
Globally Guided Trajectory Planning in Dynamic Environments

Oscar de Groot, Laura Ferranti, Dariu Gavrila, Javier Alonso-Mora

Abstract— Navigating mobile robots through environments
shared with humans is challenging. From the perspective of
the robot, humans are dynamic obstacles that must be avoided.
These obstacles make the collision-free space nonconvex, which
leads to two distinct passing behaviors per obstacle (passing
left or right). For local planners, such as receding-horizon
trajectory optimization, each behavior presents a local optimum
in which the planner can get stuck. This may result in slow or
unsafe motion even when a better plan exists. In this work,
we identify trajectories for multiple locally optimal driving
behaviors, by considering their topology. This identification is
made consistent over successive iterations by propagating the
topology information. The most suitable high-level trajectory
guides a local optimization-based planner, resulting in fast and
safe motion plans. We validate the proposed planner on a mobile
robot in simulation and real-world experiments.

I. INTRODUCTION

Mobile robots have the potential to automate logistic tasks
ranging from indoor transportation tasks, as found in auto-
mated warehouses and hospitals, to outdoor transportation
tasks, such as package delivery. One of the major challenges
for mobile robots is to move safely among humans.

Dynamic collision avoidance constraints are usually im-
posed on the motion of the robot, making its free config-
uration space nonconvex. In fact, each obstacle in a 2-D
environment leads to at least two possible driving behaviors
for the robot: passing left or right.

Existing motion planners are either local or global. Local
planners typically remain in the driving behavior that they
are initialized with. This may lead to poor performance
(e.g. long travel times) if a higher performance driving
behavior exists, but is not explored. Because of the limited
scope, these planners are typically fast and can consider
detailed dynamic models. Global planners explore and find
the optimal driving behavior and motion plan, but can suffer
from high computation times when the robot dynamical
model is considered.

A common approach in the presence of static obstacles is
to find a high-level path using a global planner. This path is
passed to a local motion planner which improves the quality
of the plan locally. The majority of existing works following
this hierarchy do not consider dynamic obstacles in their
global planner, they delegate dynamic collision avoidance to
the local planner directly. Although this is computationally
faster, it fails to address that when obstacles move, the set of
driving behaviors becomes richer, since the planner needs to

The authors are with the Dept. of Cognitive Robotics, TU Delft, 2628
CD Delft, The Netherlands. Email: o.m.degroot@tudelft.nl

This work received support from the Dutch Science Foundation
NWO-TTW, within the SafeVRU project (nr. 14667) and Veni project
HARMONIA (nr. 18165).

y

x

GoalStart

(a) Topview of a crossing
scenario.

y

x

Time

Goal

Start

Slowing
Down

Passing
Right

Passing
Left

Speeding
Up

(b) Topologically distinct
trajectories in the 3-D state
space.

Fig. 1: An illustration of how topologically distinct guidance
trajectories explore driving behaviors for a scenario where
two pedestrians cross at the same time.

decide when and how to pass the obstacles. Fig. 1 illustrates
these driving behaviors by looking at the planning problem
in a 3-D state space consisting of 2-D position and bounded
time. Each driving behavior travels through a distinct section
of the state space and can therefore be identified by analyzing
their topology in the collision-free space.

In this work we explicitly consider the possible driving be-
haviors in a dynamic environment by planning topologically
distinct guidance trajectories in the state space. We select the
most suitable guidance trajectory based on a high-level cost.
This trajectory is passed to a Model Predictive Contouring
Controller (MPCC) [1] that locally optimizes the motion of
the robot while following the selected guidance trajectory,
resulting in a fast and safe motion plan.

Related Work: Local optimization can be leveraged to
plan locally optimal trajectories. Model Predictive Control
(MPC) is often used to optimize planning performance
(e.g., speed and comfort) while satisfying constraints (e.g.,
collision avoidance, vehicle model, actuator limits) offering
a flexible and safe framework that can include road follow-
ing [2] and dynamic collision avoidance in the determinis-
tic [1] and uncertain [3], [4], [5] case. A limitation of MPC
motion planners is that their solution is only guaranteed to
be locally optimal, which can lead to unsafe or unexpected
driving behavior when the local optimum corresponds to
unsuitable (e.g., aggressive or slow) driving behavior.

Global planners such as Rapidly expanding Random Trees
(RRT) [6], RRT* [7] and Probabilistic RoadMaps (PRM) [8]
in principle resolve this issue, but are typically not fast
enough to consider dynamic obstacles, especially when the
robot’s dynamic constraints are considered.

