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ABSTRACT1
Perceived risk captures the risk during driving perceived by drivers and is crucial for the design2
and evaluation of driving automation systems. Inappropriate perceived risk may cause driver’s3
failure to recognise dangerous situations that need driver’s operation or take-over control in case4
of automated driving. However, real-time perceived risk models have rarely been reported in the5
literature. This study aims to formulate and validate three perceived risk models for drivers of6
SAE level 2 automated vehicles and compare them with multiple performance criteria. Regression7
perceived risk model (RPR), perceived probabilistic driving risk field model (PPDRF), and driving8
risk field model (DRF) were extended based on our previous work and literature. The models9
were calibrated using two different datasets. Results showed that all the models can capture risk10
variation in risky events and quantify perceived risk. The observation-based model RPR and DRF11
perform better in their original datasets. PPDRF has advantages in 2-D computation and prediction12
in the time domain and in explaining the mechanism of perceived risk. The motion prediction of13
other road users is essential for perceived risk computation.14

15
Keywords: Percevied risk, computational models, experimental data16
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INTRODUCTION1
Road crashes are a leading cause of injury and death worldwide, resulting in approximately 1.352
million deaths and 20-50 million non-fatal injuries each year (1). Traffic accidents are mainly3
caused by human misjudgements (2). Specifically, distorted perception of the driving risk by4
human drivers is one of the important causes of road accidents (3).5

Perceived risk captures the level of risk experienced by drivers, which can differ from oper-6
ational (or actual) risk (4, 5). A low perceived risk leads to feeling safe, relaxed, and comfortable,7
while a high risk perception results in cautious behaviour (4). With the advances of active safety8
and driving automation systems, the collision risk is generally reduced but driver’s risk perception9
pattern is also changed. Inappropriate perceived risk may lead drivers to ignore the dangerous10
situations where they have to monitor the operation of the driving automation or take over the11
control, probably causing severe traffic accidents. Therefore, it is essential to understand and com-12
pute drivers’ perceived risk in driving automation and in turn, use it to make driving automation13
perceived safer.14

The zero risk theory postulates that all the motivations for actions are to maintain per-15
ceived risk below a specific threshold (6). We can accordingly predict human driver’s behaviour16
by keeping perceived risk below a certain value (7). In automated vehicles (AV), human drivers17
will inversely perceive a high level of risk if the driving automation does not have appropriate18
driving behaviours, causing decreased trust and low acceptance, and even refusal to use AV (8). In19
this aspect, the design of AVs also needs to estimate human driver’s perceived risk level.20

A few attempts have been made to model and compute perceived risk. They are either phe-21
nomenological models based on observations or mechanistic models based on first-principles. In22
the first category, Kolekar et al. (5) established a driving risk field (DRF) model based on driver’s23
subjective risk ratings and steering responses considering the probability of the event occurring24
and the event consequence. Ping et al. (9) used deep learning methods to model perceived risk25
in urban scenarios including factors related to the status of the subject vehicle and external envi-26
ronment information. Our previous study built a regression perceived risk model to explain and27
compute event-based perceived risk in highway driving reacting to merging and hard braking vehi-28
cles. Among other factors, the model captures the influence of relative motion to other road users29
on drivers’ subjective perceived risk ratings (10).30

Mechanistic perceived risk models are usually based on surrogate measures of safety (SMoS)31
or driving risk theory. For the classic SMoS, minimum time to collision (TTC) can show the32
drivers’ threshold of perceived risk when they take braking actions (11). The inverse TTC repre-33
sents drivers’ relative visual expansion of the obstacle (12). There are more complicated driving34
risk models based on driving risk field theory. Wang et al. (13) use artificial field theory to model35
driving risk considering the influence of driver, vehicle, and road characteristics. Li et al. (14) use36
this theory to develop a warning strategy to prevent traffic accidents. Probabilistic driving risk field37
(PDRF) (15) using the paradigm of artificial field theory, considers the probability of motion pre-38
dictions of other road users and the collision severity to estimate the collision risk in 2 dimensions.39
In fact, all above-mentioned models estimate the actual collision risk rather than perceived risk,40
although there is a connection between the actual collision risk and perceived risk.41

The observation-based models can estimate perceived risk quite well in specific datasets42
but are not validated in various scenarios and are not fully explainable; the mechanistic models43
that are explainable can compute actual risk but the mapping between the actual collision risk and44
perceived risk is still unclear and the threshold of the SMoS has not been determined reasonably45
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based on the real driving data for perceived risk. Moreover, no comprehensive comparison has1
been conducted to analyse the different models' performance.2

