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Abstract - Model predictive control (MPC) is a promising technique for motion cueing in driving simulators, but
its high computation time limits widespread real-time application. This paper proposes a hybrid algorithm that
combines filter-based and MPC-based techniques to improve specific force tracking while reducing computation
time. The proposed frequency-splitting algorithm divides the reference acceleration into low-frequency and high-
frequency components. The high-frequency component is provided as a reference to the translational motion to
avoid workspace limit violations, while the low-frequency component is for tilt coordination. The total acceleration
serves as a reference for combined specific force with the highest priority to enable compensation of deviations
from its reference values. The algorithm uses constraints in the MPC formulation to account for workspace limits
and workspace management is applied. These limit platform acceleration and velocity near workspace bound-
aries for better workspace utilization. The investigated scenarios were a step signal, a multi-sine wave and a
recorded real-drive slalom maneuver. Based on the conducted simulations for 40 steps prediction horizon, the
algorithm produces approximately 15% smaller root means squared error (RMSE) for the step signal compared to
the state-of-the-art. Around 16% improvement is observed when the real-drive scenario is used as the simulation
scenario, and for the multi-sine wave, an improvement of about 90% is observed. At higher prediction horizons the
algorithm matches the performance of a state-of-the-art MPC-based motion cueing algorithm. Finally, for all pre-
diction horizons, the frequency-splitting algorithm produced faster results. The pre-generated references reduce
the required prediction horizon and computational complexity while improving tracking performance. Hence, the
proposed frequency-splitting algorithm outperforms state-of-the-art MPC-based algorithm and offers promise for
real-time application in driving simulators.
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Introduction
Since the introduction of driving simulator technol-
ogy, the primary goal has been to bridge the gap
between the driving simulator experience and the
real in-vehicle experience. Significant advancements
have been achieved in this pursuit, although there is
still room for improvement in accurately replicating
the motion experience of being inside a vehicle.

To create a virtual environment with the aim of recre-
ating the in-vehicle experience; visual, audio, vestibu-
lar and haptic cues are provided in the driving simu-
lator (Shyrokau, et al., 2018). However, the motion
control of the simulator platform is challenging due to
the limited workspace.

The motion cueing algorithm (MCA) implemented in
the simulator aims to emulate the motion of a vehi-
cle through various control strategies. The classical
approach is to use tilt-coordination to recreate low-
frequency accelerations, and high-frequency accel-
erations by linear accelerations of the platform (See-
hof, Durak, and Duda, 2014; Stratulat, et al., 2011).

A more enhanced approach is based on model pre-
dictive control (Bruschetta, Maran, and Beghi, 2016;
Khusro, et al., 2020; Lamprecht, et al., 2021). How-
ever, this technique faces a drawback in terms of

its high computation time, which poses a limitation
for real-time applications. To reduce computational
costs, explicit MPC can be applied by pre-computing
the solution and using it in the form of a look-up ta-
ble. This method significantly reduces online compu-
tation time (Fang and Kemeny, 2012). A 2 DoF mo-
tion cueing is developed and extended by incorporat-
ing a vestibular model in (Munir, et al., 2017). While
this approach offers the advantage of reducing online
computation time, it encounters challenges related to
memory storage and limitations on utilizing large pre-
diction horizons with fast sampling rates. The issue
arises from the exponential growth in computation
time for control region calculations as the problem’s
complexity and scope increase. As a result, there is a
need for a more practical alternative to address these
concerns. Therefore, a 4 DoF MCA is proposed using
a combination of explicit (offline) and implicit (online)
MPCs in (Chadha, et al., 2023). A 4 DoF explicit MPC
is used to provide an initial educated guess to the im-
plicit MPC, resulting in faster convergence.

