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Abstract - Users of automated vehicles will move away from being drivers to passengers, preferably engaged in
other activities such as reading or using laptops and smartphones, which will strongly increase susceptibility to
motion sickness. Similarly, in driving simulators, the presented visual motion with scaled or even without any phys-
ical motion causes an illusion of passive motion, creating a conflict between perceived and expected motion, and
eliciting motion sickness. Given the very large differences in sickness susceptibility between individuals, we need
to consider sickness at an individual level. This paper combines a group-averaged sensory conflict model (as in
Wada, et al., 2020) with an individualized accumulation model (as in Irmak, et al., 2022; Irmak, Pool, and Happee,
2020; Oman, 1990) to capture individual differences in motion sickness susceptibility across various vision condi-
tions. This consideration of the effect of vision is crucial in driving simulators where there is a strong contribution
of visual cues. The model framework can be used to develop personalized models for users of automated vehicles
and improve the design of new motion cueing algorithms for simulators. The feasibility and accuracy of this model
framework are verified using two existing datasets with sickening conditions in 1) an experimental vehicle with and
without outside vision (Irmak, Pool, and Happee, 2020), and 2) comparing vehicle experiments with corresponding
driving simulator experiments (Talsma, et al., 2023). Both datasets involve passive motion, representative of being
driven by an automated vehicle. The model is able to fit an individual’s motion sickness responses using only 2
parameters (gain K1 and time constant T1), as opposed to the 5 parameters in the original model. This ensures
unique parameters for each individual. Better fits, on average by a factor of 1.7 (for Accum 2 model), of an individ-
ual’s motion sickness levels, are achieved as compared to using only the group-averaged model (Accum 0 model).
Furthermore, this model framework demonstrates robustness by accurately modeling various datasets with distinct
motion and vision conditions. Thus, we find that models predicting group-averaged sickness incidence cannot be
used to predict sickness at an individual level. On the other hand, the proposed combined model approach predicts
individual motion sickness levels and thus can be used to control sickness.
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Introduction
Automated vehicles and driving simulators are very
different technologies. However, they both share two
common facts. The first is that they have become
very popular in recent years, a trend that is expected
to continue in the future. Secondly, they both share
a common issue in motion sickness. Users of au-
tomated vehicles will move away from being drivers
to passengers, preferably engaged in other activities
such as reading or using laptops and smartphones,
which strongly increases susceptibility to motion sick-
ness. Similarly, in driving simulators, the apparent
visual motion combined with scaled or without any
physical motion causes an illusion of passive motion,
creating a conflict between perceived and expected
motion, and eliciting motion sickness (Bos, Kuiper,
and Schmidt, 2020). Though these two cases seem
different, the inherent mechanism that causes motion
sickness in both, i.e., sensory conflict, is the same.

The mechanisms behind the development and evo-
lution of motion sickness have been studied exten-
sively, relying heavily on models that predict sensory

conflicts based on inputs from the vestibular and vi-
sual sensory systems (Bos and Bles, 1998; Irmak, et
al., 2023; Kotian, et al., 2023; Liu, Inoue, and Wada,
2022; Wada, et al., 2020). These models are known
as ‘conflict generation’ models. However, these mod-
els predict group-averaged sickness responses (con-
flicts), using Motion Sickness Incidence (MSI), and
thus cannot be reliably used for predicting and con-
trolling sickness, both in real vehicles and simulators,
at an individual level.

‘Conflict generation’ models, such as the SVC model
by (Wada, et al., 2020), calculate MSI using a conflict
accumulator that integrates the generated conflicts
in time. However, this is a single low-pass integra-
tor and hence is not able to model the fast dynamics
of motion sickness such as recovery. One solution is
to make use of the same ‘conflict generation’ model
and replace the accumulation integrator with a much
more complex integrator model (as in Oman, 1990),
which will be referred to as the ‘conflict accumulation’
model in this paper (see fig. 1). These ‘conflict ac-
cumulation’ models have been found very useful in
motion sickness predictions for one degree of free-
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ã