To �ll the research gaps, this study has two main objectives:Objective 1 is to formulate3
three perceived risk models based on different mechanisms and calibrate them using two different4
datasets;Objective 2 is to analyse and comprehensively compare the three models in a systematic5
way. In this study, other road users' motion is focused on in all models since it accounts for most6
of driver's risk perception (10, 16). In recent years, personalised driver models that can describe7
human drivers' behaviour have gained increasing attention, the parameters of which can vary to8
adapt to individual differences. This study aims to developgeneral modelsthat can be tuned to9
adapt to different scenarios and individual differences instead of direct personalised modelling.10
Our model parameters will be calibrated based on two different datasets.11

The remainder of this paper is structured as follows. The formulation of three models is12
detailed in Section Model formulation. The methods including perceived risk data, model cal-13
ibration approach and the performance indices are introduced in Section Model calibration and14
performance indices. The calibration and simulation results are represented in Section Results fol-15
lowed by Section Discussions, and the conclusions are given in Section Conclusions and future16
work.17

MODEL FORMULATION18
In this section, two models are formulated by extending our previous studies. A third model is19
adapted based on a state-of-art model from the literature.20

Regression perceived risk model (RPR)21
The regression perceived risk model (RPR) was an event-based perceived risk model established22
from a simulator experiment of us, where 18 merging events with various merging distance and23
braking intensity on a 2-lane highway were simulated. Event-based perceived risk ratings and24
continuous perceived risk measures were collected, based on which the event-based regression25
perceived risk model was established with the corresponding kinematic data (10). The details of26
the data will be introduced later.27

The RPR model builds on several assumptions:28
• Perceived risk stems from the vehicles directly in front of the subject vehicle, which29

means the merging vehicles cause perceived risk only after entering the current lane;30
• Driver can accurately estimate the motion information (e.g., relative position, velocity,31

acceleration, etc.) with the human sensory system.32
• Perceived risk in the forward driving direction is only in�uenced by the lane change33

vehicle or the leading vehicle, although the general perceived risk is caused by many34
objects (e.g., other traf�c vehicles in the adjacent lane, infrastructure, etc.) during the35
drive.36

The event-based regression perceived risk model was built based on the event-based per-37
ceived risk and the corresponding kinematic data in merging and braking events. The original38
model can predict event-based perceived risk (10), as shown in Equation (1)39
perceived_risk = 9:384� 2:473� ln(min_gap) � 0:038�YDL� 0:201� max_BI + 0:470� GEN (1)40
whereperceived_risk is the event-based perceived risk ranging from 0-10;min_gap is the min-41
imum relative gap to the leading vehicle during an event;YDL represents the years with a valid42
driving license;max_BI denotes the maximum braking intensity of the merging vehicle;GEN43
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represents the gender of the participants withFemale= 1 andMale= 0.1
The model can output event-based perceived risk after a certain event but cannot do real-2

time computation. Hence, a necessary extension is needed to compute real-time perceived risk.3
In this study, we replace the minimum gap between the leading and the subject vehicle and the4
average braking intensity of the leading vehicle in one certain event of the real-time values.YDL5
andGENare neglected since they are always constant regarding a certain group of participants. In6
this way, RPR is formulated in the continuous time domain as7
RPR(t) = C0 + C1 � ln(gap(t))+ C2 � BI(t) (2)8
wheregap(t) is the real-time gap between the subject vehicle and the leading vehicle (m);BI(t) is9
the current braking intensity of the leading vehicle (m=s2); According to the simulator experiment10
settings (10), the validity range of the model is thatgap(t) < 33m and� 8m=s2 6 BI(t) 6 � 2m=s2.11
The pattern of perceived risk needs to be veri�ed outside this range. To get better performance,12
parametersC0, C1 andC2 for different datasets will be calibrated later.13

Perceived probabilistic driving risk �eld model (PPDRF)14
Perceived probabilistic driving risk �eld model (PPDRF) is built based on the probabilistic driving15
risk �eld model (PDRF) (15), considering different traf�c conditions and drivers' individual dif-16
ferences. The basis, arti�cial potential �eld, is a popular method that can be used to estimate the17
collision risk and control the vehicle motion in driving automation (13, 14, 17).18