This paper presents an approach to tackle the prob-
lem of computation time for an MPC-based motion
cueing algorithm, at the same time improving the
specific force tracking performance compared to the
state-of-the-art MPC approaches.
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Frequency-splitting MCA

The proposed algorithm merges the features of filter-
based and MPC-based MCAs to improve the ac-
curacy of tracking the reference specific force. Like
filter-based algorithms, the reference signal is sep-
arated into low-frequency and high-frequency com-
ponents, which are reproduced using tilt coordina-
tion and translational motion, respectively. To achieve
optimal tracking of these references and the overall
reference specific force while considering workspace
limitations, an MPC approach is employed.

Methodology
The algorithm presented in this study utilizes a com-
bination of filter-based and MPC-based MCA meth-
ods to improve the tracking performance of the ref-
erence specific force. The structure of the algorithm
is shown in Figure 1. The vehicle accelerations are
scaled-down and passed through high-pass and low-
pass filters. The high-frequency component obtained
from the reference signal serves as a reference for
the translational motion of the platform. This is be-
cause sustaining the low-frequency component could
potentially result in violations of the workspace limits.
The low-frequency component is used as a reference
for tilt coordination.

MCA formulation
The cost function of an MPC minimises the squared
error between the reference values and actual values
of the outputs (yk), inputs (uk), and states (xk) over a
prediction horizon of N future samples:

uk = arg min
uk

1
N

N∑
k=1

[(xk − x̂k)T Wx(xk − x̂k)

+(y(xk, uk) − ŷk)T Wy(y(xk, uk) − ŷk)
+(uk − ûk)T Wu(uk − ûk)] (1)

In MPC-based MCAs, it is common practice to pe-
nalise the difference between the simulator and ve-
hicle motion outputs, i.e. specific force, as the output
term. The state term (xk − x̂k) provides ’washout’ to
the platform by consistently trying to return it to its
neutral position x̂k. The input term (uk − ûk) restricts
high input values. In Equation 1, the tunable param-
eters are represented by weighting matrices Wy, Wu

and Wx.

In this work, the controlled degrees of freedom are
longitudinal and lateral translation along with roll and
pitch motion. Vertical and yaw motion are not part of
the proposed MCA to reduce computational complex-
ity. However, they can be added using a traditional
washout filter. In this study, pitch and roll correspond-
ing to vehicle motion are neglected due to small val-
ues. However, these can be directly added to the ro-
tational inputs.

A triple integrator system is used to define the orien-
tation and location of the platform.

[ṡhex, v̇hex, ȧhex, θ̇hex, ω̇hex, α̇hex]
= [vhex, ahex, jhex, ωhex, αhex, jang,hex] (2)

where shex, vhex and ahex represent the platform’s

translational position, velocity and acceleration re-
spectively and θhex, ωhex and αhex represent the an-
gular orientation, velocity and acceleration. jhex and
jang,hex represent the translational and angular jerk
respectively which are the inputs to the system. The
cost function penalizes jerks (inputs), limiting rapid
changes in acceleration.
The specific force comprises of two components,
arising through the translational motion and tilt-
coordination. The translational component is the lin-
ear acceleration of the platform; the tilt component
comes from the gravitational force subjected on the
occupant of the simulator due to tilt (non-vertical ori-
entation). The tilt component is described by:

Ġ = −ωhex × G (3)

The total specific force is defined as:
fspec = ahex + G (4)

The output vector consists of the total specific force,
tilt component of the specific force and translational
acceleration of the platform (yk = [fspec, Ghex, ahex]).
The pre-generated high-frequency and low-
frequency components provide guidance for the
tilt-coordination and translation motion of the simula-
tor.

Scaling factor recommendation
In this section, the scaling factor is designed, which
reduces the reference platform motion relative to the
vehicle motion. In practice, a general trend is to use
a scaling factor between 0.2 and 0.6 (Bellem, et al.,
2017; Lamprecht, et al., 2021). Subjective evalua-
tions favoured such scaling in providing a more re-
alistic motion perception. The scaling factor also de-
pends on the workspace limitations of the driving
simulator being used. In this work, it is assumed that
the scenario is known prior to the simulation. The
scaling factor is devised assuming complete informa-
tion about the reference signal is available (consider-
ing the case of automated driving).
Tilt-coordination is responsible for recreating sus-
tained accelerations and a major portion of the spe-
cific force in the simulator. To ensure accurate recre-
ation, the simulator’s capability must meet or sur-
pass the demand of the reference signal. Two rec-
ommended scaling factors were derived.
The first scaling factor is based on the maximum tilt
angle. For this, we ensure that the reference specific
force is always smaller than the platform’s potential
for generating specific force through tilt coordination.