Topology-based planning methods identify driving behav-

2023 IEEE International Conference on Robotics and Automation (ICRA 2023)
May 29 - June 2, 2023. London, UK

979-8-3503-2365-8/23/$31.00 ©2023 IEEE 10118

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 R

ob
ot

ic
s a

nd
 A

ut
om

at
io

n
(IC

RA
) |

 9
79

-8
-3

50
3-

23
65

-8
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

RA
48

89
1.

20
23

.1
01

60
37

9

Authorized licensed use limited to: TU Delft Library. Downloaded on September 05,2023 at 14:32:28 UTC from IEEE Xplore. Restrictions apply.

iors through the environment by comparing trajectory topolo-
gies. When two trajectories can be smoothly transformed
into each other without colliding with an obstacle, they are
homotopy equivalent. In [9], methods using this measure are
divided in three groups. The first group plans in a given
homotopy class, for example, road rules are used in [10] to
motivate a desired homotopy class in highway driving.

The second group leverages structure in the environment to
enumerate possible homotopy classes after which trajectories
in a subset of the classes are computed. An example of this
approach is [11] where a 2-D workspace is decomposed
with a trapezoidal decomposition. Similarly, in [12], [13]
homotopy classes are derived from the road structure. The
works [14], [15] compute a homology 1 invariant that for
each obstacle identifies the rotations of a path around it.
Graphs extended with this invariant can be used to plan a
path in each homology class.

The third group evaluates the homotopy of a trajectory af-
ter it is found. In [16], [17], the homology invariant from [14]
is applied to extend a PRM graph around static obstacles and
the resulting high-level trajectories are optimized by a local
planner. An alternative to homotopy, Universal Visibility
Deformation (UVD) (based on VD [18]), introduced in [19]
efficiently compares the topology of two trajectories. A UVD
aware visibility-PRM (see [20]) is presented to plan mulitple
distinct trajectories in real-time for drone flight. The same
method is leveraged in [21] and [22] to achieve state-of-the-
art results for drone flight in static environments.

Previous works [10], [12], [13] in the second group plan
among dynamic obstacles in the state space, all of which
assume and leverage road structure. Works [19], [21], [22]
in the third group plan drone flight in unstructured 3-D
environments, but do not consider dynamic obstacles.

Contribution: In this work, we present a method in
the third group, based on [19] to plan trajectories through
dynamic environments without relying on road structure. The
contributions of this work are as follows:

1) A planner that considers multiple topologically distinct
high-level trajectories in dynamic environments, with-
out assuming a structured environment. The most suit-
able trajectory is selected as initialization (guidance)
for a local planner.

2) An algorithm to identify and propagate topology infor-
mation of trajectories to successive iterations, making
the planner behavior stable and consistent.

We validate the proposed planner on a mobile robot both
in simulation and in real-world experiments. Our results
indicate that the addition of the high-level planner results
in faster trajectories, where this improvement increases as
the driving scenarios become more crowded. In addition, we
observe less collisions in crowded scenarios. Our planner is
implemented in ROS/C++ and will be released open-source.

1Homology differs slightly from homotopy. See [14] for definitions.

II. PROBLEM FORMULATION

We model the robot motion by the deterministic discrete-
time nonlinear dynamics

xk+1 = f(xk,uk), (1)

where xk∈ Rnx and uk∈ Rnu are the state and input at
discrete time instance k, nx and nu are the state and
input dimensions respectively and the state contains the 2-D
position of the robot pk = (xk, yk) ∈ R2⊆ Rnx . Obstacles
move in the same space as the robot. The position of obstacle
j at time k = 0 is denoted oj

0 ∈ R2 and we assume that for
each obstacle predictions of its motion over the next N time
steps (i.e., oj

1, . . . ,o
j
N) are available to the robot at each time

instance. We model the obstacles and robot area with a single
disc each, with radius robs and r, respectively. We further
assume that the robot is given a high-level reference path to
follow, e.g., a straight line to the goal. The robot tracks the
reference path through the workspace (it can deviate from it)
without colliding with the obstacles.

III. GLOBAL GUIDANCE

The proposed planner consists of two components, the first
computes a global guidance trajectory to guide the second
component, a local planner, to the global optimum in the
dynamic environment. We design the guidance trajectory
search to be light-weight and fast, giving an estimate in
the vicinity of the global optimum. The local planner is
initialized from the guidance trajectory and leverages more
accurate robot models and constraints to locally obtain a safe
high quality trajectory.