The original PDRF (15) includes two components to estimate the collision risk: the poten-19
tial risk from non-moving objects and the kinetic risk caused by other road users. PDRF estimates20
the potential risk by the collision energy and the collision probability that increases with the de-21
crease of relative distance to the non-moving obstacles. For the kinematic risk, PDRF computes22
the collision probability based on the overlap in space with objects at a single future time instant.23
Correspondingly, the predicted position of the subject vehicle according to the current motion state,24
a vehicle dynamics model, and the range of predicted positions of the neighbours are used. The25
risk is estimated by using a stochastic approach where the neighbour's longitudinal and lateral26
accelerations are treated as random variables, following a Gaussian distribution in stable highway27
driving (18, 19).28

In real driving, human drivers perceive the driving risk by assessing the probability of a29
speci�ed accident and how concerned they are with the possible consequences (20, 21), which is30
the same as the mechanism of PDRF. In this paper, we assume that human drivers' perception of31
other vehicles' motion such as the relative distance, velocity and acceleration is accurate but the32
motion uncertainties and behaviours deviate substantially from the real values and vary among33
drivers in different traf�c conditions (22–24), leading to discrepancies between the objective risk34
and the perceived risk, and individual differences between drivers. Hence, we have several assump-35
tions to extend the original PDRF as perceived probabilistic driving risk �eld (PPDRF) considering36
human drivers' risk perception:37

• The longitudinal and lateral acceleration of the merging vehicle is independent of each38
other;39

• The acceleration of merging vehicles follows Gaussian distribution with the real-time40
acceleration being the mean value of the distribution;41

• The subject vehicle maintains the current state in a short prediction horizon;42
• Different drivers estimate other road users' acceleration distribution differently, which43

can differ from the real statistics and vary among drivers;44
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• The risk gradient to a static object of human drivers varies among drivers.1
The �rst three assumptions simplify other road users' motion and the last two consider2

human drivers' perception. Based on the discussions and the assumptions above, we can de�ne the3
kinetic risk for PPDRF regarding moving objects as4
Rn;s(t) = 0:5Msb2 jDvs;n(t + t )j2 � p̃(n;s j t) (3)5
whereRn;s(t) is the kinetic collision risk between the subject vehiclesand a neighbour vehiclen in6
Joules at timet. b = Mn

Ms+ Mn
denotes the mass ratio.Ms andMn are the mass of the subject vehicle7

and the neighbour vehicle. ˜p(n;s j t) is the collision probability to the neighbour vehicle estimated8
by drivers ranging on [0,1]. ˜p(n;s j t) is constructed as Equation (4).9

p̃(n;s j t) = N
�

DX(t) � DVX(t)t
0:5t 2 j mX(t); s̃X

�
� N

�
DY(t) � DVY(t)t

0:5t 2 j mY(t); s̃Y

�
(4)10

whereN is the collision probability density function that is assumed to be Gaussian distribution in11
this study. The acceleration distribution of the neighbour vehicle and the relative spacing between12
the subject vehicle and the neighbour vehicle can be visualised as Figure 1. ParametersmX(t)13
and mY(t) denote the mean of the Gaussian distribution in longitudinal and lateral acceleration,14
which are set to the neighbour's real-time longitudinal and lateral acceleration at timet; s̃X ands̃Y15
are the respective standard deviations of the Gaussian distribution in the longitudinal and lateral16
directions, which are different from the real statistics and vary among drivers, representing drivers'17
different judgement of other road users' motion uncertainties.DX(t) andDY(t) denote the relative18
spacing in X and Y direction between the subject vehicle and the neighbour vehicle;DVX(t) and19
DVY(t) denote the longitudinal relative velocity and lateral relative velocity.t is the prediction20
time horizon in second.t = 3s performs best in estimating the collision probability in rear-end21
con�ict in stable highway driving up to 108 km=h (15). Note that the prediction horizont can vary22
among human drivers.23

The potential risk taken by vehiclesdue to a static objecto can be modelled as24

Ro;s(t) = 0:5kM(Vs;o( t))2 � max
�

e� jrs;oj=D;0:001
�

(5)25

whereRo;s(t) denotes the potential risk casued by the static objecto; M denotes the mass ofs; jrs;oj26
is the relative distance between the subject vehicles and the non-moving objecto; Vs;o denotes27
the relative velocity; 0:5kM(Vs;o)2 represents the expected crash energy scaled by the parameter28
k, with range[0� 1], which is set to 1 in this study representing the neighbour is immovable; the29
terme� jrs;oj=D is the collision probability ranging between [0-1], whereD determines the steepness30
of descent of the potential �eld.31

