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Detecting Darting Out Pedestrians With Occlusion
Aware Sensor Fusion of Radar and Stereo Camera
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Abstract—Early and accurate detection of crossing pedestrians is
crucial in automated driving in order to perform timely emergency
manoeuvres. However, this is a difficult task in urban scenarios
where pedestrians are often occluded (not visible) behind objects,
e.g., other parked vehicles. We propose an occlusion aware fusion
of stereo camera and radar sensors to address scenarios with
crossing pedestrians behind such parked vehicles. Our proposed
method adapts both the expected rate and properties of detections
in different areas according to the visibility of the sensors. In our
experiments on a real-world dataset, we show that the proposed
occlusion aware fusion of radar and stereo camera detects the
crossing pedestrians on average 0.26 seconds earlier than using
the camera alone, and 0.15 seconds earlier than fusing the sensors
without occlusion information. Our dataset containing 501 relevant
recordings of pedestrians behind vehicles will be publicly available
on our website for non-commercial, scientific use.

Index Terms—Advanced driver assistance systems, millimeter
wave radar, object detection, radar detection.

I. INTRODUCTION

ABOUT 23% of the 1.35 million traffic fatalities world-wide
involve pedestrians [1]. Automated driving has the poten-

tial to significantly reduce these traffic deaths, yet the sensor-
based detection and tracking of pedestrians from a moving
vehicle remains challenging. Pedestrians have a wide variation
in appearance, can quickly alter their course, and can step onto
the road at pretty much any location.

Intelligent vehicles can use multiple sensors to cope with this
task: cameras [2], [3], [4], radars [5], [6], [7] and LiDARs [8],
[9]. Fusing different sensors, e.g., camera with radar [10]
or camera with LiDAR [11], can increase the reliability and
redundancy of such systems. In this paper, we consider the
fusion of a (stereo) camera with a radar. These are low-cost
sensors with complementary strengths that are well established
in driver assistance context on the market. Cameras provide
color/texture information at a fine horizontal and vertical
resolution. Radar sensors provide accurate depth information,
can directly measure the radial velocities and are more robust
to adverse weather and lighting conditions.
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Fig. 1. Darting out scenario: a pedestrian steps out from behind a parked car
(blue) which blocks the line-of-sight of the ego-vehicle (white). We propose
to detect such pedestrians with the fusion of stereo camera and radar in an
occlusion aware way, i.e., first building an occlusion model of the environment
and then expecting fewer and different detections (e.g. shorter visible parts of
the pedestrian) from the occluded regions (O) than from the visible, unoccluded
ones (V ).

Pedestrian sensing is often complicated in urban scenarios by
occlusions, such as by parked vehicles. A substantial 26% of
the accidents with crossing pedestrian analyzed in [12] involved
some form of visual occlusion. In fact, this case is so important
that the consumer advocacy group Euro NCAP designates a spe-
cial test scenario for it, titled “Running Child from Nearside from
Obstruction” [13]. This case of a pedestrian darting out [14] is
illustrated in Fig. 1. It is particularly dangerous because neither
a human driver nor the pedestrian have initially a clear, direct
view of the other. Similarly, in an automated driving setting, a
parked vehicle would block direct line-of-sight from the sensors
of the ego-vehicle to the pedestrian. However, the extent of this
blockage depends on the sensor’s type and on the size and shape
of the occlusion.

A camera may see the upper body of a pedestrian behind a
passenger car, while a person behind a larger vehicle, such as
a truck or a van may be invisible to the sensor. On the other
hand, commercially available 2+1D radars, which provide two
spatial dimensions (range and azimuth) and one dimension for
Doppler (radial velocity), are often able to detect the reflections
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of a pedestrian even in complete occlusion due to multipath
propagation [15], [16]. That is, the reflected radar signal may
“bounce” off other parked cars or the ground beneath the oc-
cluding vehicle and reach the ego-vehicle’s sensor even if there
is no direct line-of-sight. Such indirect reflections are weaker
and occur less frequently than direct ones [15], but they could
still provide valuable information about a potentially darting out
pedestrian.

Since both camera and radar sensors are affected by occlu-
sions, their fusion preferably requires an occlusion model that
describes how many detections to expect from each sensor in
the differently occluded areas of the scene (e.g., to expect fewer
detections behind cars). In addition, the occlusion model could
also provide information about the expected properties of such
detections, e.g., that the visible part of a partially occluded
pedestrian may be smaller than an unoccluded one. The stereo
camera is a suitable sensor to create this occlusion model because
it provides rich and dense textural and depth information that can
help accurately detect and model the occluding vehicle itself.

In this paper, we present a Bayesian occlusion aware sensor
fusion system designed to detect darting out pedestrians. We
show that incorporating an occlusion model into such a sensor
fusion system helps to detect darting out pedestrians earlier;
thus precious time is gained to initiate emergency braking or
steering, if needed. While we consider the fusion of (stereo)
camera and radar, the framework is suitable to integrate other
sensors, e.g., LiDAR.

The paper is structured as follows. In Section II we discuss
previous work. Then, in Section III, we present our generic
occlusion aware Bayesian multi-sensor fusion filter. Details of
how this filter was implemented with radar and stereo camera
sensors, and applied to darting out scenarios are discussed in
Section IV. Section V describes the dataset that was created and
used for this work. In Section VI, we present our experiments
and results, which are discussed in-depth in Section VII. Finally,
Section VIII concludes the paper.

II. RELATED WORK

In this section, we first discuss camera-, radar-, and fusion
based methods for pedestrian detection, with a focus on darting
out scenarios and occluded pedestrians. Afterwards, we give an
overview of some widely used methods for both object track-
ing and for modeling the environment considering occlusions.
Finally, we review the available automotive datasets and their
usability for this research.

A. Camera Based Approaches

Cameras are often used for pedestrian detection as they
provide rich information while being relatively inexpensive. In
recent years, convolutional neural networks (CNNs) and deep
learning methods [3], [4] dominate in this field.

The problem of occlusion is widely recognized, e.g., many
benchmarks define separate metrics for different levels of occlu-
sion [4], [17]. For an overview of camera based methods that con-
sider occlusions, see [18]. Several approaches aimed to explicitly
account for occlusions by learning a set of component detectors

and fusing their results to detect partially occluded pedestri-
ans [19], [20], [21], [22]. More recently, researchers proposed
special loss functions [23], [24] or top-down approaches [25] to
jointly estimate the state of close-by pedestrians occluding each
other, introduced hard negative mining to increase the occlusion
tolerance of networks [26], or proposed to explicitly collect more
training data of partially occluded pedestrians [4] to address the
problem. However, none of these methods used a global scene
model to describe the occlusions that may affect the number and
attributes of detections.