max|fspec,ref | ≤ max|gsin(θtilt)| (5)

kθ = gsin(pi/6)
max|fspec,ref |

(6)

’θtilt’ is limited to 30 deg corresponding to the mini-
mum achievable ’cos(θtilt)’, the worst case scenario
(wcs).
The second factor is based on the tilt-rate.

max|ḟspec,ref | ≤ |ωtiltgcos(θtilt)|wcs (7)
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Figure 1: MPC Scheme for the frequency-splitting MCA

The ’ωtilt’ is restricted to a value of 3 deg/s to min-
imise the occurrence of false cues.

Hence the scaling factor can be given by:

kω ≤ π

60
g

maxḟspec,ref

cos
π

6 (8)

The smaller of these scaling factors can be chosen
as the suggested scaling factor. However, larger scal-
ing factors can also be utilized because, as explained
below, the motion will be constrained within the avail-
able workspace through the combined implementa-
tion of workspace management techniques and the
MPC algorithm.

Workspace management
Due to the limited simulator workspace, proper util-
isation is crucial, this subsection entails the steps
taken to ensure better workspace utilisation.

Simulator capability limits
Motion platform limits are added as constraints in the
MPC formulation (Table 1).

Table 1: Applied motion limits due to rotation perception
(ωperc) and simulator capability

Quantity ωhex θhex vhex ahex shex

Limit ±3deg/s ±30deg/s ±7.2m/s ±9.81m/s2 ±0.5m

The tilt rate of the platform is restricted below the hu-
man perception threshold for angular velocities ωperc.
Platform rotation below this threshold can be used
to create the perception of translational acceleration.
Additionally, braking constraints as proposed by Fang
and Kemeny (2012) are incorporated in the algo-
rithm. As the workspace limits approach, the braking
constraints limit the platform velocity and tilt rate, en-
suring better workspace utilisation. The relation for
the constraint on displacement and angular orienta-
tion is:

sbrk = shex + cvvhexTbrk,s + 0.5cuahexT 2
brk,s (9)

θbrk = θhex + cωωhextbrk,θ + 0.5cuαhexT 2
brk,θ (10)

where cv = 1, cω = 1, cu = 0.45, Tbrk,θ = 0.5,
Tbrk,s = 2.5.
The workspace management ensures that the limits
of the platform are not reached, without any contri-
bution to the cost function. As the platform moves in
both longitudinal and lateral directions, the constraint
is thus applied to the resultant displacement of the

platform. The constraints on the displacement and tilt
angle are:

−0.5 ≤
√

s2
brk,long + s2

brk,lat ≤ 0.5 (11)

−30 ≤ θbrk ≤ 30 (12)

Washout
The simulator has the maximum potential of recreat-
ing any motion from its neutral position, away from
the workspace limits. Thus, to ensure that the driving
simulator performs at its maximum potential, the plat-
form is ideally operating around its neutral position.
This is performed by adding penalisation to the state
term in Equation 1 which brings the platform back to
its neutral position (x̂k).
In this work, we use adaptive weights for the washout
rather than constant weights. The penalisation weight
changes with the value of the state. This allows a sin-
gle adaptive setting for all the scenarios, rather than
tuning the washout weights for each scenario.
The relations for the adaptive weight are:

ws = k1

k2 ∗ (|shex| − 0.5)2 + ∆ (13)

wθ = k3

k2 ∗ (|θhex| − 30 ∗ π/180)2 + ∆ (14)

where k1, k2 and k3 are the parameters through
which the shape of the weight function can be
changed. ∆ (here 0.01) is a small value added to
the denominator to avoid singularity. The values se-
lected for the simulations are k1 = 1, k2 = 50 and
k3 = 0.1. The variation of weight with the platform
displacement can be seen in Figure 2. The shape of
this weight can be changed by tuning k1, k2, k3 and
∆.