Accordingly, at a given momentt, human drivers perceive a total risk consisting of kinetic32
risk and potential risk as follows33
R(t) = Rn;s(t) + Ro;s(t) (6)34
R(t) is an energy value that can reach 3� 104 J in stable motorway driving (15). To compare35
the output with perceived risk ratings in speci�c ranges,PPDRF(t) for moving objects can be36
normalised as Equation (7)37
PPDRF(t) = Cgain � R(t)=max(R(t0; tend)) (7)38
where max(R(t0; tend)) represents the maximumRn;s(t) in a certain period fromt0 to tend. Cgain39
depends on the range of perceived risk data, which is 0� 10 in this study.40
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FIGURE 1: The acceleration probability distribution of neighbour vehicle

Driving risk �eld model (DRF)1
DRF describes a 2D risk �eld around obstacles consisting of a 2-dimensional �eld to represent the2
driver's belief about the probability of an event occurring (probability �eld) and its consequence3
(severity �eld)(5), which are multiplied to provide an estimation of driver's perceived risk. The4
establishment of DRF is based on the following assumptions:5

• Perceived risk is the product of the possibility of a hazardous event occurring estimated6
by drivers and the event severity;7

• The risk �eld becomes wider as the longitudinal distance from the subject vehicle in-8
creases;9

• The height of the risk �eld decays as the lateral and longitudinal distance from the vehicle10
increases;11

The 2D probability �eld has a Gaussian cross-section laterally. The height of the Gaussianh and12
the widths are separately modelled as a parabola and linear function of longitudinal distancex in13
front of the subject vehicle. Since there is only straight driving in this study, the probability �eld14
can be simpli�ed as15

p = h� exp
�

� y(t)2

2s 2

�
(8)16

17
h = s� (x(t) � v(t) � tla)2 (9)18

19
s = m� x(t)+ c (10)20
where the subject vehicle is at the original point (0,0);p is the probability of an event happening at21
position(x(t);y(t)) ; h ands are the height and the width of the Gaussian at longitudinal position22
x(t); s de�nes the steepness of the height parabola;tla is the human driver's preview time (s);m23
de�nes the widening rate of the 2D probability �eld;c is the quarter width of the subject vehicle24
(m). At timet, x(t) andy(t) represent the longitudinal and lateral distance to the subject vehicle;25
v(t) is the subject vehicle's velocity (m/s);26

With the 2-D probability �eld, perceived risk can be computed if the event severity is27
de�ned. Hence, the severity �eld of the events in this study can be de�ned as28

sev(t) =

(
2500; (x(t);y(t)) 2 AO;

0; (x(t);y(t)) =2 AO:
(11)29
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whereAO represents a neighbour vehicle's spatial area. Note that the severity value 2500 can vary1
in different datasets.2

According to the de�nition of DRF, the continuous perceived risk quanti�ed by DRF can3
be modelled as4
RDRF(t) = å p(x(t);y(t)) � sev(t) (12)5
In order to compareRDRF with the scaled perceived risk data,DRF(t) can be formatted as Equation6
(13).7
DRF(t) = Cgain � RDRF(t)=max(RDRF (t0; tend)) (13)8
where max(RDRF (t0; tend)) represents the maximumRDRF in a certain period fromt0 to tend; Cgain9
is 10 in this study.10

Model properties11
The risk �eld of three models for moving objects is detailed in Figure 2 based on different braking12
intensities (� 2 m=s2, � 5 m=s2 and� 8 m=s2) of the neighbour and Figure 3 shows the risk �eld13
for static objects. In this section, we qualitatively analyse and compare the properties of the three14
models based on the model formulation and the visualisation.15

RPR is an observation-based model with a 1-D risk �eld using the relative gap to and16
braking intensity of the leading vehicle to compute perceived risk. Only when both variables are17
de�ned in the same lane, can RPR have output. RPR risk �eld has a width in Figure 2 and 318
since we considered the dimension of the vehicles or obstacles but RPR is still 1-D because the19
lateral threats are not included. With the braking intensity increasing, RPR has a larger risk area20
in front of the subject vehicle (Figure 2 (a-c)), meaning that human drivers perceived more risk of21
the object at the same position but with a stronger brake.22

PPDRF is a mechanistic model with a 2-D risk �eld as it considers other road users' motion23
in two directions simultaneously and the potential risk in 2-D of the �xed objects. The shape of24
the risk �eld is different between moving and non-moving objects since the risk �eld is generated25
from the kinetic risk component in Figure 2(d-f)) but from the potential risk component in Figure26
3 (b).27