B. Radar Based Approaches

Radars have been used to detect road users in a variety of
ways, including clustering algorithms [27], [28], convolutional
neural networks [6], [29] or point cloud processing neural net-
works [30], [31]. A radar based multi-class classification system
(addressing pedestrians and pedestrian groups) was presented
in [27]. [5] and [32] both aim to distinguish pedestrians from
vehicles based on features such as size and velocity profiles
of the objects using radar. Some methods also used radars
to detect pedestrians in darting out or similar situations. [33]
presented a tracking method using track-before-detection and
particle filtering. The system was also tested in scenes of the
pedestrian entering and exiting an occluded region behind a
car. The radar was able to provide measurements even in the
occlusion. However, the occlusion itself was not considered,
and although they compared the performance to a camera based
detection system, no fusion occurred. In [15], a binary classi-
fication system of pedestrians and static objects was presented
that uses low-level radar data as input and extracts hand-crafted
features. The system was evaluated using darting out scenarios,
but no sensor fusion was used, nor was occlusion investigated as
a possible source of information. [16] exploited that radar signals
often “bounce” off large flat surfaces. They showed that it is pos-
sible to detect moving road users outside the direct line-of-sight
with reflected radar measurements by using building facades
or parked vehicles as relay walls. In [34], the authors explicitly
addressed the detection of fully occluded, darting out pedestrians
with radar. They designed an experimental setup with a static
radar sensor in an indoor area (behind a corner) and an outdoor
area (behind a van). Movement of the occluded pedestrian is
then classified by clustering into different behavior types, such
as walking towards, walking out of it, and walking inside the
occluded region. None of these methods considered occlusion
as a source of information, and none of them compared or fused
camera and radar sensors to detect darting out pedestrians in
realistic environments, i.e., from a moving ego-vehicle.

C. Fusion Based Approaches

Sensor fusion was extensively researched to provide more
robust perception solutions either via model-based (mathemati-
cal, e.g., Kalman or particle filters, evidence modeling) [10],
[35], [36], or data-driven approaches (e.g., with neural net-
works) [37], [38]. In this subsection, we focus on fusion systems
that use radar, with particular attention to whether and how
these systems address occluded pedestrians. A Kalman-filter
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based pedestrian tracking system using camera and radar was
introduced in [10] for indoor, static applications. To deal with
the frequent occlusion of the lower body, the authors trained
their camera based detector to detect only the upper body of
pedestrians, but they did not explicitly model occlusions. In [39],
LiDAR and radar were fused to detect pedestrians in a static ex-
perimental setup. First, a binary occlusion map of the scene was
created by detecting occluding objects with LiDAR. This map
was then used to select which sensors to use for detection: both
sensors for unoccluded regions, and purely radar for occluded
regions, exploiting its the multipath property. In [36], all three
sensors were combined in a multi-class system for detecting
moving objects, including pedestrians, in an intelligent vehicle
setup using an occupancy grid representation. The LiDAR was
used as the main sensor to detect moving objects, while camera
and radar were mainly used for classification. The influence of
occlusions was not considered. None of the fused systems found
were developed for use in intelligent vehicles to address darting
out scenarios, or considered occlusion as a source of information
beyond helping sensor selection.

D. Tracking

Pedestrians are often tracked with Kalman Filters both in
camera based [40] and radar based [41] detection systems.
Kalman filters can only model linear motion. Situations with
possibly non-linear motion dynamics, e.g., a pedestrian who
may or may not stop at the road side, can be handled by using
an “extended” Kalman Filter, or by switching between multiple
linear motion models with a switching dynamic system [40].
Another commonly used method for pedestrian tracking is the
particle filter [33], [42], [43], [44] which estimates the posterior
distribution over the state space using a set of weighted par-
ticles. Unlike Kalman Filters, a particle filter can handle non-
linear motion dynamics, and can represent arbitrary, potentially
multi-modal distributions. To satisfy our use case (detecting and
tracking a pedestrian), a filter should not only track an object of
interest (i.e., a pedestrian), but also report a probability that a
pedestrian is present in the scene. [42], [45] give solutions to
incorporate this existence probability into particle filters.

E. Environment Modeling

Modeling occluded areas in the environment is often done
in bird’s-eye view (BEV). A common approach is to aggregate
range measurements from radar or LiDAR sensors into a 2D
occupancy grid and then project “shadows” behind the extracted
objects [46], [47]. Creating an environment model with camera
information can lead to a faster process (i.e., it does not need to
be accumulated) and provides more information about the nature
of the occluding object (e.g., whether it is a car) due to the rich
texture information. In [43], the goal was to explicitly model
only the occlusions caused by (parked) vehicles. To this end, 2D
detections in the image plane were fetched from the car, bus,
truck, and van classes from the Single Shot Multibox Detector
(SSD) [48]. Depth (i.e., distance from the ego-vehicle) was
estimated by projecting the stereo point cloud into the camera
view and taking the median distance of the points inside each

bounding box. Using this depth, we back-projected each 2D
box to the 3D space to get a “2.5D” detection: a line segment
in BEV with length corresponding to the width of the projected
box. Areas behind these detections were considered occluded,
creating a binary map. While this solution resulted in fast pro-
cessing time and contributed to earlier detection of darting out
pedestrians in the experiments, it also had some drawbacks. By
assigning a single distance to the entire occluding vehicle, parts
of the vehicle closer/farther than that distance are incorrectly
considered “regular” unoccluded/occluded (but still walkable)
regions. However, a pedestrian cannot be physically present in
either of these halves. Modeling occlusion with a bounding box
also has limitations in width and height, e.g., a pedestrian may
be more visible behind the shorter parts of a car than behind its
tallest point, but these two cases are treated identically.

An alternative camera based approach to creating a more
accurate occlusion model that is still computationally efficient
may be to use stixels [49]. Stixels are rectangular column-wise
group of pixels based on disparity information with the goal
of reducing the complexity of the stereo point cloud. Since
the original publication [49], researchers have integrated class
information [50] and later instance information into stixels [51].
The latter are referred to as Instance Stixels and could be a
well suited input for an occlusion model because they follow
the shape of an occluding car (both in depth and width/height)
and are still computationally efficient to compute and process.
In addition, the same Instance Stixels representation can also
serve as input to a pedestrian detection and tracking system by
providing the location and height of the pedestrian.

F. Datasets

To study the detection of darting out pedestrians with the
fusion of camera and radar, a dataset is needed that 1) contains
measurements from both sensors and 2) contains hundreds of
the scenario under study. Several datasets have been published
to help the development and testing of autonomous vehicles,
e.g., the well-known KITTI [17] or the EuroCity dataset [4]. In
recent years, the number of datasets containing radar data has
increased with different goals such as ego-localization [52], [53],
object classification [54], or object detection [55]. At the time of
writing, nuScenes [56], Zendar [57], Astyx [58], and View-of-
Delft [31] are the only publicly available automotive datasets
that include measurements from both a camera and a radar
sensor (which provides Doppler data). However, a real-world
(i.e. not scripted or directed) dataset will always have relatively
few darting out examples and thus, none of these datasets are
suitable for our research.