Simulation parameters
The weights used in this study were determined
through a manual tuning approach. They correspond
to the best simulation outcomes for the real-drive sce-
nario outlined in the subsection ”Scenarios”. The fol-
lowing weight settings are selected:

Higher weight is provided to the specific force track-
ing, aiming to create realistic perceived motion. A
lower weight is selected for linear acceleration and
tilt-coordination whereby the MCA tries to follow
these two references, but prioritises specific force
flexibly using acceleration and tilt coordination. Small
weights on jerk and angular jerk are provided to
avoid oscillations in the specific force, due to rapidly
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Figure 2: Adaptive position weight for the platform
displacement (Equation 13)

Table 2: Selected values of the simulation parameters

Parameter Value
Cut-off frequency 0.5 Hz

weight on linear acceleration tracking wa,hex 1
weight on tilt-coordination tracking wG 1

weight on total specific force tracking wf,spec 5
weight on linear jerk wj 10−2

weight on angular jerk wang,j 10−3

changing acceleration. The weights for angular ori-
entation (wθ) and displacement (ws) are selected as
described in the section ”Washout”.
The same weight settings were maintained for both
the benchmark and proposed algorithms, eliminat-
ing any potential biases. However, the proposed al-
gorithm includes additional penalization components
(wG and wa,hex), addressing linear acceleration and
tilt-coordination tracking separately.

Simulation environment
The scenario and the setup for the simulations are
described in this section. The optimisations were per-
formed using the ACADO (Houska, Ferreau, and Diehl,
2011) solver, to formulate the MPC. Maximum solver
iterations are chosen to be 200, to ensure conver-
gence and avoid sub-optimal solutions. The optimisa-
tion has been performed on Intel(R) Xeon(R) W-2223
CPU @3.60GHz with 32GB RAM.

Benchmarking
A state-of-the-art MPC-based MCA for specific force
tracking is used as the benchmark for this study. The
algorithm still follows the structure defined in Equa-
tion 1 with modification in the output term. The out-
put term becomes yk,bench = fspec as specific force
tracking is the sole objective of the algorithm. The
structure of the algorithm is adapted from (Ploeg, et
al., 2020)

Scenarios
The cases considered for this paper are a step signal,
a multi-sine wave and a recorded real-drive scenario.

Step signal
The step signal gives a sudden increment in the refer-
ence specific force, to simulate an extreme dynamic
maneuver. The step signal is defined by a rest period,
then a consistent magnitude of +0.8m/s2 for 8 secs
followed by a rest period again. This signal is pro-
vided as a reference in both longitudinal and lateral
directions. This signal is also used to evaluate the
tracking performance in (Chadha, et al., 2023; Munir,
et al., 2017).

Multisine
This signal consists of 4 different sine waves, of fre-
quency 0.1, 0.15, 0.2 and 0.5 Hz and amplitude 1,
0.8, 0.1 and 0.6 m/s2 respectively. This is used to
check the performance of the MCA for a continuously
changing specific force. The different sine compo-
nents ensure that different frequencies are covered
in the same signal.

Real-drive scenario
A slalom maneuver recorded during a real car driv-
ing experiment (Irmak, Pool, and Happee, 2021) is
also used for validation of the MCA. The slalom with
4 m/s2 at 0.2 Hz is one of the most aggressive ma-
neuvers that a vehicle can be subjected to and was
designed to elicit motion sickness in passive driving
(i.e. as a user of an automated vehicle). The simula-
tions focus on the initial 50 seconds of the maneuver.