K1

T1s + 1

K2

T2s + 1

upowSensory 
Conflict

Motion 
Sickness
(in MISC)

Inputs

+

+

Conflict Generation

Conflict Accumulation

Figure 1: Framework for combined ‘conflict generation’ (Liu, Inoue, and Wada, 2022; Wada, et al., 2020) and ‘conflict accumulation’
(Irmak, et al., 2022; Oman, 1990) models to predict individual motion sickness, i.e., MIsery SCale (Reuten, Bos, and Smeets, 2020)

dom motion (Irmak, et al., 2022; Irmak, Pool, and
Happee, 2020). These will be personalized to each
individual with a unique set of parameters. Further, a
complex ‘conflict accumulation’ model will be able to
capture phenomena like recovery from motion sick-
ness and hypersensitivity (Irmak, et al., 2022; Irmak,
Pool, and Happee, 2020). The personalization of pa-
rameters has already been shown to improve mod-
eling accuracy by (Irmak, Pool, and Happee, 2020)
where it increased the accuracy by a factor of 2 as
compared to group-averaged modeling. Our work ex-
tends this to 6 degrees of freedom (DOF). This model
has the additional benefit of allowing visual inputs.
This is important when predicting motion sickness in
simulators, i.e. simulator sickness, where there is a
strong influence of vision. Additionally, individual mo-
tion sickness metrics, such as those obtained using
the MISC scale (De Winkel, et al., 2022), instead
of group-averaged metrics like Motion Sickness Inci-
dence (MSI) (as in Kotian, et al., 2023; Wada, et al.,
2020), allow individualized fitting of the model result-
ing in better prediction in future motion paradigms for
the individual. Hence, in this paper, we aim to com-
bine the ‘conflict generation’ model with a ‘conflict ac-
cumulation’ model to improve the ability to capture
the differences in individual susceptibility. This model
framework is visualized in fig. 1.

Research Question
The goal of the paper is to verify the feasibility of
the combined motion sickness model approach, i.e.,
combining ‘conflict generation’ and ‘conflict accumu-
lation’ models, to capture individual differences in
motion sickness susceptibility across various vision
conditions. To do this we have two further sub-goals:

• To verify the accuracy of the combined conflict gen-
eration/accumulation modeling approach

• To find a balance between model accuracy and the
number of estimated accumulation model parame-
ters

The second goal ensures a practical model with esti-
mated parameter sets unique to each individual. We
use two existing datasets with sickening conditions

in 1) an experimental vehicle with and without out-
side vision (Irmak, Pool, and Happee, 2020), and 2)
comparing vehicle experiments with corresponding
driving simulator experiments (Talsma, et al., 2023).
Both datasets involve passive motion, representative
of being driven by an automated vehicle.

By achieving this goal, this model framework can be
used to develop personalized models for users of au-
tomated vehicles, which the automated vehicle can
use to determine the comfort levels of the user and
subsequently best adapt its driving style, i.e., by lim-
iting the acceleration and rotations of the car. This
model framework can also improve and accelerate
the design of new optimization-based motion cueing
algorithms that aim to minimize sickening motions
in simulators like in Baumann, et al., 2021; Hoger-
brug, et al., 2020. Here, the tilting to replicate specific
forces and/or visual cueing delays will be optimized,
which will result in fewer dropouts of participants due
to motion sickness.

Methodology
Experimental Datasets
For the analysis in this paper, we make use of an
existing real-world ‘Slalom Drive’ dataset (16 partic-
ipants) with varying vision conditions, i.e., with and
without an outside view, where mean MISC levels at
the end of motion exposure were 5.3 (severe symp-
toms) with an outside view and 3.3 (some symp-
toms) without an outside view (Experiment 1 in (Ir-
mak, Pool, and Happee, 2020)), see table 1 and
fig. 2. This experiment compared the motion sickness
development with and without an outside view from
the car. This dataset is ideal for proving that our new
model framework can simulate various vision condi-
tions in actual vehicles. The model framework is also
validated using the ‘Car and Simulator’ dataset (24
participants) by Talsma, et al., 2023. This experiment
contains motion sickness responses from real-world
driving and its (matched) simulation on a moving-
base driving simulator (Talsma, et al., 2023). For this
experiment, the mean MISC levels at the end of mo-
tion exposure were around 5.5 (severe symptoms)
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Table 1: Experimental datasets used in this study

