain events. Taking the continuous perceived12
risk signal as the reference, we can linearly scale the duration of the model output by a time factor13
to fit the duration of the continuous perceived risk. The linear time scaling factor (LTSF) can be14
defined as Equation (16).15

LT SF =
t10%model

t10%PR
=

n10%model

n10%PR
(16)16

where t10%PR is the duration when continuous perceived risk has more than 10 % of the peak in spe-17
cific events; t10%model is the duration when model has more than 10 % of the output peak. Equally,18
we can use the number of samples to define LTSF. n10%PR is the number of sample points of con-19
tinuous perceived risk, which is more than 10 % of the signal peak in specific events; n10%model is20
the number of sample points of model output, which is more than 10% of the model output peak.21
Figure 5 shows the original two signals and the aligned signals by LTSF, where LTSF is larger than22
1. LTSF reflects the model output range in the time domain. An LTSF that is closer to 1 indicates23
that the model can cover the whole process of human drivers’ risk perception better.24

FIGURE 5: An example of linear time scaling where the duration of the original model output is
longer than original perceived risk. The model output is compressed by a linear time scaling factor
that is larger than 1.
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Dynamic time warping (DTW) distance1
As the duration of the model output and continuous perceived risk is different from each other,2
we cannot directly calculate the similarity between them. Hence, Dynamic time warping (DTW)3
algorithm is employed to quantify the similarity. There are two time series X and Y having M and4
N sampling points respectively. Define the distance matrix between the m th sample point of X and5
the n th sample point of Y as a Euclidean distance dmn(X,Y) :6
dmn(X,Y) = |xm − yn| (17)7
The DTW searches two path sequences ix and iy (of the same length) in the distance matrix dmn,8
(m = 1,2,. . . ,M, n = 1,2,. . . ,N), which minimises the sum of the distances between the sampling9
points along the distance path. Figure 6 shows a pair of aligned signals by using DTW. Note that10
DTW is to align two signals to the same length and DTW distance finally represents the similarity11
of two signals with different duration. Two signals are more similar with a smaller DTW distance.12

FIGURE 6: An example of Dynamic time warping. DTW align them by searching two path
sequences to minimise distance sum. Both aligned signals have different time duration from the
original signals.

Time efficiency13
All the models should be used in real-time perceived risk computation so Time efficiency is critical.14
More complex models may have a better performance in Prediction accuracy but tend to take a15
longer time. We define Time Efficiency as the model’s computation time cost per data sample.16
If the time consumption exceeds the computation time step, it means that the computation of17
perceived risk cannot be finished in real-time.18

RESULTS19
In this section, we illustrate the applicability of the three models and evaluate their performance20
with the performance indicators introduced previously regarding the two datasets.21

Model calibrations and results22
As the discussion above, we calibrate all models to get the best performance. According to the23
model structure and the dataset feature, the parameters to be calibrated are listed.24

• RPR: C0, C1,C225
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• PPDRF: σ̃x, σ̃y (Only for Dataset Merging); D (Only for Dataset Obstacle Avoidance)1
• DRF: p, m, and tla(only for Dataset Obstacle Avoidance)2

Note that we re-scale the perceived risk linearly to 0-10 in Dataset Obstacle Avoidance to match the3
range in Dataset Merging. The calibration is conducted separately regarding two different datasets4
and Table 1 shows the calibration results for different models.5

TABLE 1: Calibrated parameters for all models

Model Parameters Explanation
Values for

Dataset
Merging

Values for
Dataset

Obstacle
Avoidance

RPR
C0 The intercept in the regression model 11.30 16.30
C1 The coefficient of gap to the leading vehicle -3.70 -2.50

C2
The coefficient of leading vehicle’s braking

intensity
-0.36 0

PPDRF
σ̃x

The standard deviation of longitudinal
acceleration distribution of neighbour vehicle

0.56 /

σ̃y
The standard deviation of lateral acceleration

distribution of neighbour vehicle
0.11 /

D The steepness of descent of the potential field / 0.46

DRF
p

The steepness of the height parabola of the risk
field

0.15 0.15

tla Human driver’s preview time / 4.87
m The rate of the risk field width expanding 3.98×10−8 5.66×10−4

RPR has three key parameters that are relevant to the initial risk, the gap to and the braking6
intensity of the leading vehicle. The participants have a positive initial perceived risk level and7
perceive more risk with a smaller gap to the object based on the signs of C0 and C1. According to8
C2 for Dataset Merging, a stronger brake of the leading vehicle causes higher risk. Note that C2 is9
0 for Dataset Obstacle Avoidance since the objects in the experiment are static.10