A. Dynamic Trajectory Planning

We explicitly consider multiple local optimal driving be-
haviors in the presence of dynamic obstacles by planning
high-level collision-free paths in the state space. The state
space, composed of the workspace and time, is described
by X = R2 × [0, T], with [0, T] a continuous domain. A
trajectory is a continuous path through the state space, τ :
[0, 1] → X . The area of the workspace occupied by the union
of obstacles at time t is denoted by Ot ⊂ R2 and the obstacle
set in the state space is thus O :=

⋃
∀t∈[0,T](Ot, t) ⊂ X .

Obstacles puncture holes in the state space, which make the
collision-free space nonconvex and results in the existence
of multiple locally optimal trajectories.

The topology of trajectories can be analyzed to identify
a single trajectory for each local optimum. To distinguish
trajectory topologies, we require a comparison function,

H(τi, τj ,O)

{
1 τi, τj topologically equivalent,
0 otherwise.

(2)

We then seek to find the set of topologically distinct trajec-
tories T ∗ = {τ0, τ1, . . . , τNτ

} in the workspace, where

H(τi, τj ,O) = 0, ∀τi, τj ∈ T ∗, i ̸= j. (3)

In this work, we adopt the topology measure UVD [19]. Two
trajectories are in the same UVD class (topology equivalent)

10119

Authorized licensed use limited to: TU Delft Library. Downloaded on September 05,2023 at 14:32:28 UTC from IEEE Xplore. Restrictions apply.

(a) Visibility-PRM graph,
with spheres denoting
guards (orange), start and
goal (red) and connector
nodes (colored).

(b) Geometric paths (colored
lines) and cubic spline points
(cubes) before (green) and
after optimization (black).

(c) Guidance trajectories
with the picked trajectory
(dark blue) thickened.

Fig. 2: Our high-level guidance method, viewed in the state space X . (a) A graph is constructed using visibility-PRM. (b)
Geometric paths are found through graph-search and are sampled and smoothed. (c) Cubic splines are fitted through the
resulting points. Based on a high-level cost, one guidance trajectory is selected, to be tracked by a local planner.

if points along the trajectories can be connected, without
intersecting with obstacles.

Definition 1. [19] Two trajectories τ1(s), τ2(s) parameter-
ized by s ∈ [0, 1] and satisfying τ1(0) = τ2(0), τ1(1) =
τ2(1), belong to the same uniform visibility deformation
class, if for all s, line τ1(s)τ2(s) is collision-free.

In practice, we check collisions for s at discrete intervals
along the trajectories.

B. Visibility-PRM

We build on Visibility-PRM [19] to compute a sparse
representation of the paths from start to goal, with distinct
topologies. We introduce important adaptations to repurpose
the approach in the state space domain, that includes time, to
ensure that the algorithm gives consistent outputs over suc-
cessive time steps. The modified Visibility-PRM algorithm
is given in Algorithm 1 and is detailed below.

PRM initializes its graph with start (x0) and goal (xN)
nodes. States for new nodes are drawn at random from a
feasible state distribution x(i) ∼ PPRM (NewSample line 8)
and if possible, the new node is connected to the graph.

Visibility-PRM distinguishes between Guard and Connec-
tor nodes, as follows, to ensure that the graph is sparse. The
start and goal nodes are initialized as guards (lines 1, 2).
For each new sample, we find the guards that it can be
connected to without colliding (VisibleGuards line 9). If
it connects to 0 guards, it is added as guard (AddGuard
line 11). When a sample connects to exactly 2 guards,
it becomes a connector (InitializeConnector line 17). For
connectors we verify that the connection is dynamically
feasible (ConnectionInvalid lines 13, 15). We then construct
a piecewise linear path (Path) between a connector and the
guards. Lines 22-29 replace an existing connector when the
newly sampled connector is in the same UVD class and the
new path is shorter. New connectors with a distinct UVD
class are added by AddConnector in line 32.