Datasets Details Reference No. of Participants
Slalom Drive
Dataset

Slalom with Internal and External vision
Motion sickness responses for hypersensitivity Irmak, Pool, and Happee, 2020 16

Car and Simulator
Dataset

Naturalistic drive in vehicle and moving base simulator
Only External vision Talsma, et al., 2023 24

in the car and 1.5 (slight discomfort or vague symp-
toms) in the simulator (see table 1 and fig. 3). Using
the Car and Simulator dataset, we demonstrate the
capability of the model framework to generalize well
for different types of passive motion, whether it orig-
inates from a car or a simulator. Furthermore, both
datasets are used to study the number of parame-
ters needed to accurately simulate the motion sick-
ness development in different participants.

Both datasets capture sickness responses to pas-
sive motion, representative of being driven by an
automated vehicle as well as driving simulators. In
these datasets individual motion sickness levels (us-
ing MISC) were reported as a function of time with
motion stimuli varying in time, showing major individ-
ual differences in sickness susceptibility, making this
data suitable to model sickness accumulation.

External Vision Internal Vision
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Figure 2: Slalom Drive dataset (Irmak, Pool, and Happee,
2020) group-averaged MISC levels versus time in the
conditions of external (blue) and internal vision (red)
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Figure 3: Car and Simulator dataset (Talsma, et al., 2023)
group-averaged MISC levels versus time in the car (blue) and

simulator (red)

Inputs and Outputs
Inertial inputs (on the left side of fig. 1), such as ac-
celeration and angular velocity, and vision inputs (on
the left side of fig. 1), such as visual verticality (orien-
tation) and visual rotation (rotational velocity), will be
input into this model framework. The outputs (MISC)
will be compared to the ground truth from the experi-
ments and the model parameters (time constants and
gains, explained in detail in the next section) in the
‘conflict accumulation’ model will be tuned to have the

best fit to individual responses. More details about
each model are given in the following subsections.
We applied 6D motion (3D translation, and 3D rota-
tion), using the recorded seat and platform motion for
the Car and Simulator dataset, and recorded head
motion for the Slalom Drive dataset.

The human eye estimates motion through vision by
measuring the rotation of visual cues between the
current and previous states, which is known as op-
tic flow. Therefore, we made the assumption that the
visually perceived rotations would be equivalent to
head (or vehicle, as in the case of the Car and Sim-
ulator dataset) rotations when observing the external
environment. For internal vision, we select a zero vi-
sual input assuming no head motion relative to the
vehicle.

Selection of models
As previously discussed, we combine two models in
our proposed model framework. The first component
of the model is the ‘conflict generation’ model (see
the left part in fig. 1), which models the integration
of sensory inputs and generates a one-dimensional
sensory conflict signal. This model should be reliable
in forecasting conflict signals consistently, especially
while driving around in a vehicle. Additionally, the
model must be capable of incorporating visual inputs
so that the effect of different vision conditions can be
studied. To select an appropriate model, we refer to
a study by Kotian, et al., 2023 where various models
and implementations of vision inputs were compared.
Based on their findings, we conclude that the 6DOF
Subjective Vertical Conflict (SVC) model with Visual
Rotational Velocity input (Wada, et al., 2020) is ideal
for our purpose of predicting motion sickness. This
model has been shown to accurately replicate the fre-
quency and amplitude dynamics of motion sickness
as reported in numerous literature studies. It is shown
that the Visual Vertical (red pathways in fig. 1) input
as implemented in the SVC model was not effective
in predicting sickness and hence will not be used in
the current study (and set the corresponding gains to
zero).