The calibrated σ̃x and σ̃y of the Gaussian distribution in PPDRF reflect the human drivers’11
estimation of other road users’ motion uncertainties so the value may differ from the actual statis-12
tics. Only σ̃x and σ̃y are calibrated for Dataset Merging and only D for Dataset Obstacle Avoidance13
because the computation of potential risk and kinetic risk of PPDRF is different.14

The parameter s of DRF is highly affected by the value in the severity field. The calibrated15
value is different from that in Kolekar et al. (5) since we have different perceived risk scales and16
considered more participants.17

All three models’ parameters are validated to be stable with sub-datasets covering 80% and18
50% of all the events. We can conclude that the calibration is not easily affected by the data noise19
and we do improve the model performance by calibrating the parameters.20

Quantitative analysis results21
We use both datasets including the perceived risk data and the corresponding kinematic data to test22
the three models with the calibrated parameters in Table 1 and different aspects of performance are23
represented by the following sections.24
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Prediction accuracy1
As mentioned in Section Prediction accuracy, RMSE reflects the overall Prediction accuracy of the2
models in certain events where the continuous error in the time domain is not considered. Table3
2 shows the RMSE for all three models regarding two different datasets. The RMSE distribution4
across all the events of the dataset is shown in Figure 7.5

Two kinds of RMSE show that RPR and DRF perform better in Dataset Merging. A pos-6
sible reason is that they are originally built for perceived risk computation based on observations7
but PPDRF is adapted from PDRF that is formulated to assess actual collision risk in traffic. In8
Dataset Obstacle Avoidance, RMSEevent shows PPDRF and DRF have better performance since9
they consider lateral perceived risk as well, leading to a higher prediction accuracy regarding a10
2-D dataset (Table 2). In Dataset Obstacle Avoidance, more than 80% of participants’ verbal rat-11
ings are 0 but the steering response to the objects that suddenly appear is always non-zero. Hence,12
models in Figure 7(c) have more outliers than in Figure 7(d). Additionally, the risk field of PPDRF13
is steeper than DRF in the longitudinal direction because Exponential and Quadratic functions are14
used respectively, making DRF more sensitive than PPDRF in further areas regarding static ob-15
jects. Consequently, DRF has more non-zero outputs in further areas, which can be outliers if the16
majority of the ratings is 0.17

(a) RMSEevent Dataset Merging (b) RMSEpeak for Dataset Merging

(c) RMSEevent for Dataset Obstacle Avoidance (d) RMSEpeak for Dataset Obstacle Avoidance

FIGURE 7: RMSE distribution for all models in two datasets. Bars present RMSE at 5, 25, 50,
75, 95 percentile. The red ’+’ represent outliers. The same below.
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Detection rate1
According to Equation 15, the detection rate for three models regarding two datasets is shown2
in Table 2. In Dataset Merging, the merging vehicle causes only longitudinal risk in the same3
lane. Hence, all models can detect dangerous events no matter whether the model is 1-D or 2D.4
However, in Dataset Obstacle Avoidance, the obstacles were broadly distributed on a 2-D plane.5
Only the models that can capture lateral risk have the ability to detect dangerous objects outside6
the forward path. Hence, RPR has a low detection rate and PPDRF and DRF can recognise all7
dangerous events that are also perceived as risky by human drivers.8

Linear time scaling factor9
LTSF reflects the model’s ability to cover human drivers’ whole risk perception process in certain10
events. In this study, we only consider LTSF for Dataset Merging where the continuous perceived11
risk data is included. Figure 8 shows the LTSF distribution for the three models and the average12
is listed in Table 2. Generally speaking, the model can fit drivers’ risk perception process better if13
LTSF is closer to 1. LTSF of RPR and DRF is larger than 1 indicating that the two models can cover14
the whole risk perception process of human drivers but can cause false positive errors. However,15
LTSF for PPDRF is smaller than 1, which means the model output comes later and ends earlier16
than human drivers’ perceived risk, causing the false negative error. Note that we can tune the17
parameters of PPDRF to cover the whole risk perception process but that means the improvement18
of LTSF may be at the expense of other aspects of performance.19