DRF is an observation-based model and it also has a 2-D risk �eld as its probability �eld28
and severity �eld are both 2-D. The risk �eld does not change with different braking intensities29
(Figure 2(g-i)) since no motion information of other road users is considered in the model. The30
risk area in front of the subject vehicle is larger with a longer preview timetla of the driver and a31
higher subject vehicle's velocity.32

Both PPDRF and DRF use the risk �eld theory to compute the driver's perceived risk33
but their formulation is different. For the non-moving objects, both PPDRF and DRF compute34
perceived risk based on a probability �eld and a severity �eld in 2-D. PPDRF considers the relative35
velocity to the object, changing the shape of the probability �eld and the severity �eld in real time36
but DRF's risk �eld is �xed once the parameters are pre-calibrated based on certain datasets. For37
other road users, PPDRF computes kinetic perceived risk based on motion prediction but DRF38
lacks the kinetic risk part. In other words, DRF is a static model heavily dependent on pre-known39
knowledge but PPDRF can adapt to different scenarios and datasets easier.40

Based on the discussion above, the model features are summarised as follows:41
• RPR: A regression model in highway driving reacting to merging and hard braking vehi-42

cles.43
– Attributes: Observation-based44
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– Dimension: 1-D1
• PPDRF: A probabilistic driving risk assessment approach based on risk �eld theory con-2

sidering collision probability and consequences3
– Attributes: Mechanism-based4
– Dimension: 2-D5

• DRF: A perceived risk model consisting of a risk �eld and a severity �eld of conse-6
quences based on risk �eld theory7
– Attributes: Observation-based8
– Dimension: 2-D9

(a)BI = � 2 m=s2 (b) BI = � 5 m=s2 (c) BI = � 8 m=s2

RPR risk �eld

(d) BI = � 2 m=s2 (e)BI = � 5 m=s2 (f) BI = � 8 m=s2

PPDRF risk �eld

(g) BI = � 2 m=s2 (h) BI = � 5 m=s2 (i) BI = � 8 m=s2

DRF risk �eld

FIGURE 2: Risk �eld of human driver's longitudinal and lateral risk perception to traf�c objects
on a 2-D plane (with the subject and merging vehicle's velocity 27m/s). The subject vehicle is at
the original point. Each row shows the risk �eld of one model with different braking intensity of
leading vehicle. Model parameters are calibrated in Section Model calibration.
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(a) RPR risk �eld (b) PPDRF risk �eld (c) DRF risk �eld

FIGURE 3: Risk �eld of human driver's longitudinal and lateral risk perception to traf�c objects
on a 2-D plane (with �xed obstacles and the subject velocity 25m/s). The subject vehicle is at the
original point. Model parameters are calibrated in Section Model calibration.

MODEL CALIBRATION AND PERFORMANCE INDICES1
In this section, the datasets, model calibration methods, and performance indices are introduced.2

Dataset introduction3
Two datasets from literature are used for the model calibration and validation in this study.4

The �rst dataset (Dataset Merging) (10) is collected from our previous simulator experi-5
ment where 18 merging events with different merging distance and braking intensity on a 2-lane6
highway were simulated. Figure 4 shows an example of the simulated events during the experi-7
ment. The participants were asked to monitor the scenario as fall-back ready drivers for an SAE8
Level 2 driving automation. The participant used a pressure sensor to give perceived risk ratings9
from 0-10 continuously in the time domain (see the lower row in Figure 4), which are the con-10
tinuous perceived risk data. After each event, the participants were also asked to give a verbal11
perceived risk rating from 0-10 regarding the previous event, which is the discrete event-based12
perceived risk data. The corresponding kinematic data (e.g. position, speed and acceleration of13
the subject vehicle and neighbouring vehicles) were collected in the meantime. It has been shown14
that the peak of continuous perceived risk in a speci�c event should not be much different from the15
corresponding verbal rating (10). With this criterion, the perceived risk data of 220 merging events16
(30 s of each event) with corresponding kinetic data were kept.17

The second dataset (Dataset Obstacle Avoidance) (16) includes drivers' verbal perceived18
risk ratings and steering angle signals when the participants face static obstacles suddenly appear-19
ing in front with the subject vehicle's velocity of 25m/s in manual driving mode. The corresponding20
vehicle kinematic data and the position of the obstacles were recorded at the same time.21

In model calibration, for Dataset Merging, we use theevent-based perceived riskand the22
peak of the continuous perceived riskin a certain event as the references; For Dataset Obstacle23
Avoidance, we use theevent-based perceived risk, and thesteering wheel angle peakin a certain24
event as the references.25
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