Emulator simulation
To evaluate the performance and computational
costs, the software emulator has been used devel-
oped by the motion platform supplier E2M Technolo-
gies B.V. The multi-body modelling and the coordi-
nate system are described in (eMoveRT controller
manual 2019).
This emulator represents the complex actual dynam-
ics of the Delft Advanced Vehicle Simulator (DAVSi).
The DAVSi is a 6 DoF driving simulator and using
its emulator interface, tests can be performed without
imparting any damage to the real system.
As the actual dynamics of the simulator differ from
the predictions of the internal model in the MPC, the
constraint on tilt-rate (Table 2) is violated in some in-
stances. This creates instability in the algorithm. To
tackle this instability the tilt rate is provided with a
soft constraint, i.e. the violation of the constraint is al-
lowed but penalised.
The constraint is reformulated as:

−ωth ≤ ωhex + δ (15)
ωhex − δ ≤ ωth (16)

δ ≥ 0 (17)

Where, ωth is the threshold for tilt rate and the slack
variable, δ, is penalised in the cost function to reduce
high violation of constraints. In this study, the penali-
sation for the delta, wδ is chosen to be 105.
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Figure 3: Specific force tracking for step signal: Longitudinal direction

Results
Prediction horizon analysis
The simulations were performed at various prediction
horizon lengths, with 0.01 s as the MPC time step, to
evaluate the performance of the frequency-splitting
algorithm compared to the benchmark algorithm. The
obtained results are tabulated below. The signal used
for this comparison was the real-drive scenario de-
scribed in the above section. The scaling factor used
for this analysis is 0.15 and the cut-off frequency for
frequency-splitting is 0.5 Hz.
From Table 3, it can be observed that up to a predic-
tion horizon of 100 steps, the proposed algorithm out-
performs the benchmark algorithm with a reduced to-
tal RMSE. In addition, the algorithm renders a faster
convergence to the solution, with medium to long pre-
diction horizons. The numbers highlighted in green
correspond to real-time feasible and the red ones cor-
respond to real-time infeasible solutions with the cur-
rent implementation.
Hence, considering both accuracy and speed, at low
prediction horizons, the proposed algorithm is clearly
a better choice for motion cueing. However, at higher
prediction horizons the benchmark algorithm outper-
forms the proposed algorithm.
It should be noted that even at higher prediction
horizons, the frequency-splitting algorithm produces
comparable results to the benchmark, providing a
faster convergence to the solution.
In the remainder of this paper, a prediction horizon of
40 steps (0.4s) was chosen for both algorithms.

Specific force tracking performance
Step signal
In this simulation, the step signal is provided as the
reference in both lateral and longitudinal directions.
As the algorithm exhibits an identical response in
both longitudinal and lateral directions, only the re-
sults pertaining to the longitudinal direction are pre-
sented in Figure 3. In the figures, the subscript b
in ωb, θb, sb and vb represents simulations using the
benchmark algorithm. Similarly, the subscript f − s
represents simulations using the proposed algorithm.
It can be seen as the platform is restricted in terms of

tilt rate, at 5 s ’ω’ reaches its threshold. At this point,
however, ’θ’ is below its maximum limit. Thus, the al-
gorithms can not recreate the specific force at 5 s.
However, it slowly converges to the reference, keep-
ing a constant maximum allowable tilt rate.
The used scaling factor (k=1) is much larger than the
designed scaling factor (k=0.11) in this case. Both
algorithms show a similar response for the step in-
put. The obtained RMSE for the specific force track-
ing in the case of the benchmark algorithm is 0.0657
m/s2, and that for the frequency-splitting algorithm is
0.0557 m/s2. This indicates a 15% reduction in the
specific force error. In Figure 3, the benchmark al-
gorithm exhibits oscillations in rotation and displace-
ment during the rest period after the step signal. The
specific force is kept at 0 by the opposing magni-
tudes of the tilt component and translational com-
ponent. The oscillations with the benchmark are re-
duced when increasing the horizon. Using a hori-
zon of 150 steps eliminates the oscillations, but this
comes at a cost of approximately 70x increase in the
computation time. One approach to reducing oscilla-
tions is to increase the penalty on the control inputs.
However, this comes at the expense of diminished
tracking performance.
When the scaling factor is reduced to 0.5 and 0.11
the frequency-splitting algorithm shows an improve-
ment of 35% and 4% respectively in RMSE when
compared to the benchmark. The benchmark algo-
rithm shows oscillations also with these reduced scal-
ing factors.