A depth-first graph search augmented with a visited node
list, similar to [16], computes paths on the graph from start
to goal, giving the UVD distinct trajectories T ∗. We refer to

Guard

Guard

Obstacle

Guard

(a) Segments with
new topology

Guard

Guard

Obstacle

Guard

(b) Segments with
existing topology

Fig. 3: Each segment is associated with a topological ID. (a)
Two segments with new distinct topologies are given unique
IDs. (b) A new connector creates a shorter segment within
an existing topology, the ID is transferred.

these trajectories as the geometric trajectories. An example
of the result is visualized in Fig. 2a.

C. Propagating Guidance Trajectories

Because the search for guidance trajectories is repeated
at each time step, consistency between successive iterations
must be guaranteed to prevent the robot from switching
between different trajectories. We address this by marking
nodes in the graph with a topology identifier, then reintro-
ducing the nodes in the next iteration with their identifiers.
This allows us to reidentify and favour the selected guidance
trajectory from the previous iteration.

Each segment consisting of a connector and two guards is
in a distinct UVD class by construction. We assign to each
connector i a segment ID, αi ∈ Z+, that uniquely identifies
this segment (line 31). When a connector is replaced, the ID
is transferred (line 27). This is illustrated in Fig. 3.

Each geometric trajectory is composed of one or more
segments. We associate each geometric trajectory i with
a trajectory ID, βi ∈ Z+ and maintain a mapping be-
tween each trajectory and its segments, making it possible
to reidentify each trajectory in successive iterations. For
example if trajectory τ1 with ID βi = 1 contains segments
α1 = 1, α2 = 4, we first save the mapping 1 → {1, 4}. In
the next iteration, a trajectory consisting of segments 1, 4 is
reassigned the ID 1.

10120

Authorized licensed use limited to: TU Delft Library. Downloaded on September 05,2023 at 14:32:28 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Proposed Visibility-PRM

Input: O, x0, xN , Previous nodes G−
1 AddGuard(x0, G)
2 AddGuard(xN , G)
3 while Below sample and time limit do
4 reintroduce ← Not all samples G− were reintroduced
5 if reintroduce then
6 x, N− ← ReintroduceSample(G−)
7 else
8 x← NewSample(x0, xN)
9 L ← VisibleGuards(x, G, O)

10 if |L| = 0 (No guards visible) then
11 AddGuard(x, G)

12 else if |L| = 2 (Exactly 2 guards visible) then
13 if ConnectionInvalid(L0, x) then
14 Continue
15 if ConnectionInvalid(x, L1) then
16 Continue
17 N ← InitializeConnector(x)
18 if reintroduce then
19 Transfer segment ID of N− to N
20 τ ← Path(L0,x,L1)
21 distinct ← True
22 for Shared neighbour xj ,N j of x,N in L do
23 τj ← Path(L0,x

j ,L1)
24 if H(τ , τj ,O) = 1 then
25 distinct ← False
26 if Length(τ) < Length(τj) then
27 Transfer the segment ID of N j to N
28 In G, replace connector N j with N
29 Break

30 if distinct then
31 if reintroduce is False then
32 Initialize segment ID of N with unused ID

33 AddConnector(N , G)

Output: G

In line 6 of Algorithm 1, ReintroduceSample reintro-
duces all nodes of the previous graph (G−) before sampling
new states. Because a sampling time passes between these
iterations, the time coordinate of each node (x, y, t) in the
previous graph needs to be updated to (x, y, t − h), where
h is the sampling time. When the time coordinate becomes
zero, we resample a new node halfway along the trajectory.

Since the connectors possess a segment ID, the segment
associations are carried over from the previous iteration
(line 19). After new paths are found, we reidentify previous
trajectories from their segments. These steps result in consis-
tent identification of UVD distinct trajectories and improve
the overall planner performance, since trajectories and their
topology are propagated to successive iterations.

D. Spline Optimization

The geometric trajectories do not satisfy the kinematic
constraints of the robot (they are discontinuous) and therefore
cannot be followed by a low-level controller. We smoothen

these trajectories in two steps as visualized in Figs. 2b
and 2c. The first step samples the trajectories and optimizes
the resulting points. The second step fits a smooth curve
through the optimized points.

Step 1: We first convert the state space paths to time
parameterized trajectories, τgeometric : [0, T] → R2. Each
trajectory is sampled with regular intervals ∆t to obtain a
set of control points Q = [Q0, . . . ,QN], with Qi ∈ R2.