The second part of the model is the ‘conflict accu-
mulation’ model. As the name suggests, this model
accumulates (integrates) the sensory conflicts gen-
erated by the first part of the model framework to
estimate the level of motion sickness experienced
by an individual as it builds up over time. We adopt
the more advanced Oman model (Oman, 1990) for
this. The Oman model is a five-parameter non-linear
model that integrates the conflict (see the right part
in fig. 1), with fast and slow pathways combined with
leakage. The fast path has a very low time constant
(T1) and models the direct response to a sickening
stimulus. The slow path has a high time constant (T2)
and captures the long-term effects of sickening stim-
uli, such as recovery and hypersensitivity. This is also
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relevant in simulators where a sudden increase in
motion incongruence can make participants hyper-
sensitive. This has been observed by Cleij, et al.,
2018; Kolff, et al., 2022, where it was shown that
motion tends to be momentarily bad, but not continu-
ously. Both pathways have a gain (K1 and K2) to con-
trol the contribution of each path. Additionally, there
is a power law (pow) at the model’s output to account
for nonlinear scaling effects.
In this paper, we use the combined model to pre-
dict sickness as rated with the MIsery SCale (MISC)
(De Winkel, et al., 2022; Reuten, Bos, and Smeets,
2020). The MISC is an 11-point symptom-based
scale (0-10) that is used to query motion sickness in
various studies (such as in Irmak, et al., 2022; Irmak,
Pool, and Happee, 2020; Talsma, et al., 2023).

Parameter reduction in the
Accumulation model
In addition to studying the accuracy of the Accumu-
lation model as it is (with 5 individual parameters),
we also tried to reduce the number of parameters
needed while ensuring goodness of fit. This will pre-
vent over-fitting and result in unique solutions. To do
this we use empirical relations and median values of
parameters as observed in previous studies and cur-
rent simulations with various numbers of parameters.
• K2 = 5K1; from Oman, 1990
• T2 = 7T1; from Irmak, Pool, and Happee, 2020
• pow = 0.4; from Irmak, et al., 2022
• T1 = 60 s; from Oman, 1990
• K1 best fit within datasets (median values from in-

dividual estimates)
– K1 = 2; for Slalom Drive dataset
– K1 = 18; for Car and Simulator dataset

We use combinations of these assumptions to test
if the number of parameters can be reduced. Ta-
ble 2 summarizes the different cases of the accu-
mulation (Oman) model with the parameters that are
estimated (marked with a !) and the parameters
that are held constant or as an empirical relation
to the estimated parameters. K1 and K2 are the
gains, T1 and T2 are the time constants and pow is
the power term in the accumulation model in fig. 1.
Accum 5 is the original version of the accumulation
model from Oman, 1990. Accum 0 is the model with
group-averaged parameters. The K1 is different for
each dataset as the motion captured in each dataset
is different. In the ‘Slalom Drive’ head motion was
recorded, however, in the ‘Car and Simulator’ only
vehicle motion was recorded. Hence, there is a dif-
ference in the magnitude of rotations which explains
the difference in estimated gains (K1).

Parameter estimation in the
accumulation model
To allow the ‘conflict accumulation’ model to accu-
rately capture the individual differences in motion
sickness susceptibility, the parameters need to be
set for each individual. Further, to model both con-
ditions together, only one set of parameters will be
estimated for both conditions for each individual. To
fit these parameters a constrained optimization prob-
lem is formed. This estimation is carried out in MAT-
LAB with the fmincon solver using the sqp algorithm.

Table 2: Parameter reduction. Simplified versions of the
‘conflict accumulation’ model with a different number of
parameters. Check marks indicate that the parameter is

estimated for each individual.

Label # parameters K1 K2 T1 T2 pow

Accum 5 5 ! ! ! ! !

Accum 4a 4 ! 5K1 ! ! !

Accum 4b 4 ! ! ! 7T1 !

Accum 3 3 ! 5K1 ! 7T1 !