Multi-sine
Using the motion scaling factor design, the obtained
scaling factor is 0.295. For the simulation, we use a
scaling factor of 0.3. Due to identical responses in the
longitudinal and lateral direction, only the results cor-
responding to the longitudinal direction are presented
in Figure 4. The figure presents the comparison of
specific force tracking between the benchmark and
frequency-splitting algorithms. It can be seen that us-
ing the frequency-splitting algorithm, almost perfect
tracking is obtained, whereas, the benchmark algo-
rithm loses tracking at several places. It can also be
observed that the benchmark algorithm reaches the
perception threshold for the angular velocity at var-
ious regions prematurely and loses tracking. How-
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Table 3: Performance of benchmark and frequency-splitting algorithms at different prediction horizons for the real driving scenario

Prediction horizon
(Steps)

Benchmark algorithm Frequency-splitting algorithm
RMSE long RMSE lat RMSE total Computation time RMSE long RMSE lat RMSE total Computation time

25 0.0295 0.1037 0.1078 18.2 s 0.0186 0.0599 0.0627 18.5 s
30 0.0096 0.0619 0.0626 30.7 s 0.0179 0.0575 0.0602 28.3 s
35 0.0075 0.0526 0.0531 48.6 s 0.0174 0.0432 0.0466 39.2 s
40 0.0075 0.0540 0.0545 67.0 s 0.0170 0.0426 0.0459 48.0 s
50 0.0067 0.0465 0.0470 128.6 s 0.0152 0.0404 0.0432 68.0 s

100 0.0064 0.0298 0.0305 1495.8 s 0.0073 0.0263 0.0273 1106.7 s
150 0.0064 0.0147 0.0160 4690.0 s 0.0062 0.0168 0.0179 2885.9 s

ever, in the case of the frequency-splitting algorithm,
the references for tilt-coordination and linear accel-
eration ensure better workspace utilisation, resulting
in better tracking performance. The RMSE for the
benchmark algorithm was found to be 0.0882 m/s2,
while for the frequency-splitting algorithm, it was sig-
nificantly lower at 0.0085 m/s2. This entails a reduc-
tion in the error by approximately 90%.
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Figure 4: Simulation of the multi-sine wave: Longitudinal
direction

Real-drive scenario
The simulation corresponding to the real-drive sce-
nario is presented in Figure 5 for longitudinal and Fig-
ure 6 for lateral motion.
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Figure 5: Simulation of the real-drive scenario: Longitudinal
direction

Both algorithms show a similar response for the sim-
ulations and fail to follow the reference acceleration.
In this case, the used scaling factor (0.2) is larger
than the designed scaling factor (0.13), thus the driv-
ing simulator does not have the capability to recreate
the reference accelerations. However, the frequency-
splitting algorithm still produces slightly better track-
ing. The similarity in the performance is attributed

0 5 10 15 20 25 30 35 40 45 50
-1

0

1

S
p

e
ci

fic
fo

rc
e

[m
/s

2
]

Reference Benchmark Frequency-splitting

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

R
o

ta
tio

n
 a

n
g

le

[d
e

g
]

-5

0

5

R
o

ta
tio

n
a

l ve
lo

[d
e

g
/s]

b f-s b f-s

0 5 10 15 20 25 30 35 40 45 50

Time [s]

-0.5

0

0.5

D
is

p
la

ce
m

e
n

t

[m
]

-0.5

0

0.5 L
in

e
a

r ve
lo

[m
/s]

s
b

s
f-s

v
b

v
f-s

Figure 6: Simulation of the real-drive scenario: Lateral
direction

to the heaviest penalisation provided to the specific
force tracking. The RMSE for the benchmark algo-
rithm was found to be 0.2165 m/s2, while for the
frequency-splitting algorithm, it was 0.2031 m/s2, in-
dicating a reduction in the tracking error by approxi-
mately 7%.