FIGURE 8: Linear time scaling factor distribution

Dynamic time warping (DTW) distance20
DTW distance describes the similarity between the continuous perceived risk and the model output.21
Similar to LTSF, we only consider DTW for Dataset Merging because only this dataset contains22
continuous perceived risk data. According to Section Dynamic time warping (DTW) distance and23
Equation (17), the DTW distance is shown in Table 2 and the distribution is shown in Figure 9.24

Generally speaking, two signals are more similar if DTW distance is smaller. 2 and Figure25
9 show that PPDRF has the best performance indicating that the output of PPDRF can fit the curve26
of perceived risk best. The calibration of model parameters can improve the model performance27
but can hardly change the shape of the output curve. That means the mechanism of PPDRF reveals28
the pattern of human drivers’ risk perception to some extent, which will be discussed later.29
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FIGURE 9: DTW distance distribution for five models

Time efficiency1
For Time efficiency comparison, the simulation for different models should be conducted with the2
same device, which is a workstation with Intel Core i7-8665U 1.9Ghz and 8GB RAM. The com-3
putation time for different models is shown in Table 2. In general, models that consider more com-4
plicated situations took more time for computation. In both datasets, RPR took the least time since5
it only involves logarithmic calculation. In Dataset Merging, PPDRF is the most time-consuming6
model as it requires spatial overlap computations and multiple integrals in the overlap area. Al-7
though DRF also has multiple integrals, the overlap computations are much easier than PPDRF8
since the risk field and severity field are static and there is no motion prediction of neighbours. In9
Dataset Obstacle Avoidance, PPDRF took less time than DRF as PPDRF only computes potential10
risk, which is much simpler than the kinetic risk computation in Dataset Merging.11

TABLE 2: Model performance represented by the performance indicators. The results are averaged values
across all events that are different from the 50 percentile red dash lines in Figure 7-Figure 9

RPR PPDRF DRF p (K-W test)

Dataset Merging

RMSEevent 2.36 3.22 2.39 0.000
RMSEpeak 2.61 3.37 2.70 0.000

Detection rate 1.00 1.00 1.00 1.000
DTW distance 145.72 105.08 118.97 0.001

LTSF 2.16 0.42 2.25 0.000
Time consumption (ms)∗ 0.0003 7.6292 0.4626 0.000

Dataset Obstacle Avoidance

RMSEevent 3.07 2.40 2.41 0.000
RMSEpeak 3.31 3.61 3.42 0.000

Detection rate 0.10∗∗ 1.00 1.00 1.000
DTW distance / / / /

LTSF / / / /
Time consumption (ms) ∗∗∗ 0.0002 0.0141 0.5304 0.000

∗ The average value of computing 66220 samples.
∗∗ Only the objects directly in front of the vehicle can be detected by RPR, which leads to a low detection rate. See

Kolekar et al. (16) for more experiment details
∗∗∗ The average value of computing 349440 samples.
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Summary of quantitative model performance1
According to the results presented in this section, we use radar charts to show the model perfor-2
mance in various aspects (Figure 10). Generally speaking, RPR has the best performance in overall3
prediction accuracy but PPDRF can fit the risk perception process best according to the DTW dis-4
tance and LTSF performance in Dataset Merging. In Dataset Obstacle Avoidance, PPDRF and5
DRF have the advantages in Detection rate because they can capture lateral risk.6

(a) Rankings for Dataset Merging (b) Rankings for Dataset Obstacle Avoidance

FIGURE 10: Rankings of models by performance indicators

DISCUSSIONS7
Model mechanism8
RPR and DRF are phenomenological models derived from observations, which means that the9
models depend on the scenarios and corresponding data heavily. They are originally built based on10
Dataset Merging and Dataset Obstacle Avoidance respectively and that is the possible reason why11
they compute perceived risk accurately in corresponding datasets. However, their parameters have12
to be carefully calibrated to get better performance for different scenarios and datasets. Although13
DRF is an observation-based model, it is still in the framework of risk field theory.14

PPDRF is established based on the artificial field theory considering the motion of other15
road users and static obstacles so we treat it as a mechanism-based model. PDRF performs well in16
estimating actual collision risk (15) and PPDRF can easily compute perceived risk after calibration17
regarding the two datasets. We can conclude that PPDRF has the potential to be easily extended18
to fit different scenarios after calibrations if given the suitable probabilistic assumption of other19
traffic participants’ motions. Mechanistic models are also helpful to explain the mechanism of20
human drivers’ risk perception.21