We optimize these control points to improve smoothness
both in position and velocity. The optimization problem is
designed to be quadratic and unconstrained to minimize
computation times. We define the cost as

Jpoints = Jgeo + Jsmooth + Jobst + Jvel, (4)

where the geometric cost [19] penalizes distance to the
original control points Q̄ on the geometric trajectory,

Jgeo =

N∑
i

||Qi − Q̄i||2. (5)

The smoothness cost [19]

Jsmooth =

N−1∑
i=1

||Qi−1 − 2Qi +Qi+1||2, (6)

functions as an elastic band that smoothens the trajectory.
The obstacle cost is designed to penalize the linear dis-

tance dji from control point i to the obstacle j by an exponen-
tial penalty. To keep the cost quadratic however, we use the
second order Taylor expansion. Let Ai,j = Q̄i − oj

k, where
time index k matches the time associated with Qi. Then the
cost is given by Jobst =

∑
i

∑
j Q

T
i Hi,jQi + fT

i,jQi, with

Hi,j =
Ai,jA

T
i,j

2
, fi,j = −(1 + r + robs)Ai,j − 2Hi,jo

j
k.

The velocity cost penalizes an offset with respect to a
tracking velocity vref. We compute this cost by constructing a
trajectory that satisfies the velocity tracking cost everywhere,
based on the geometric trajectory. We then penalize the
distance to that trajectory. The velocity control points of the
geometric path can be computed using

Vi =
Qi+1 −Qi

∆t
, i = 1, . . . , N − 1. (7)

Then the associated velocity optimized path is given by

Qv
i+1 = Qv

i + vref
Vi

||Vi||
∆t, (8)

with Qv
0 equal to the current velocity of the robot. The

velocity cost matches (5) with Q̄ replaced by Qv .
Step 2: Since the optimization problem is quadratic

and unconstrained, we obtain the solution in closed-form.
We fit cubic splines separately through the optimized x
and y position of the control points to obtain a continuous
trajectory, consisting of segments τ i(t) =

[
τ ix τ iy

]T
, with

τ ix (and τ iy) given by

τ ix(t) = aixt
3 + bixt

2 + cixt+ dx,

10121

Authorized licensed use limited to: TU Delft Library. Downloaded on September 05,2023 at 14:32:28 UTC from IEEE Xplore. Restrictions apply.

which is twice continuously differentiable and passes through
the control points. We impose a boundary condition on the
initial velocity of the trajectories to ensure that it respects the
robot’s current velocity. For more details on fitting the cubic
splines, we refer to [23]. The cubic splines together form a
smooth trajectory τ : [0, T] → R2 from the current robot
position to the goal (see Fig. 2c). Guidance trajectory τ is
not guaranteed to be collision-free, but is smooth enough to
be used by a local planner that enforces collision avoidance.

E. Spline Selection

From the candidate splines generated in each control
iteration, we need to select the guidance trajectory that best
represents the performance indicators for the robot’s motion.
We consider the following criteria:

1) Minimize path length - preferring short paths.
2) Minimize difference to preferred velocity - penalizing

too fast or slow driving.
3) Minimize acceleration - preferring smooth trajectories.
4) Consistency - ensuring that when another trajectory

improves over the selected trajectory of the previous
control iteration, it should significantly outperform it.

We compute the costs for each trajectory by taking samples
of positions pi, velocities vi and accelerations ai at constant
time intervals along the trajectory, resulting in the objective

Jselect =
∑
i∈I

wL||pi − pi−1||+ wV || ||vi|| − v̄||

+ waα
i||ai||+ wcC,

(9)

where I is the number of samples, w denotes weights, v̄
is the reference velocity, α ≈ 1 to discount accelerations
later in the trajectory and C denotes a constant penalty if
this trajectory was not selected in the previous iteration. We
select the lowest cost trajectory (thickened in Fig. 2c).

IV. LOCAL PLANNING

The local planner needs to plan a kinematically feasible
motion that is collision-free, since this is not guaranteed by
the guidance trajectory. We introduce the guidance trajectory
to the local planner in two ways. First, the solver is initialized
with the guidance trajectory. This in itself may not be
sufficient to converge to the desired optimum. We therefore
also follow the guidance trajectory by using an MPCC [1]
as local planner. This planner is designed to follow the path
traced by the guidance trajectory while tracking its velocity.

The objective of the MPCC is given by

Jlocal =

NMPCC∑
k=0

Jc,k + Jl,k + Jv,k + Ja,k + Jω,k, (10)

where Jc,k and Jl,k denote the lag and contouring costs as
in [1], the velocity reference tracking is enforced via Jv,k =
||vk−v̄k||, where v̄k is the velocity on the guidance trajectory
at time step k, and the costs Ja,k and Jω,k penalize actuation.