Emulator simulations
The algorithm is also simulated using the emulator for
the driving simulator, to check the working of the al-
gorithm in an actual driving simulator setting, taking
into account the complex simulator dynamics. Due
to the identical response for lateral and longitudinal
directions in the case of step signal and multi-sine
wave, only longitudinal responses are presented. A
simulation of the step signal using the frequency-
splitting algorithm is presented in Figure 7. The fig-
ure showcases the results obtained using two differ-
ent plant models: the blue plot depicts the results ob-
tained using the emulator as a plant model, while the
red plot shows the results obtained using the triple
integrator system (defined in Equation 2). The sub-
script used to represent the emulator as a plant is
Em and that for the internal model or triple integrator
system is IM . The figure depicts that the algorithm’s
behaviour using the emulator as the plant deviates
marginally from its behaviour when the triple integra-
tor system is used. Some oscillations are observed
in the specific force around the reference. This is an
expected behaviour as the internal model does not
precisely match the simulator dynamics. The emula-
tor simulation for the multi-sine wave is presented in
Figure 8. It can be seen that just like in Figure 4 the
frequency-splitting algorithm is able to provide sat-
isfactory tracking of the reference multi-sine signal.
Similar to the case of step signal emulator simula-
tion, the specific force displayed oscillations around
the reference. However, the magnitude of these os-
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Figure 7: Simulation of the step signal via Emulator:
Longitudinal direction

cillations is small (order of 10−3 m/s2) which is an
acceptable deviation from the reference and should
create a similar motion perception in the occupant of
the driving simulator. The emulator simulation for the

0 5 10 15 20 25 30 35 40 45 50
-1

0

1

S
p

e
ci

fic
fo

rc
e

[m
/s

2
]

Reference Frequency-splitting

0 5 10 15 20 25 30 35 40 45 50
-5

0

5

R
o

ta
tio

n
 a

n
g

le

[d
e

g
]

-5

0

5

R
o

ta
tio

n
a

l ve
lo

[d
e

g
/s]

f-s f-s

0 5 10 15 20 25 30 35 40 45 50

Time [s]

-0.5

0

0.5

D
is

p
la

ce
m

e
n

t

[m
]

-0.5

0

0.5 L
in

e
a

r ve
lo

[m
/s]

s
f-s

v
f-s

Figure 8: Simulation of the multi-sine signal via Emulator:
Longitudinal direction

real-drive scenario for longitudinal direction is pre-
sented in Figure 9 and that for the lateral direction
is presented in Figure 10. It can be observed that the
simulations provide satisfactory tracking of the refer-
ence signal in both longitudinal and lateral directions.
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Figure 9: Simulation of real-drive scenario via Emulator:
Longitudinal direction

Hence, the algorithm provides a satisfactory tracking
of the reference signal in the emulator in the three
scenarios studied in this paper. This indicates the al-
gorithm is implementable in the driving simulator.
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Figure 10: Simulation of the real-drive scenario via
Emulator: Lateral direction