Accum 2 2 ! 5K1 ! 7T1 0.4
Accum 1a 1 2 or 18 5K1 60 ! 0.4
Accum 1b 1 2 or 18 ! 60 7T1 0.4
Accum 0 0 2 or 18 5K1 60 7T1 0.4

In addition to this, multistart was used to simulta-
neously find 16 local minima and then find the low-
est out of them. This way it is ensured that we find
the global minimum. The Root-Mean-Squared Error
(RMSE) between the actual and predicted MISC re-
sponses, as a function of the parameter vector x, is
chosen as the cost function for the estimation. As
both conditions are fitted together to give one set of
parameters, the cost function is the sum of RMSE for
both conditions. The optimization problem along with
the constraints are shown in eq. (1).

minimize
x

RMSEC1(x) + RMSEC2(x),
where, x = (K1, K2, T1, T2, pow)T

(1)

Results
In this paper, we propose a new model framework
that combines the ‘conflict generation’ model with an
advanced ‘conflict accumulation’ model to improve
the ability to capture differences in individual sus-
ceptibility. Using the methods described in the previ-
ous section, simulations were run and the results are
presented below. These results are presented with
the aim to justify our goal, i.e, to verify the feasibil-
ity and the accuracy of the new model framework.
It is hypothesized that using a ‘conflict accumula-
tion’ model that uses individual parameters will be
more accurate than a ‘conflict accumulation’ model
that uses group-averaged parameters, as also re-
ported by (Irmak, Pool, and Happee, 2020). First, re-
sults are shown for the Slalom Drive dataset by Ir-
mak, Pool, and Happee, 2020 to show the perfor-
mance of the model with varying vision conditions.
This is followed by results for the Car and Simulator
dataset by Talsma, et al., 2023 where the adaptability
of the model to real-world driving and driving simula-
tors is shown. Fits of the model framework to the ac-
tual MISC responses with Motion Sickness Incidence
(MSI) predictions overlayed are shown first followed
by their RMSE with the actual MISC responses.
Figure 4 show the comparison of the various mod-
els with experimental recorded motion sickness re-
sponses (MISC). It is evident that our approach of es-
timating parameters for each individual (in particular
for Accum 2 and Accum 5 models) offers improved
accuracy in predicting MISC responses compared to
the use of group-averaged parameters (Accum 0).
The average RMSE reduces from 1.13 and 0.74, for
Accum 2 and Accum 5 models, to 1.94, for the Ac-
cum 0 model. This proves that using parameters es-
timated for each individual (Accum 2 and Accum 5)
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Figure 4: Slalom Drive vehicle tests. Motion sickness responses (MISC) in experiments by Irmak, Pool, and Happee, 2020 in black,
fitted Accum 2 model predictions (MISC) in green, fitted Accum 5 model predictions (MISC) in dashed violet, fitted Accum 0 model
predictions (MISC) in dotted grey, and MSI predictions from Hill function in orange for 4 participants (participant label shown on the

left) for the conditions of external (right column) and internal (left column) vision.

is, on average, 1.7 times better than using group-
averaged parameters, as in the Accum 0 model.
Another important observation is that all the accumu-
lation models capture the recovery from motion sick-
ness. This recovery occurs when the sickening stim-
uli are stopped and the participant is allowed to rest.
This is more evident in participants 9 and 14 (second
and third row). The Hill function predicting MSI (in or-
ange) is not able to capture this reduction of motion
sickness. MSI reports the percentage of people who
might get motion sick but does not give information
about any certain individual.
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Figure 5: Root Mean Squared Error (RMSE) between the
predicted MISC and the actual MISC for the Slalom Drive
dataset. Shown are the mean (circle), median (horizontal

solid line), and interquartile range (colored rectangle)