The relation between modelling and human driver’s risk perception22
The three models presented in this study can compute perceived risk accurately in two datasets,23
indicating that these models are promising to explain perceived risk.24

The position of objects in interaction is vital for human drivers’ perceived risk. All three25
models consider objects’ position information. Specifically, RPR uses the gap to the leading vehi-26
cle as the position information in 1-D; PPDRF and DRF directly use objects’ coordinates in 2-D as27
the position information. In other words, we have to know which object has threats and where it is28
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in dynamic driving, which is different from the concept studies where perceived risk is generally1
described as a feeling or a climate without any specific objects in conflict (8, 25).2

The motion of the objects in interaction is essential to compute perceived risk, which is3
used by human drivers to predict the potential collision in a certain prediction horizon. RPR uses4
the braking intensity of the leading vehicle to predict the motion. The stronger the brake intensity5
is, the more likely the collision happens. PPDRF uses the relative velocity and acceleration to6
predict the position of other road users, which performs better in 2-D. DRF does not directly use7
the relative motion but the preview time provides a prediction horizon for human drivers.8

Another essential part of perceived risk is the sequence of the potential events in the future.9
PPDRF and DRF prove that human drivers perceive risk by estimating not only the probability of10
the potential collision but also the severity of the collision, which corresponds to the results of Ping11
et al., Näätänen and Summala (9, 26). In the process of DTW, the duration of the model output12
is rescaled but the shape can be preserved, which means PPDRF provides the best shape of the13
perceived risk field. This is extra proof of this theory.14

We can find several features of perceived risk according to the three models. In the longitu-15
dinal direction, human drivers perceive higher risk when driving closer to the objects in interaction16
and the increase is non-linear where perceived risk sharply in the near area. Logarithm, Gaus-17
sian, Exponential and Quadratic functions are used to describe this non-linear relation but further18
research is needed to find the best shape. In the lateral direction, the risk field’s cross-section of19
PPDRF and DRF is coincidentally Gaussian, indicating that Gaussian could be a suitable function20
to describe the change of lateral perceived risk.21

The detection rate of the three models proves that perceived risk is actually 2-D, but existing22
studies seldom discuss the underlying mechanism. We discuss several possible reasons to underpin23
the 2-D nature of perceived risk. Firstly, other road users may collide with the subject vehicle from24
the lateral direction or even any direction. This kind of collision can dramatically widen the risk25
field. Secondly, human drivers may have estimation errors of the subject vehicle’s dimension,26
which can influence the width of the risk field in the nearby area. Thirdly, it is difficult for human27
drivers to judge whether an object is on the collision path or not, widening the risk field in a further28
area. Lastly, the motion uncertainties of other road users and the subject vehicle may widen the29
risk field. The latter uncertainty is relevant to human drivers’ driving skills or the trust in driving30
automation.31

Limitations32
We use two datasets to calibrate and validate the models. Dataset Merging covers human drivers33
perceived risk data in highway automated driving, but the lateral risk is lacking. Dataset Obstacle34
Avoidance contains human drivers perceived risk data in 2-D, providing more information on lat-35
eral perceived risk. However, this dataset is collected from manual driving, which may cause bias36
in automated driving studies. Additionally, the objects in the experiment are fixed and suddenly37
displayed during the driving. The additional perceived risk caused by surprise cannot be neglected.38

CONCLUSIONS AND FUTURE WORK39
This study formulated or adapted three models to compute perceived risk in two datasets. All three40
models were calibrated and compared regarding their performance. Based on the simulation results41
and the analysis, we reach the following findings: (1) Perceived risk is 2-D coming from both42
longitudinal and lateral directions and increases non-linearly with the decrease of the distance to43
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surrounding vehicles; (2) It is proved that human drivers perceive risk by estimating the probability1
of potential collision and its severity; (3) Gaussian is suitable to describe the lateral change of2
perceived risk; (4) The observation-based model can compute perceived risk accurately regarding3
specific datasets but the extension to more scenarios and datasets is limited; (5) PPDRF has the4
potential to compute perceived risk accurately and explain its mechanism; (6) The prediction of5
other road users’ motion is vital to estimate perceived risk.6

In the next steps, we will collect more perceived risk data in 2-D to improve and validate the7
models. Specifically, we will add lateral perceived risk to RPR by calculating the safety metrics in8
2-D; PPDRF will be improved by more accurate motion prediction of other road users considering9
different acceleration distributions or path planning.10
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