III. PROPOSED APPROACH

A. Overview and Contributions

The goal of this paper is to fuse radar and stereo camera (Fig.
2, blue and red dashed rectangles) by incorporating occlusion
information to detect darting out pedestrians. To this end, we
propose a generic Bayesian filter to fuse these sensors in an
occlusion aware manner. This estimates not only the 2D position
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Fig. 2. Overview of our pipeline. Sensor data is processed to get the pedestrian detections and the occlusion model (Preprocessing). Future states of the object in
the filter are predicted, and then their likelihood are updated with the detections considering the occlusion model (Filtering). The estimated existence probability
and state of the object are calculated, which information can be used in subsequent applications (Postprocessing). Blue/red dashed boxes mark camera/radar specific
steps that are described in Section IV.

and velocity of an object’s center on the ground plane (i.e.
BEV), but also the probability that the object of interest (i.e.,
a pedestrian) is present in the scene. The used state space will
be discussed in details in Subsection III-B.

First, in a prediction step, we define the prior distribution of
the filter given previous measurements (Fig. 2, Predict step). The
distribution of predicted positions and velocities is defined for
three cases: a new object entering the scene, an object leaving
the scene, and finally a tracked object remaining in the scene.
Please refer to Subsection III-C for details.

After the prediction step, the new detections are fetched from
each sensor (Fig. 2, Preprocessing) and incorporated in the
update step (Fig. 2, Update step), which is discussed in details in
Subsection III-D. We assume conditional independence of the
sensors given the true state of the object, thus we can perform the
update with their set of detections individually whenever they
arrive, even if the sensors operate asynchronously at different
frame rates. We describe here the update in a generic way and
define sensor specific details, e.g. measurement models, later in
Section IV.

When updating with any of the sensors, its K detections
(as determined by its measurement model) are fed into the
filter. This updates the likelihood of the hypotheses in two
ways. First, the likelihoods of measuring K detections with this
sensor are calculated. Since the number of detections depends
on the position of the object, we can incorporate information
from an occlusion model here. That is, our system adjusts the
expected number of detections to the visibility of a position and
expects more/less detections at unoccluded/occluded locations,
see Fig. 1. Second, we also consider the unique capabilities of
the sensors. That is, we estimate the likelihood of the attribute of
the detection based on the estimated state of the object. Here we
could use, for example, the velocity measurement of a radar or
the classification confidence of a camera. We can also evaluate

the size of the visible part of a pedestrian given its assumed
occlusion condition.

The occlusion model can be retrieved from a single or from a
combination of sensors, or from an independent source. In this
paper, it will be provided by the stereo camera, see Section IV.

Finally, after the filtering, the object’s probability of existence
and state (i.e., 2D BEV center location and velocity) can be
estimated and used in subsequent processing steps, e.g., in
predicting future positions or evaluating the dangerousness of
the scene (Fig. 2, Postprocessing).

Our contributions are as follows.
1) We propose a generic occlusion aware multi-sensor

Bayesian filter for object detection and tracking.
2) We apply the proposed filter as a radar and stereo camera

based pedestrian detection and tracking system on chal-
lenging darting out scenarios. We show that incorporating
occlusion information and the radar sensor into our model
helps detect darting out pedestrians earlier while keeping
the number of false alarms low when the pedestrian stays
behind the car.

3) We share our dataset1 containing more than 500 relevant
scenarios with camera, radar, LiDAR, and odometry data.

This work builds upon our previous conference publica-
tion [43], where we initially proposed an occlusion-aware
Bayesian filter for darting out pedestrians based on stereo camera
and radar. This work features an improved sensor measurement
model (incorporation of additional attributes besides location,
see Subsections IV-B and IV-C). Among others, the occlusion
extent is now more accurately represented by a height profile
derived from instance segmentation rather than by a bounding

1The dataset will be made freely available at https://intelligent-vehicles.
org/datasets/ to academic and non-profit organizations for non-commercial,
scientific use.
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box derived from an object detector (see Subsection II-E). In
terms of validation, this work features a significantly enlarged
dataset and added experimentation.

B. State Space and Notations

Now we discuss the mathematical formulation of our pro-
posed generic occlusion aware, multi-sensor Bayesian filter
without sensor related specifics. Let the space T consist of a
2D (lateral and longitudinal) position and velocity, and a binary
flag marking if the tracked object (e.g., a pedestrian) exists. Let
h be a state vector in T (vectors are written in boldface):

T : R×R×R×R× {0, 1}, (1)

h ∈ T , h = (x, v, E), (2)

where x = (x, y) and v = (vx, vy) are the object’s 2D BEV po-
sition and velocity vectors on the ground plane, and E represents
the existence probability. I.e., E = 1 means there is a pedestrian
in the scene and E = 0 represents its absence.

We define a Bayesian filter for detection and tracking which
estimates the posterior state distribution P (ht|Z1:t) given all
measurements Z1:t. The filter operates on-line, integrating new
measurements into a posterior using Bayes’ theorem:

P (ht|Z1:t) ∝ P (Zt|ht) · P (ht|Z1:t−1), (3)

where Zt is the set of all sensor detections at current time t.
Here the prior distribution P (ht|Z1:t−1) for time t is obtained
by applying a state transition probability on the previous poste-
rior, and integrating over the previous state ht−1 following the
Chapman-Kolmogorov equation:

P (ht|Z1:t−1) =

∫
P (ht|ht−1) · P (ht−1|Z1:t−1)dht−1. (4)

We are thus required to define the state transition distribution
P (ht|ht−1) for the filter’s prediction step, and measurement
likelihood function P (Zt|ht) for the update step, which we
will derive in the following subsections. Note that the posterior
contains the expected existence probability of a pedestrian in the
scene:

P (Et|Z1:t) =

∫∫
P (ht|Z1:t)dxtdvt. (5)

C. Prediction Step

The state transition distribution is factorized into two terms:

P (ht|ht−1) = P (Et|ht−1) · P (xt, vt|Et,ht−1). (6)

The first term estimates the object presence flag E . A new object
can appear with a probability of pn. Unlike pn, ps(ht−1), the
probability that an object stays in the scene depends on the
previous state ht−1, because the position of the object affects
the probability that it will suddenly leave the region of interest.
Using these, we can determine the probability of E given the
previous state ht−1 for entering (new), not present and not
entering, staying, and leaving objects respectively:

P (Et = 1|Et−1 = 0,ht−1) = pn, (7)

P (Et = 0|Et−1 = 0,ht−1) = 1− pn, (8)

Fig. 3. Transition of states. Et = 0 denotes the lack of object, and Et = 1
denotes the presence of an object with the configuration of xt, vt at timestamp t.