Additionally, we also evaluated the need for each of
the parameters. We did this by reducing the number
of parameters by using relations found during the pre-
vious simulations and also what was observed and

reported in various studies. We used 5, 4, 3, 2, 1,
and 0 parameters to evaluate the need for the pa-
rameters, see table 2. From fig. 5 it is clear that re-
ducing the number of parameters below 2 leads to
a 36% increase in RMSE (from 1.2 to 1.6 in inter-
nal vision case and from 1.0 to 1.4 in external vi-
sion case when comparing Accum 2 to Accum 1a
model). Hence, any model with 2 or more param-
eters is sufficiently accurate to capture the motion
sickness development. We also compared the indi-
vidual models with a group-averaged version of the
accumulation model (Accum 0), where the parame-
ters are the same for all participants in the dataset. It
is observed that Accum 0 has on average 1.7 times
more RMSE (from 2.25 to 1.22 in the internal and
from 1.63 to 1.04 in the external vision case) as com-
pared to the Accum 2 model. Thus, parameters es-
timated for each individual are more accurate than
group-averaged parameters.

Figure 6 shows the distribution of the two estimated
parameters (K1 and T1) in the Accum 2 model for the
Car and Simulator dataset. The black line shows the
parameters for the Accum 0 model as a reference. It
can be observed in that there is a wide range of pa-
rameter combinations (median: 2 and 83.5, standard
deviation: 3.8 and 190.5, for K1 and T1, respectively)
describing individuals that show variations in motion
sickness susceptibility. These parameter sets can be
classified into three groups of motion sickness sus-
ceptibility: high, medium, and low. High susceptibility
are those with large K1 and small T1. Low suscepti-
bility have the opposite, small K1 and large T1. Lastly,
medium susceptibility have small K1 and small T1.
With this knowledge, representative parameters can
be generated to test motion profiles on different mo-
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tion sickness susceptibilities. Additionally, percentiles
can be defined to see which percentile of subjects do
or do not get motion sick.
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Figure 6: Slalom drive dataset parameter distribution
(estimated gain (K1) and time constant (T1)) for the Accum 2

model (blue) and Accum 0 model (black)

Furthermore, we validated these models on the car
and simulator dataset by Talsma, et al., 2023. This
dataset had 24 participants, each experiencing mo-
tion with external vision in a real-world car and in a
simulator. Figure 7 shows the experimental recorded
motion sickness responses (MISC) in black, MSI pre-
dictions in orange, and fitted model predictions in
green, violet, and grey for 4 out of the 24 partici-
pants for both cases. It can be seen that even with
2 parameters, the fits of the Accum 2 model are very
close to the actual MISC responses in both the car
(RMSE mean: 1.03, std:0.544) and simulator (RMSE
mean:1.06, std: 0.605). The MSI prediction values
are very low. This is due to the low levels of con-

flict generated in these experiments as compared to
the slalom drive by (Irmak, Pool, and Happee, 2020).
Another reason may be that the participants sampled
in Talsma, et al., 2023 may be highly susceptible to
motion sickness. The ‘conflict Accumulation’ model is
able to account for these combinations of low levels
of conflict and high susceptibility of the participants
adequately.

Lastly, to demonstrate that the two parameters are
the most optimal number of parameters even for
this dataset, this was tested with other versions of
the model with varying numbers of parameters. As
shown in Figure 8, there is a 25% increase in RMSE
values (from 1.03 to 1.38 in the case of motion sick-
ness in the car and from 1.06 to 1.29 in the simulator)
when comparing Accum 2 to Accum 1a. When com-
paring the individual models with a group-averaged
version of the accumulation model, it is observed that
the group-averaged model, Accum 0, has 1.64 times
more RMSE (from 1.96 to 1.03 in the internal and
from 1.47 to 1.06 in the external vision case) as com-
pared to the Accum 2 model. This increase is close
to what was seen in the Slalom Drive dataset where a
1.7 times increase was observed. Thus, parameters
estimated for each individual are more accurate than
group-averaged parameters.