To avoid obstacles one would typically use nonconvex
constraints ||pk − ok|| ≥ r + robs [1]. However, in practice
these may result in switching between local optima, without

giving a consistent solution. We employ the linearized ver-
sion of these constraints, the linear constraint orthogonal to
the vector between the robot and obstacle, ATpk ≤ b, where

A =
ok − pk

||ok − pk||
, b = AT (ok −A(r + robs)). (11)

These constraints result in consistent and smooth motion2.

V. RESULTS

We validate our approach in simulation and real-world
experiments, comparing in both cases against a local planner
without guidance. Our planner is implemented in ROS/C++
and will be released open-source. A video of the simulations
and experiments is available in [24].

A. Notes on Implementation

Experimental settings are given in Table I. The high-level
planner is fast enough to plan over a longer horizon than
the local planner while remaining real-time (i.e., NPRM >
NMPCC). In crowded scenarios, this leads to smoother tra-
jectories as the robot can adapt its high-level maneuvre
earlier. We select the goal for PRM as the point along the
reference path reached when the robot drives at the preferred
velocity. It is projected to the nearest collision-free position
if necessary. When the goal cannot be reached, we reduce the
horizon. PRM nodes are sampled (i.e., PPRM) in a forward
directed arc considering velocity and acceleration limits.

B. Simulated Guidance Ablation Study

Our simulations consider four environments with pedes-
trians. The first environment (head-on) consists of a straight
road with two pedestrians moving towards the robot. The
other environments contain 4, 8 and 16 pedestrians with
random start positions and velocities near the reference path.
The random scenarios are identical for all planners (i.e., we
use the same random seed). In all simulations, pedestrians
move with constant velocity. We reset the simulation when
the robot reaches the end of the road in the x-direction and
repeat each experiment 200 times.

Statistical results are given in Table II and snapshots
are shown in Fig. 4. The guidance allows the robot to
consistently navigate around the pedestrians in the head-
on scenario. Without guidance, indecisiveness of the planner
leads to infeasibility and collisions in most simulations. In
the randomized environments, the guidance reduces the task

TABLE I: Experimental settings. Weights are denoted “(w)”.

Overall NPRM NMPCC h v̄
120 40 0.05 s 2 m/s

Points (w) Jgeo Jsmooth Jobst Jvel
25 10 0.5 0.01

Splines Points wL wV wa wc α
20 1 100 100 25 0.95

MPCC (w) JMPCC
c,k JGuidance

c,k Jl,k Jv,k Ja,k Jω,k

0.01 0.5 0.01 0.3 0.05 0.05

2In principle we could run a local planner for each guidance trajectory
in parallel and choose the best one. This is left for future work.

10122

Authorized licensed use limited to: TU Delft Library. Downloaded on September 05,2023 at 14:32:28 UTC from IEEE Xplore. Restrictions apply.

(a) Head-on 2 (b) Random 4 (c) Random 8 (d) Random 16

Fig. 4: Snapshots of the simulations, viewed in the state-space. Pedestrians (black discs) are visualized with their predicted
area (colored disc) inflated by the robot area. Visualization of the graph and guidance trajectories are identical to Fig. 2.
The robot’s local motion plan is denoted by blue discs, indicating the predicted area occupied by the robot.

TABLE II: Statistical results for the task duration, number of collisions and computation times when comparing MPCC with
and without guidance over 200 simulations each in 4 different scenarios. Results are denoted as “avg (std)” over experiments
except for collisions. We denote with “High-Level Planning” the time spent to compute the guidance trajectory.

Scenario Method Task Duration [s] Collisions Computation Time [ms] Computation Time High-Level Planning [ms]

Headon 2 LMPCC 13.3 (0.3) 160 17.1 (8.9) -
Guidance MPCC 12.3 (0.1) 0 16.5 (2.9) 6.5 (2.1)

Random 4 LMPCC 12.3 (0.3) 0 17.2 (3.0) -
Guidance MPCC 12.2 (0.2) 1 16.2 (2.6) 6.0 (1.9)

Random 8 LMPCC 12.7 (0.6) 3 17.2 (3.1) -
Guidance MPCC 12.4 (0.4) 3 17.6 (3.7) 6.5 (2.3)