P (Et = 1|Et−1 = 1,ht−1) = ps(ht−1), (9)

P (Et = 0|Et−1 = 1,ht−1) = 1− ps(ht−1). (10)

In case an object is present (Et = 1), the values of x and v are
distributed as follows for entering and staying objects respec-
tively:

P (xt, vt|Et = 1, Et−1 = 0,ht−1) = pe(xt, vt), (11)

P (xt, vt|Et = 1, Et−1 = 1,ht−1) = P (xt, vt|xt−1, vt−1).

For this last term, we use a constant velocity dynamic model
similar to [40], with a normally distributed acceleration noise
a ∼ N(0,Σa):

vt = vt−1 + aΔt, (12)

xt = xt−1 + vt−1Δt+
1

2
aΔt2. (13)

Through the introduction of the binary flag E , the full state
transition can be regarded as a state machine, see Fig. 3.

D. Update Step

Now we describe the likelihood P (Zt|ht). We follow the
common assumption of conditional independence for our sen-
sors, thus the single-sensor update step described here can be
applied independently to each. The sensor s returnsK detections
at once: Z = {z1, . . . zK}. Each detection zk contains a 2D
BEV location and some additional attributes: zk = [zpos, zattr].
To include occlusion awareness, our measurement model intro-
duces several auxiliary variables, with conditional dependencies
as shown in the graphical model of Fig. 4. These variables
and their distributions will be introduced in the next para-
graphs, where we first distinguish between the expected number
of detections, which differentiates our occlusion aware from
the naive approach, and then the likelihood term for a single
measurement zk.

a) Detection rates: The total number of detections (K) is
the sum of foreground (KF ) and background (KB) detections:
K = KF +KB . If we consider detections as conditionally in-
dependent events occurring during a fixed interval, it is natural to
model the number of foreground (true positive) and background
(false positive) detections with two Poisson distributions. Let
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Fig. 4. Graphical model of the probabilistic dependencies in a single time slice
t with K detections Zt = {z1t , . . . zKt }. ht is the state vector and λB , λF are
the expected detection rates. The binary flag ηkt denotes if the kth detection zkt
comes from foreground or background. Discrete/real variables are shown with
square/circle nodes. Observed variables are shaded.

us denote the corresponding detection rates with λF (x, E) and
λB for the foreground and background detections respectively.
The values of KB , KF follow Poisson distributions, KB ∼
Pois(λB) and KF ∼ Pois(λF ), with scalar parameters λB

and λF . The total number of detections K is then also Poisson
distributed:

P
(
K|λB , λF

)
= Pois

(
λB + λF

)
. (14)

We distinguish between our novel occlusion aware filter by the
way it determines the value of the foreground detection rate, as
opposed to the naive approach. In the proposed Occlusion Aware
Filter (OAF) approach, the number of foreground detections
depends both on the object’s presence and location. A benefit of
Poisson distributions is that we can incorporate the occlusion
information here with a spatially dependent rate parameter,
i.e., more true detections are expected if the pedestrian is un-
occluded (i.e. visible) than if the pedestrian is occluded:

λF =

{
λF
unocc if x ∈ V,

λF
occ if x ∈ O,

(OAF) (15)

where λF
unocc, λF

occ indicate the expected detection rates in un-
occluded (V ), occluded (O) areas respectively, see Fig. 1. The
extent of these areas will be determined by the implementation-
specific environment occlusion model.

In contrast, a naive (i.e., not occlusion aware) filter assumes
that λF is constant, targeting the more typical unoccluded case:

λF = λF
unocc. (naive approach) (16)

Our occlusion aware filter behaves the same as a naive one in
unoccluded cases, but in occluded positions it adapts its expected
rate λF .

b) Measurement likelihood: Derived from the properties of
Poisson distributions, the number of false and true positive
detections given K are distributed as Binomial distributions
parametrized by the ratio of λB and λF . Thus, the probability of
a detection zk being foreground/background is (givenK number
of detections):

P
(
ηk = 1|λB , λF

)
=

λF

λF + λB
, (17)

P
(
ηk = 0|λB , λF

)
=

λB

λF + λB
, (18)

where the binary flag ηk denotes if the kth detection zk

comes from the tracked object, i.e., is a true positive de-
tection. Since every detection is conditioned on E and ηk

latent variables, we have to define the likelihood function
P
(
zk|E , x, v, ηk

)
for the following cases: (E = 1, ηk = 1),

(E = 1, ηk = 0), (E = 0, ηk = 0),which stand for the true pos-
itive and for the false positive cases, with and without a present
pedestrian, respectively.

Unlike [43], in which we only considered location of detec-
tions, here we compose this likelihood function with two parts:
a spatial component (i.e., likelihood of detection’s location) and
an attribute component (likelihood of such a detection at that
location). We assume that true positive (foreground) detections
are spatially distributed around the object’s position x described
by some distribution LF (zpos|x), and that false (background)
detections are distributed as described by some distribution
LB(z

k). Similarly, we define the attribute likelihood functions,
AF (zattr|x, v) and AB(zattr) for true and false detections, but
also conditioned on velocity. Then:

P
(
zk|E = 1, x, v, ηk = 1

)
= LF (zpos|x) ·AF (zattr|x, v),

P
(
zk|ηk = 0

)
= LB(zpos) ·AB(zattr). (19)

Finally, the complete likelihood of a single measurement is:

P
(
zk|E , x, v, λB , λF

)
= P

(
zk|E , x, v, ηk = 1

)
· P

(
ηk = 1|λB , λF

)
+ P

(
zk|E , x, v, ηk = 0

)
· P

(
ηk = 0|λB , λF

)
. (20)

Since all K detections are conditionally independent given x
and E , and λB and λF are determined through position x and
areas V plus O, the full measurement likelihood becomes:

P (Zt|ht) = P
(
K|λB , λF

)
·

K∏
k=1

P
(
zk|ht, λ

B , λF
)
. (21)

IV. IMPLEMENTATION

First, we describe how the Bayesian filter was implemented
with a particle filter. Then, we discuss how the attribute likeli-
hood function was implemented for the two sensors. A summary
of the model parameters is given in Table I.

A. Particle Filtering

For inference, we use a particle filter to represent the posterior
distribution in our model by a set of samples (i.e., particles). Un-
like, say, a multiple-model Kalman Filter, it is straight-forward
to include information about occlusion in the particle filter, i.e.
particles in occluded areas are treated differently than those in
unoccluded areas, and to represent uniform initial uncertainty
over the bounded occlusion region.