Figure 9 shows the distribution of the two estimated
parameters (K1 and T1) in the Accum 0 and Accum 2
model for the Car and Simulator dataset. The obser-
vations are equivalent to those reported from fig. 6.
Individual variations in motion sickness susceptibil-
ity are shown by a wide range of parameter com-
binations (median: 18 and 47, standard deviation:
16.1 and 221.8, for K1 and T1, respectively). How-
ever, there is a difference in the gain value (K1), due
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Figure 7: Car and Simulator tests. Motion sickness responses (MISC) in experiments by Talsma, et al., 2023 in black, fitted Accum 2
model predictions (MISC) in green, fitted Accum 2 model predictions (MISC) in dashed violet, fitted Accum 0 model predictions

(MISC) in dotted grey, and MSI predictions from Hill function in orange for 4 participants (participant label shown on the left) for the
case in the car (left column) and the simulator (right column) vision.
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Figure 8: Root Mean Squared Error (RMSE) between the
predicted MISC from the models and the actual MISC for the

Car and Simulator Dataset. Also shown are the mean
(circled), median (horizontal solid line), and interquartile

range (in colored rectangle)

to the different input data used for both datasets. In
the Slalom Drive dataset, head motion is used while
in the Car and Simulator dataset vehicle motion is
used as the head motion was not available. Ideally,
we would like to use head motion as those motions
are perceived by the vestibular and visual systems.

K
1

T
1

0  

10 

20 

30 

40 

50 

60 

0   

100 

200 

300 

400 

500 

600 

Figure 9: Car and Simulator dataset parameter distribution
(estimated gain (K1) and time constant (T1)) for the Accum 2

model (blue) and Accum 0 model (black)

It is clear from the results in figs. 4 and 7 that this
model framework, is able to capture two different con-
ditions with a single set of 2 parameters. This is appli-
cable for various vision conditions, as well as different
motions from real cars and simulators.

Discussion
This paper introduces a novel model framework to
predict an individual’s motion sickness level in vehi-
cles and simulators. This model framework combines
a group-average ‘conflict generation’ model with an
individual ‘conflict accumulation’ model to better cap-
ture individual susceptibility differences. This is im-
portant to understand and capture differences in mo-
tion sickness susceptibility. Furthermore, by using a
‘conflict generation’ model that includes visual inputs,
various vision conditions (such as external, internal,
and only vision) can be simulated as well. This is cru-
cial in simulators where motion sickness occurs due
to a strong influence of visual cues. We hypothesized
that using a ‘conflict accumulation’ model that uses
individualized parameters will result in greater accu-
racy compared to a model that uses group-averaged

parameters. Hence, in this paper, we assessed the
feasibility and accuracy of this new model approach
for motion sickness predictions.

It is clear from the results (see figs. 4 and 7) that
the Oman model as a ‘conflict accumulation’ model
with individualized parameters is able to better model
the motion sickness responses of individuals as com-
pared to using the group-averaged models such as
the Accum 0. In addition to this, it also captures the
recovery phase of the experiment (see figs. 4 and 7)
and, theoretically, the hypersensitivity in the following
second motion exposure. This recovery phase takes
a few minutes and is not captured by the Hill func-
tion, which predicts MSI, due to its time constant of
12 min. These results are in line with the work by Ir-
mak, Pool, and Happee, 2020 where individualized
fits with the Oman model reduced the prediction er-
ror by a factor of 2 in a slalom drive with a frequency
of 0.2 Hz and lateral accelerations with a peak ampli-
tude of 0.4 g with eyes closed. Our work extends this,
by using a six degrees of freedom ‘conflict genera-
tion’ model to generate the conflict, in realistic driving
conditions with varying vision conditions. This way a
single set of parameters, estimated using data from
all required conditions, can characterize an individual
across various motion and vision conditions.

We also looked into reducing the number of param-
eters in the model. We found that using the relations
and values mentioned in previous studies (such as in
Irmak, et al., 2022; Irmak, Pool, and Happee, 2020;
Oman, 1990), the number of individual parameters
can be limited to 2. This way we can be sure that the
parameter set estimated is unique for each individual
and is not an over-fit on the available sparse (in con-
ditions) dataset. Another by-product is that the com-
putation time required for the estimation of param-
eters is significantly reduced (by a factor of 4, from
48 to 11 seconds for 40 min of simulation). However,
even with 5 parameters the model can be used for
real-time applications.