Random 16 LMPCC 13.5 (1.1) 16 19.4 (4.3) -
Guidance MPCC 13.2 (1.0) 17 22.1 (6.7) 8.5 (4.6)

(a) Guidance-MPCC

(b) MPCC

Fig. 5: A comparison of trajectories with and without guid-
ance in a randomized environment with 8 pedestrians.

duration by 2, 3 and 5%, with a larger improvement in more
crowded environments. Trajectories for the 8 pedestrian case,
visualized in Fig. 5, show that guidance allows the planner
to choose faster driving behaviors. Guidance MPCC collides
slightly more often than the baseline. When obstacles block
the path, the high-level planner may not find a guidance
trajectory. We then use the last computed guidance trajectory,
which can lead to collisions. Future work may resolve this
problem by considering multiple goals.

C. Real-World Experiments

We deploy the proposed planner experimentally on a
mobile robot (Clearpath Jackal) navigating among pedestri-
ans. The robot is equipped with an Intel i5 CPU@2.6GHz.
Localization of the robot and pedestrians is obtained from
a marker based tracking system and pedestrian predictions
assume constant velocity, where the velocity is obtained from
Kalman filtered position data.

(a) Setup (b) Crossing Case (c) Mixed Case

Fig. 6: Trajectories recorded in the real-world experiments
for the robot (dark blue) and pedestrians (green). Start
positions are denoted in black.

Trajectories for 2 scenarios and the setup are visualized in
Fig. 6. In the first scenario, the guidance allows the robot to
pass behind the last pedestrian. In the second scenario, the
robot moves left to evade both pedestrians efficiently.

VI. CONCLUSION

This work presented a novel planner for autonomous nav-
igation in dynamic environments. The planner finds distinct
high-level trajectories to guide a local optimization-based
planner to a global optimal plan. Guidance trajectories are
computed and tracked over successive control iterations.

We showed that the resulting planner leads to shorter av-
erage task duration times than the local planner in isolation,
with larger improvement in crowded environments. Real-
world experiments further validated the proposed approach.

Further research could explore applications of the guid-
ance trajectory search to predict human motion or to endow
the local planner with socially compliant motion.

10123

Authorized licensed use limited to: TU Delft Library. Downloaded on September 05,2023 at 14:32:28 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] B. Brito, B. Floor, L. Ferranti, and J. Alonso-Mora, “Model Predictive
Contouring Control for Collision Avoidance in Unstructured Dynamic
Environments,” IEEE Robot. Autom. Lett., vol. 4, no. 4, pp. 4459–
4466, Oct. 2019.

[2] W. Schwarting, J. Alonso-Mora, L. Paull, S. Karaman, and D. Rus,
“Safe Nonlinear Trajectory Generation for Parallel Autonomy With
a Dynamic Vehicle Model,” IEEE Trans. Intelligent Transportation
Systems, vol. 19, no. 9, pp. 2994–3008, Sep. 2018.

[3] H. Zhu and J. Alonso-Mora, “Chance-Constrained Collision Avoid-
ance for MAVs in Dynamic Environments,” IEEE Robot. Autom. Lett.,
vol. 4, no. 2, pp. 776–783, Apr. 2019.

[4] A. Wang, X. Huang, A. Jasour, and B. Williams, “Fast Risk As-
sessment for Autonomous Vehicles Using Learned Models of Agent
Futures,” arXiv:2005.13458 [cs, stat], Jun. 2020.

[5] O. de Groot, B. Brito, L. Ferranti, D. Gavrila, and J. Alonso-
Mora, “Scenario-Based Trajectory Optimization in Uncertain Dynamic
Environments,” IEEE Robot. Autom. Lett., pp. 5389 – 5396, 2021.

[6] S. LaValle, “Rapidly-Exploring Random Trees: A New Tool
for Path Planning,” Computer Science Department Iowa State
University, Tech. Rep. TR 98-11, 1998. [Online]. Available:
http://janowiec.cs.iastate.edu/papers/rrt.ps

[7] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The International Journal of Robotics Research,
vol. 30, no. 7, pp. 846–894, Jun. 2011. [Online]. Available:
http://journals.sagepub.com/doi/10.1177/0278364911406761

[8] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,”
IEEE Transactions on Robotics and Automation, vol. 12, no. 4, pp.
566–580, Aug. 1996.

[9] E. H. Bes, “Path Planning with Homotopic Constraints for Au-
tonomous Underwater Vehicles,” Ph.D. dissertation, 2012.