Furthermore, such a system is easy to scale for the available
hardware resources by changing the number of particles.
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TABLE I
LIST OF MODEL PARAMETERS AND THEIR EXPERIMENTAL VALUE SETTINGS

To include the existence probability in the filter, we fol-
low [42]. Of N particles, the first one (index 0) will represent all
hypotheses with non-present pedestrian, called the negative par-
ticle. The remaining N − 1 = Ns particles (called the positive
ones) represent the cases of a present pedestrian:

Et = 0 → w
(0)
t , (22)

Et = 1 →
(

h(i)
t , w

(i)
t

)
for i = 1 . . . Ns. (23)

where h(i)
t =

[
x(i)t , v(i)

t , E(i)
t = 1

]
is the state of the ith particle,

w
(i)
t is the weight assigned to it, and E(i)

t = 1 marks that these
Ns particles represent hypotheses of a present pedestrian. Thus,
the estimated probability of a non-present/existing pedestrian
given all detections is the normalized weight of the first parti-
cle/summed weights of all the others, see Eq. (5):

P (Et = 0|Z1:t) = w
(0)
t , P (Et = 1|Z1:t) =

Ns∑
i=1

w
(i)
t . (24)

To obtain the estimated state of the pedestrian, we use the
weighted average of the particles along the hypothesis space:

h̃t =
[
x̃t, ṽt, Ẽ

]
=

Ns∑
i=1

w
(i)
t · h(i)

t , (25)

where x̃t = (x̃t, ỹt) is the estimated position, ṽt = (ṽx,t, ṽy,t)

is the estimated velocity vector of the pedestrian, and Ẽ is the
estimate of the pedestrian being present, see Eq. (24).

1) Initialization: Particles’ positions are initialized uni-
formly across the Region of Interest (ROI). Their velocity is
drawn from normal distribution Wspeed ∼ N(p,Σw) around
slow walking pace p = 1m/s and their orientation is drawn
from a uniform distribution Wdir between ±22.5°, where 0◦

is the orientation perpendicular to the movement of the ego-
vehicle, pointing towards the road.

2) Prediction Step: The input of the prediction step are Ns

uniformly weighted particles representing the present pedes-
trian, and one particle representing the Et = 0 hypothesis.

Predicted variables are marked with ^ sign. First, we estimate
the next weight of the negative particle as follows:

P (Et = 0|Z1:t−1) = ŵ
(0)
t =

wnp

wnp + wp
, (26)

where wp, wnp are the cumulative weights of present, and not
present predicted states using Eqs. (7)–(10):

wp = pn · w(0)
t−1 +

Ns∑
i=1

(
ps
(
h(i)
t

))
w

(i)
t−1, (27)

wnp = (1− pn) · w(0)
t−1 +

Ns∑
i=1

(
1− ps

(
h(i)
t

))
w

(i)
t−1. (28)

Afterwards, we sample Ns new positive particles, which are
either a mutation of an existing particle moved by the dynamic
model, or a completely new (entering) one, see Eq. (11). An
existing particle stays in the scene with probability ps(h

(i)
t ), or

is replaced by a new one with probability of 1− ps(h
(i)
t ):

h(i)
t−1 →

⎧⎨⎩ĥt
(i) ∼ P

(
ht|h(i)

t−1

)
if moved particle,

ĥt
(i) ∼ pe(ht) if new particle.

(29)

All weights of the predicted positive particles are then set
uniformly:

ŵ
(i)
t =

1− ŵ
(0)
t

Ns
∀ i = 1 . . . Ns. (30)

3) Update Step: Particles are updated by new detections
using the measurement likelihood Eq. (21):

w
(i)
t ∝ ŵ

(i)
t · P

(
Zt|ĥt

(i))
. (31)

Details of the attribute likelihood calculations are discussed later
in Subsection IV-B and IV-C. After the update, all weights are
renormalized. To avoid sample degeneracy, we resample the
positive particles if the Effective Sample Size (ESS) drops below
a threshold [59].

B. Use of Stereo Camera Data

The camera sensor data is used for two purposes: 1) to update
our filter with camera based pedestrian detections and 2) to
update our occlusion model, see Fig. 2, top. For both tasks,
we use the Instance Stixel representation [51]. Stixels [49] are
rectangular upright sticks in the 3D space, perpendicular to the
estimated ground plane. With the extension of [51], each stixel
has the following parameters: a 3D position of their bottom, a
height, a class label (among others: car, bus, truck, person, sky)
and an instance id. In this way, objects of interest (pedestrians
and occluding vehicles) are represented by a loose set of stixels
connected by their class and instance information. Unlike the
bounding box representation used in [43], these stixels better
describe the shape and extent of objects in both bird’s-eye and
camera perspectives (e.g., varying visible height of cars) while
keeping the processing load low. First we filter the stixels to keep
only those from the relevant classes: pedestrian stixels as input
for the particle filter and vehicle stixels (i.e. from car, truck, and
bus classes) to update the occlusion model.
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1) Update of the Occlusion Model: The stixels of vehicles
that are close enough (i.e., at least one of their stixels is in ROI)
are fitted with a bird’s-eye view 2D rectangle to model the po-
sition and extent of the parked vehicles. The fitting is done with
plausible minimum widths and lengths to avoid unrealistically
small car assumptions. We consider the projected region behind
the farther end of these car models as occluded as shown on Figs.
1 and 7. We also store the set of stixels for each car to calculate
the height of the occlusion for later use, see below.

2) Update of the Filter: The pedestrian stixels are grouped
by their instance id. Then, the average 2D BEV position of the
stixels and their largest height range in meters (i.e., the difference
between the lowest and highest stixels ends) are computed to
create a pedestrian detection for the filter: z = [zpos, zattr =
zheight]. The position zpos is then used in the spatial component,
which is modeled with a normal distribution, with standard
deviation Σcx:

LF (zpos|x(i)
t ) = N(zpos|x(i)

t ,Σcx). (32)

The height zheight is used to calculate the attribute likelihood

AF (zattr|x(i)
t , v(i)

t ). We consider the likelihood of observing
a pedestrian with visible zheight at the location x(i)t of each
particle, given the current occlusion model. First, we compute
the expected observable height h̃(i)

t for each occluded particle
by looking up the car stixel with the most similar angle to it, see
Fig. 1. Then, the height of this stixel is scaled by the distance
of the particle to get how tall objects would be occluded by
the stixel/parked car at the particle’s location. Afterwards, the
expected observable height h̃(i)

t is the difference between the
occluded height and the expected height of a pedestrianmheight.
For example, behind a tall van we expect to see no part of a
pedestrian (h̃(i)

t = 0), while at an unoccluded location the full
height of the pedestrian should be visible h̃

(i)
t = mheight.