Using these models, the motion profiles in simula-
tor experiments can be tuned to reduce dropout of
participants in simulator experiments due to motion
sickness. Not only is the model useful in design-
ing experiments but also can be employed in mo-
tion cueing algorithms in driving simulators, as well
as in automated vehicles. Using a model-based con-
trol method, this model framework can be included
in the plant model to forecast motion sickness levels,
as in Jain, et al., 2023. This way, motion sickness lev-
els can be controlled by taking into account each in-
dividual’s susceptibility. Vehicle motion in automated
vehicles and platform motion and tilt coordination in
simulators can be optimized to minimize their effect in
eliciting motion sickness. Thus, this model is feasible
to use both post-experiment and in real-time during
the experiment.

We now tuned individual parameters of the accumu-
lation model while keeping the many parameters of
the sensory conflict model constant. A main limitation
of the model is that it fails to accurately fit the sub-
ject’s responses who get highly motion sick during
internal vision and do not get sick during the exter-
nal vision case (for example P14 in fig. 4). This sharp
shift in motion sickness dynamics cannot be captured
by our model framework. To do this, at least one addi-
tional parameter needs to be estimated, which could
be the vision gain in the ‘conflict generation’ model
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or other perception parameters. People not only dif-
fer in motion sickness susceptibility, but also in their
perception of motion. This has been shown in Irmak,
et al., 2023, where a correlation coefficient of 0.74
was observed between individuals’ overall sickness
sensitivity and their subjective vertical time constant.
Thus each human will have a different contribution of
visual and vestibular signals for their state estimation.
By adjusting the parameters in the ‘conflict genera-
tion’ model, the contribution of vision to the estimates
can be tuned.
Another limitation is that the model gain, K1, needs
to be adapted for the two datasets, and presum-
ably depending on the location of the IMU (head or
seat). This can be seen in the difference in the range
of estimated gain (K1) values in the two datasets
(see figs. 6 and 9). Also, the Hill function accumula-
tion model predicted a reasonable MSI magnitude in
the Slalom Drive but highly underestimated sickness
in the Car and Simulator dataset. Ideally, we would
like to always use recorded head motion, which is
more representative of the motion experienced by the
vestibular system. If this is not available we could use
biomechanical human/seat models or linear transfer
functions to convert 6D vehicle motion to 6D head
motion. This way it can be ensured that the estimated
parameters can be used for any case.

Conclusion
A new model framework was developed to fit and
predict individual motion sickness levels in vehicles
and simulators. This model framework contained two
parts: ‘conflict generation’ and ‘conflict accumula-
tion’. The model utilizes acceleration and angular ro-
tational data as inputs and adjusts the parameters
of the ‘conflict accumulation’ model to fit each indi-
vidual’s motion sickness level (reported using MIsery
SCale (MISC)) response. This framework is able to
fit individual responses with just two estimated pa-
rameters (a gain K1 and time constant T1) with an
average RMSE of 1.1 MISC. By combing the two
models, better fits, on average by a factor of 1.7 (for
Accum 2 model), of an individual’s motion sickness
levels are achieved as compared to using only the
group-averaged models. We fit both conditions (Ex-
ternal and Internal vision conditions for the Slalom
Drive dataset and driving in a car and a simulator in
the Car and simulator dataset) together to estimate
one set of parameters. The model is able to simu-
late both conditions using a single set of estimated
parameters for each participant. This framework has
the potential to show the impact of vision on an in-
dividual level, offering a more personalized approach
compared to previous models. This is important es-
pecially in driving simulators, as the effect of delays
in visual cues, can be quantified with this model. This
model framework also shows robustness by accu-
rately modeling different datasets with completely dif-
ferent motion and vision conditions.
These individual models can be used in further stud-
ies for predicting motion sickness levels of the same
individual in a different motion scenario, thus reduc-
ing the dependence on extensive experiments on hu-
mans. Finally, this model framework can also aid in
faster testing of new motion cueing algorithms for
driving simulators due to less sickening driving sim-
ulator experiments and may reduce the dropout of
participants in driving simulator evaluations.
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