Discussion
The proposed algorithm provides pre-generated ref-
erences for the platform’s movements, utilizing the
high-frequency and low-frequency components. This
enables the algorithm to converge to a solution more
quickly and effectively. In contrast, the state-of-the-
art MPC algorithm provides limited guidance for the
platform motion. This leads to additional movements
as multiple configurations of tilt-coordination and lin-
ear acceleration can produce the same specific force.
As a result, the proposed algorithm demonstrates im-
proved utilization of the workspace compared to the
benchmark algorithm, particularly with shorter pre-
diction horizons.
MPC with a longer prediction horizon can provide
better performance within the simulator’s workspace
limits. However, computational cost increases and
hinders real-time capability. Therefore, MPC with a
shorter prediction horizon is used, and the platform
could still reach its workspace limits.
To tackle this issue, washout is introduced with a non-
linear cost on platform position complemented with
braking constraints. In the case of washout without
braking constraints, the platform generates a sud-
den change in acceleration near the workspace limits
resulting in false cues. Combined with braking con-
straints, the acceleration and velocity of the platform
are restricted, and the workspace limits are never
reached. As the result, there are no such sudden
changes reducing the likelihood of false cues.
At high prediction horizons, the benchmark algo-
rithm is observed to outperform the frequency-
splitting algorithm marginally. Possibly due to the
fact that at higher prediction horizons the MPC can
produce near-optimal results. In the case of the
frequency-splitting algorithm, there are multiple ref-
erences. Frequency filters define the references for
tilt-coordination and linear acceleration, which guide
the algorithm for short prediction horizons but a sub-
optimal solution may be obtained.
According to Table 3, the current CPU enables the al-
gorithm to achieve real-time capability for a prediction
horizon of 30 steps (0.3 s). Moreover, even at higher
prediction horizons, the proposed algorithm gener-
ates solutions faster than the benchmark. A prelim-
inary implementation of the algorithm was conducted
using dSPACE rapid prototyping hardware. This im-
plementation involved a sampling time of 0.02 sec-
onds and a prediction horizon of 0.8 seconds (40
steps). The results were obtained in hard real-time
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and demonstrated performance comparable to the
findings presented in the paper.

The performance of the algorithm also depends on
the selection of the frequency-splitting cut-off fre-
quency. Such a cut-off frequency is also applied in
classical washout algorithms. We selected 0.5 Hz
which is of similar order as 0.4 Hz, 0.6 Hz (Asadi,
Mohamed, and Nahavandi, 2015) and 1 Hz (Tajima,
Maruyama, and Yuhara, 2006). We also explored val-
ues from 0.3-0.6 Hz resulting in similar results for the
specific force. This however as expected changes the
contributions coming from the linear movements and
the tilt-coordination. For future study, the selection of
cut-off frequency could be based on a power spectral
analysis of the reference signals, e.g. selecting the
cut-off frequency to achieve equal power distribution
for linear motion and tilt-coordination.

To evaluate the real-time feasibility and applicability
of the proposed MCA, simulations were conducted
with the emulator of the motion platform. The emula-
tor motion corresponds to the commanded behaviour
and only marginally deviated due to more complex
modelled dynamics.

Conclusion
In this study, a frequency-splitting MCA is proposed
combining elements of a filter-based and MPC-based
MCA to achieve better specific force tracking perfor-
mance with faster convergence.

The proposed algorithm demonstrates a superior
specific force tracking performance compared to the
state-of-the-art MPC-based MCA for real-time capa-
ble prediction horizons. The frequency-splitting algo-
rithm produces at least 15% smaller error for the
simulated scenarios when compared to the state-
of-the-art. The results also show a significant 40%
enhancement in convergence speed when utilizing
the proposed frequency-splitting algorithm. The im-
proved performance is attributed to the use of tilt-
coordination and linear acceleration references in
the frequency-splitting algorithm, which aid in bet-
ter workspace utilization and faster convergence to-
wards the desired specific force.

Limitations and future work
The proposed frequency-splitting algorithm offers a
promising solution for real-time specific force track-
ing but has a few limitations. The algorithm requires
prior knowledge of the entire drive. The scaling factor
can be designed if the maneuver’s aggressiveness is
known since it depends on the maximum rate change
of the specific force. Thus, a sudden change in the
specific force can result in a very low scaling factor.
To address this issue, we suggest limiting the scaling
factor to a minimum value.

In this study, the cut-off frequency was manually
tuned to determine the algorithm’s performance.
However, an adaptive approach or using power spec-
tral analysis to determine the cut-off frequency can
result in a better performance.

Although the algorithm demonstrated real-time ca-
pability through simulations and analysis, no hard
real-time implementation in a driving simulator was

conducted. Future work focuses on human-in-the-
loop experiments to evaluate the algorithm’s effec-
tiveness.
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