Finally, we model both AF (zattr|x(i)
t , v(i)

t ) and AB(zattr) as
zero mean normal distributions with standard deviations ΣF

ch

and ΣB
ch:

dheight = zheight − h̃
(i)
t ,

AF

(
zattr|x(i)

t , v(i)
t

)
= N

(
dheight|0,ΣF

ch

)
,

AB(zattr) = N
(
dheight|0,ΣB

ch

)
. (33)

C. Use of Radar Data

Radar data is solely used as an input to our pedestrian detec-
tion filter. For an overview of radar specific steps, see Fig. 2,
bottom. Our equipped radar outputs a sparse point cloud of re-
flections called radar targets. Each point has two spatial dimen-
sions, range r and azimuth α, and a third dimension referred to
as Doppler, which is the radial velocity vrel of the target relative
to the ego-vehicle. First, we perform ego-motion compensation
for vrel. That is, by eliminating the motion of the sensor that
comes from both the translational and rotational movement
of the ego-vehicle we get the compensated radial velocity, a
signed scalar value denoted by vr, describing the ego-motion
compensated (i.e., absolute) radial velocity of the point. In a next

step, we filter the reflections based on their RCS and vr, i.e. we
remove targets with very weak reflections or too low velocities
to only keep ones that could potentially originate from a darting
pedestrian. We also eliminate radar targets that are located in the
rectangles fitted to the parked cars since a pedestrian cannot be
present there, but the high reflectivity of these cars could yield a
moving radar target in case of a faulty ego-motion compensation.
The remaining reflections are considered as detections for the
filter: z = [zpos, zattr = zvel = vr].

The position zpos is then used in the spatial component and
modeled with a normal distribution analogous to the camera,
with standard deviation Σrx:

LF (zpos|x(i)
t ) = N(zpos|x(i)

t ,Σrx). (34)

In addition to the spatial distribution, the radar also has an at-
tribute likelihood component AF (zattr|x(i)

t , v(i)
t ). We consider

the likelihood of observing a radar reflection with the measured
radial velocity zvel given the location and velocity of each
particles. Let us define los = x(i)

t − xradar as the line-of-sight
vector pointing from the radar to the particle. We calculate
the expected radial velocity ṽ

(i)
r,t as the particle’s velocity v(i)t ’s

projection to this vector (i.e., its radial component):

ṽ
(i)
r,t =

los · v(i)t

‖los‖ . (35)

Finally, we model both AF (zattr|x(i)
t , v(i)

t ) and AB(zattr) as
zero mean normal distributions with standard deviations ΣF

rv

and ΣB
rv:

dvel = zvel − ṽ
(i)
r,t ,

AF (zattr|x(i)
t , v(i)

t ) = N
(
dvel|0,ΣF

rv

)
,

AB(zattr) = N
(
dvel|0,ΣB

rv

)
. (36)

V. DATASET

Our dataset was captured by our prototype vehicle [60] in
Delft, the Netherlands. We recorded the output of a Continental
400 radar mounted behind the front bumper (2+1D: range,
azimuth, Doppler,∼13 Hz,∼100 m range,∼120° field of view),
an IDS stereo camera (1936× 1216 px,∼10 Hz, 35 cm baseline)
mounted on the windshield, a Velodyne HDL-64 LiDAR (64
layers, ∼10 Hz) scanner on the roof, and the ego-vehicle’s
odometry (Spatial Dual GNSS/INS/AHRS sensor and wheel
odometry fused via an Unscented Kalman Filter, ∼30 Hz). All
sensors were jointly calibrated following [61]. While the LiDAR
data is not used in this paper, it will be made available for
future work.

The dataset contains 501 recordings, each with a length
between 8–20 seconds. In each recording, the ego-vehicle ap-
proaches or passes (at least) one parked vehicle with a pedestrian
behind it. All recordings were performed in a real environment,
with driving speeds suitable for the environment (mean: 4.0 m/s,
std.: 0.57 m/s). The pedestrian either steps out from behind the
parked vehicle (“darting” or “walking” sequences) or remains
there (“staying” sequences). Participants were instructed which
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Fig. 5. Examples of darting out pedestrians from our dataset.

Fig. 6. Example of annotated frames on a walking out sequence. We marked
the first frames where (a) the pedestrian’s head, (b) the body center, (c) one of
the feet, and (d), full body is visible.

action to perform next, but were free to choose their walking
speed during darting, or their activity (imitating e.g. phone call,
bagging groceries, slight movement) during staying recordings.
See Fig. 5 for examples of darting out pedestrians. Fifteen
subjects with different heights participated in the experiment
(mean: 178 cm, standard deviation: 8.5 cm). In total, more than
100 different parked vehicles were used as occlusion, ranging
from passenger cars (partial occlusion) to vans (full occlusion).

The resulting dataset contains 249 walking and staying 252
sequences. For each sequence, we manually annotated its type
(darting or staying), the pedestrian’s height, the occluding vehi-
cle’s type (car or van) and some environment conditions (e.g.,
harsh lighting, leaves on the ground, etc.). We have also marked
the first timestamps where a) the head, b) the body center, c) one
of the feet, and d) the entire body of the pedestrian is visible,
see Fig. 6. This allows a temporal alignment of the sequences
and a better understanding of the visual occlusion in the case of
different occluding vehicles.

VI. EXPERIMENTS

In our experiments, we investigate how the fusion of stereo
camera and radar sensors, and the incorporation of occlusion

TABLE II
OVERVIEW OF THE COMPARED METHODS WITH WHETHER THEY USE RADAR,

TYPE OF CAMERA BASED METHOD (IS: INSTANCE STIXELS, SSD: SINGLE

SHOT DETECTOR), WHETHER THEY ARE OCCLUSION AWARE, AND WHETHER

THEY IMPLEMENT THE ATTRIBUTE LIKELIHOOD COMPONENTS

information help to detect darting out pedestrians. For this pur-
pose, we compare the following methods: naive camera, naive
fusion, OAF camera, and OAF fusion, where “naive”/“OAF”
stands for naive/occlusion aware filtering. The naive camera and
naive fusion are methods that use only the camera/both sensors
to update the filter in a naive way, see Eq. (16). Similarly, OAF
camera and OAF fusion use only camera/both sensors to update,
but in an occlusion aware way, i.e., they are “occlusion aware
filters”, see Eq. (15). All four methods above use Instance Stixels
(IS) as camera based pedestrian detections to update the filter,
while OAF camera and OAF fusion also use Instance Stixels to
model the occlusions. To study the benefits of the improvements
introduced in this paper, we compare the methods above with
the fusion method from our previous publication [43]: OAFSSD

fusion. This is also an occlusion aware filter fusing both sensors,
similar to OAF fusion, but it uses the output of the Single Shot
Detector (SSD) instead of Instance Stixels (IS) as camera based
method. Further, in contrast to the other methods, OAFSSD fusion
does not use the attribute likelihood components introduced in
Subsection IV-B and IV-C, only the spatial component. Note
that unlike IS, SSD provides detections as bounding boxes, not
involving the height profile of the cars. Hence, the height related
attribute likelihood component would not be possible to calcu-
late with SSD. An overview of the compared methods is given in
Table II. Both the “Filtering” and the “Postprocessing” module
from Fig. 2 (including the presented application example) run
at a processing speed of over 500 Hz for all methods with 1000
particles in an optimized Python based implementation using the
Robot Operating System (ROS) on a high-end system PC (64 GB
RAM, TITAN X (Pascal) GPU, Intel Xeon CPU E5-1560 CPU).
This brings a negligible overhead compared to the camera based
detection modules (off-the-shelf implementation of SSD and IS,
including the occlusion model) running around 14 Hz, and the
radar related preprocessing steps running at over 200 Hz.