[10] P. Bender, O. c. Taş, J. Ziegler, and C. Stiller, “The combinatorial
aspect of motion planning: Maneuver variants in structured environ-
ments,” in 2015 IEEE Intelligent Vehicles Symposium (IV), Jun. 2015,
pp. 1386–1392, iSSN: 1931-0587.

[11] J. Park, S. Karumanchi, and K. Iagnemma, “Homotopy-Based Divide-
and-Conquer Strategy for Optimal Trajectory Planning via Mixed-
Integer Programming,” IEEE Transactions on Robotics, vol. 31, no. 5,
pp. 1101–1115, Oct. 2015.

[20] T. Siméon, J.-P. Laumond, and C. Nissoux, “Visibility-based
probabilistic roadmaps for motion planning,” Advanced Robotics,
vol. 14, no. 6, pp. 477–493, Jan. 2000. [Online]. Available:
https://www.tandfonline.com/doi/full/10.1163/156855300741960

[12] B. Yi, P. Bender, F. Bonarens, and C. Stiller, “Model Predictive
Trajectory Planning for Automated Driving,” IEEE Transactions on
Intelligent Vehicles, vol. 4, no. 1, pp. 24–38, Mar. 2019.

[13] F. Altché and A. de La Fortelle, “Partitioning of the free space-time
for on-road navigation of autonomous ground vehicles,” in 2017 IEEE
56th Annual Conference on Decision and Control (CDC), Dec. 2017,
pp. 2126–2133.

[14] S. Bhattacharya, R. Ghrist, and V. Kumar, “Persistent Homology for
Path Planning in Uncertain Environments,” IEEE Transactions on
Robotics, vol. 31, no. 3, pp. 578–590, Jun. 2015.

[15] S. Bhattacharya, V. Kumar, and M. Likhachev, “Search-based Path
Planning with Homotopy Class Constraints,” Jul. 2010.

[16] C. Rösmann, F. Hoffmann, and T. Bertram, “Integrated online
trajectory planning and optimization in distinctive topologies,”
Robotics and Autonomous Systems, vol. 88, pp. 142–153, Feb.
2017. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/
S0921889016300495

[17] C. Rösmann, A. Makarow, and T. Bertram, “Online Motion
Planning based on Nonlinear Model Predictive Control with
Non-Euclidean Rotation Groups,” in 2021 European Control
Conference (ECC), Jun. 2021, pp. 1583–1590. [Online]. Available:
http://arxiv.org/abs/2006.03534

[18] L. Jaillet and T. Simeon, “Path Deformation Roadmaps: Compact
Graphs with Useful Cycles for Motion Planning,” The International
Journal of Robotics Research, vol. 27, no. 11-12, pp. 1175–1188, Nov.
2008. [Online]. Available: https://doi.org/10.1177/0278364908098411

[19] B. Zhou, F. Gao, J. Pan, and S. Shen, “Robust Real-time UAV
Replanning Using Guided Gradient-based Optimization and Topolog-
ical Paths,” in 2020 IEEE International Conference on Robotics and
Automation (ICRA), May 2020, pp. 1208–1214, iSSN: 2577-087X.

[21] R. Penicka, Y. Song, E. Kaufmann, and D. Scaramuzza, “Learning
Minimum-Time Flight in Cluttered Environments,” IEEE Robotics
and Automation Letters, vol. 7, no. 3, pp. 7209–7216, Jul. 2022.
[Online]. Available: http://arxiv.org/abs/2203.15052

[22] R. Penicka and D. Scaramuzza, “Minimum-Time Quadrotor
Waypoint Flight in Cluttered Environments,” arXiv, Tech.
Rep. arXiv:2202.03947, Feb. 2022. [Online]. Available: http:
//arxiv.org/abs/2202.03947

[23] T. Kluge, “Cubic Splines,” Mar. 2021. [Online]. Available: https:
//kluge.in-chemnitz.de/opensource/spline/spline.pdf

[24] O. de Groot, L. Ferranti, D. Gavrila, and J. Alonso-Mora, “Globally
Guided Trajectory Planning in Dynamic Environments,” 2023.
[Online]. Available: https://www.youtube.com/watch?v=tkRbsAuSTrA

10124

Authorized licensed use limited to: TU Delft Library. Downloaded on September 05,2023 at 14:32:28 UTC from IEEE Xplore. Restrictions apply.