Our framework has a set of parameters and distributions that
should be tuned to the characteristics (type, accuracy, noise, etc.)
of the user’s sensors. A brief overview of these can be found
in Table I. In this research, the parameters were empirically
tuned on the distinct dataset used in [43] and during in-vehicle
experiments, and visually validated on the first few sequences
of the new dataset. ROI was defined as a 4.5 m wide, 14 m
long rectangle in front of the ego-vehicle. For the camera, we
use λF

unocc = 1 because detection is reliable in this range in
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Fig. 7. Camera views (top left), stixel images (bottom left) and top views (right) of the scene at consecutive timestamps using OAF fusion. Vehicle/pedestrian
stixels are shown with green/white colors (bottom left). Vehicle stixels are also shown as short green lines on the top view, representing the outlines of the detected
parked cars. Occlusion (greyish areas) is calculated as the “shadow” of these cars. Initially, the particles (blue to red, for small to high relative weights) have higher
density and weights in occluded regions (a) and converge on the pedestrian’s position after being detected first by the radar (magenta star, (b)) and then by the
camera sensor (yellow ‘x’, (c)). All views are cropped for easier visibility. Orange arrows connect corresponding objects in different views.

unoccluded regions. λF
occ is set to 0.1 for occluded locations. Few

false positives occur in the ROI, so λB is set to 0.05. For radar,
we set λF

unocc = 1.5 for unoccluded positions, since multiple
reflections are often received from the same pedestrian. In oc-
clusions, we set λF

unocc = 0.3 as we still expect some reflections
due to the multipath propagation. An average rate of λB = 0.1
is expected for radar, as false positives occur more often than
with camera due to e.g. incorrect ego-motion compensation.

A. Estimated Existence Probability in Dangerous Situations

In our first experiment, we ran the methods on all walking
sequences and recorded the reported existence probabilities as
in Eq. (5). The sequences were temporally aligned by marking
the first moment when the pedestrian’s body center was visible as
t = 0, see Fig. 6. Then, for each timestamp, and for each method,
we calculate the mean estimated probability by averaging over
all walking sequences as in [43], see Fig. 8. In general, the
inclusion of radar helps to detect the pedestrian earlier. I.e.,
any chosen threshold of probability is reached earlier by the
three fusion methods (naive fusion/OAF fusion/OAFSSD fusion)
using both sensors, than by the methods using only the camera.
For example, on average, the threshold P (Et = 1|Z1:t) = 0.5
is reached 0.26 seconds earlier by OAF fusion than by naive
camera. When examining only smaller occluding vehicles (i.e.,
cars), this time gain increases to 0.30 s. In contrast, for sequences
with a van as an occlusion, the measured gain is only 0.12 s.

The previously discussed threshold of P (Et = 1|Z1:t) = 0.5
is reached 0.15 seconds earlier by our proposed occlusion aware
fusion OAF fusion than by the naive method naive fusion. OAF
fusion also reports higher probabilities at all times when the
pedestrian is occluded (t < 0). OAFSSD fusion reaches the same

Fig. 8. Estimated probabilities of a pedestrian being present, averaged over all
walking sequences, with standard deviation around the mean for fusion methods.
t = 0 is the first moment when the pedestrian’s body center was visible. The
addition of radar results in earlier detection than using the camera alone.

threshold later than OAF fusion by 0.06 seconds, but still earlier
than naive fusion.

We also examine the sequences individually, and calculate
the time difference between the reported probabilities of naive
camera and OAF fusion to be over 0.5. A histogram of the gained
reaction times can be found in Fig. 9. In the large majority
(∼68%) of dangerous scenarios OAF fusion gains some addi-
tional reaction time over naive camera.

In Fig. 7, we show an example of a walking scene to demon-
strate how OAF fusion behaves when there has been no prior
detection, and then when first the radar and then the camera has
detected the pedestrian.
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Fig. 9. Histogram of the gained reaction times. Time difference is calculated
between the moments naive camera and OAF fusion reaches the threshold
P (Et = 1|Z1:t) = 0.5. For clarity, here we only show the sequences where
both methods reach the threshold within the time window of [−1 s, 0.5 s].

B. Distinguishing Dangerous and Non-Dangerous Scenarios

Similar to [2] we classify the scene into two classes: c =
darting (there is a darting pedestrian, dangerous scenario)
or c = non − darting (there is no pedestrian, or he/she is
not darting). To do this, we estimate the probability P (Et =
1|Z1:t) of a present pedestrian of any kind (staying or dart-
ing) by Eq. (24). We also estimate whether the assumed-to-
be present pedestrian darts out creating a dangerous scenario
P (c = darting |Z1:t, E = 1) based on the estimated state of the
pedestrian h̃t, see Eq. (25). The pedestrian is assumed to be
darting if he/she is already on the road in front of the ego-vehicle:
x̃t > dangerousPos (axis is perpendicular to the movement of
the ego-vehicle, increases towards the road), or he/she has a
lateral velocity component large enough to assume he/she will
be on the road later: ṽx,t > dangerousSpeed. Similarly, we
assume that the pedestrian will not dart out if he/she is far enough
from the road: x̃t < safePos, or their lateral velocity is close
to zero/pointing away from the road: ṽx,t < safeSpeed. Proba-
bilities for values between these limits (dangerousPos > x̃t >
safePos and dangerousSpeed > ṽx,t > safeSpeed) are lin-
early interpolated. We evaluate the probability of darting based
on these two conditions (spatial and velocity) independently, and
then take the maximum of the two values for safety. Finally, the
probability of a present, darting pedestrian is calculated by mul-
tiplying the two probabilities: P (Et = 1, c = darting |Z1:t) =
P (Et = 1|Z1:t) · P (c = darting |Z1:t, E = 1). In the staying
scenarios, the pedestrian’s body center was not always visible
during the recording as the pedestrian may have remained hidden
completely. Hence, unlike for walking scenes, we marked the
last moment the occluding vehicle was still visible as t = 0, to
represent the moment when the ego-vehicle passes the occlud-
ing, parked vehicle. For each timestamp, we average the proba-
bility of a darting pedestrian P (Et = 1, c = darting|Z1:t) for
walking and staying scenes separately, see Fig. 10. For the
walking cases, the fusion methods (naive fusion, OAF fusion

and OAFSSD fusion) report higher probabilities of a darting
pedestrian earlier, see Fig. 10(a). When evaluating the non-
dangerous staying scenarios, all methods report a small, but
moderately increased probability of a darting pedestrian in the
moments before the occluding vehicle and the staying pedestrian
are passed, and significantly decreased probabilities after the
drive-by, see Fig. 10(b).

VII. DISCUSSION

The benefits of including radar in darting out pedestrian
detection has been shown in Subsection VI-A, where all fusion
methods reacted earlier than the methods using only the camera.
Such an earlier detection may mean additional reaction time in
case of a dangerous situation. One cause is that radars can often
detect pedestrians behind parked vehicles, as their reflected radar
signal may be able to propagate under the occluding vehicle and
reach the sensor. Some of the gains could also be the result of
cases when the camera was not able to detect the already visible
pedestrian (e.g. caused by harsh lighting), but the radar was. Our
radar is mounted on the front of the ego-vehicle, as is common
in the industry, see Fig. 1. This could provide a slightly better
viewing angle and also contribute to the earlier detections.

The reaction time gained was significantly greater for smaller
occluding vehicles such as cars than for vans (0.30 s vs 0.12 s
for threshold P (Et = 1|Z1:t) = 0.5). This difference may have
been caused by the length of these vehicles. Vans tend to be
longer than cars, which can affect the propagation of the radar
signal under the vehicle. This suggests that it may be beneficial
to also estimate the length of the parked vehicle and explicitly
include it in the fusion pipeline (i.e., expect fewer reflections
behind longer vehicles).

The benefits of occlusion awareness become clear when we
compare the naive methods (naive camera, naive fusion) with
their occlusion aware pairs (OAF camera, OAF fusion). For
example, OAF fusion reports a higher probability of a pedestrian
being present than naive fusion at all times when the pedestrian
is occluded (t < 0). The reason for this is twofold. First, OAF
fusion is occlusion aware, and thus it “acknowledges” that parts
of the scenes are occluded and cannot be properly observed,
leading to uncertainty. That is, the absence or low number of
detections from these areas is not considered hard evidence for
the absence of a pedestrian, unlike in naive methods, e.g. naive
fusion. Instead, particles behind occlusions are weighted higher
compared to the unoccluded particles to represent this uncer-
tainty, resulting in higher a priori awareness to these locations
even before any detections occur, see Fig. 7, left. Similarly, this
elevated a priori awareness of an occlusion aware method is also
observable between OAF camera and naive camera for t < 0
moments. Such “caution” resembles the behavior of a human
driver approaching highly occluded regions where pedestrians
might be. Second, detections originating from these occluded
regions are valued more than in the naive methods, because the
number of detections received better fits the expectations in Eq.
(17). As a result, the likelihoods are higher for the same detec-
tions than when processed by a naive method, e.g. naive fusion,
see Eq. (21).
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Fig. 10. Estimated probabilities of a darting pedestrian, averaged over all walking (a) and staying (b) sequences, with standard deviation around the mean for
fusion methods. t = 0 is the first moment when the pedestrian’s body center was visible for walking scenes, and the last moment when the occluding vehicle was
visible for staying scenes. For walking scenes (a), the addition of radar results in earlier detection than using the camera alone. For staying scenes (b), all methods
reports slightly increased, but still small probabilities of danger (i.e. darting) before the passing.

The occlusion aware fusion approach presented in this paper,
OAF fusion, responded earlier to darting out pedestrians than
its older version OAFSSD fusion from [43]. The reason for this,
we believe, is twofold. First, as described in Section II, the
occlusion model used by OAFSSD fusion was often inaccurate.
A more accurate model of the occlusions (see Subsubsection
IV-B1) helped to better evaluate measurements in this study.
Although this occlusion model was created using stixels, this
improvement could also be achieved using other methods to
obtain more accurate occlusion information. Second, this work
introduced the concept of attribute likelihood components. More
specifically, for camera based detections, even small patches
of detections were accepted as reasonable, valid measurements
if they matched our occlusion model. This was also supported
by the decision to use instance segmentation as input instead
of standard object detection, since the former tends to provide
more partial detections, which suits our use-case. In the case
of radar, the attribute component meant comparing expected
and observed radial velocities. This filters out unrealistic radar
targets, which could originate from other road users or simply
from noise. On the other hand, radar detections that matched
our prior expectations of the object’s motion were highly valued
and increased the probability earlier. It is noteworthy, however,
that OAFSSD fusion still responded earlier than naive fusion,
suggesting that even its simpler, SSD based occlusion model
benefited more than the attribute likelihood components and
the use of stixels as camera based detection. This means that,
depending on the application and available resources, using
a simpler occlusion model (i.e., SSD instead of IS) could be
satisfactory with the benefit of reduced computational load.

In our second experiment, we presented an example applica-
tion of our methods to distinguish dangerous and non-dangerous
situations. For scenes where the pedestrian remains behind the
car (i.e. not in danger), the estimated probabilities somewhat
increase during the drive-by, but remain small. This observed

increase can be explained by the way the particles are initialized
with a walking speed and an movement orientation pointing
to the road, which intentionally introduces a bias towards the
darting hypothesis. Such increase in uncertainty about whether
the sighted pedestrian will dart out is similar to the reaction of
a human driver, who, having noticed a pedestrian in a similar
situation, would also slow down/be more cautious for safety
reasons. The occlusion aware fusion methods (OAF fusion and
OAFSSD fusion) show further increased caution due to perceived
occlusions in the scene, which increase a priori uncertainty
by design. OAF fusion, however, shows lower estimated prob-
abilities for all t < 0 timestamps than OAFSSD fusion, again
suggesting that the new occlusion model based on Instance
Stixels is superior to the one based on SSD, and follows the
shape of the occlusions more closely.

All filters depend heavily on the quality of the inputs, espe-
cially from the camera, where we expect “high-end” detections
(e.g. pedestrian instance stixels) from an off-the-shelf module,
even under occlusion. The quality of camera based detections
also affects the reliability of the filter over the occlusion model.
Common errors arise from radar targets that are incorrectly re-
ported as moving by the radar due to poor ego-motion estimation,
and from camera based detections that mistake vertically shaped
objects (e.g., trees) for pedestrians.

The proposed system can be further improved in several ways.
For example, an additional use of the occlusion model would be
to adjust the expected background noise for the radar. That is,
instead of uniform distribution, it might be beneficial to increase
the expected noise near parked vehicles with highly reflective
metallic chassis, and decrease it in uncluttered regions.

Integrating additional sensors, (e.g., LiDAR) into our frame-
work is straightforward. In particular, replacing or supporting
the 2+1D radar used in this paper with a 3+1D radar similar to
that used in [31] could be interesting for three reasons. First, the
elevation information and increased density of the radar point
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cloud could be used in a more advanced pedestrian classification
step, as shown in [31]. Second, the elevation information could
be further used in this particular use case by filtering the radar
targets based on their elevation angle, leaving only those that
are received from below the parked, occluding vehicle - as
these targets could be the result of multi-path propagation. This
step would help filter out false positive radar reflections that
originate from the chassis of parked cars and not from occluded
pedestrians. Third, in [31] the 3+1D radar has been shown to be
capable of detecting both moving and parked vehicles. As such,
it could contribute directly to the occlusion model and reduce or
even eliminate the need for the camera sensor.

To generalize the filter for other road users, one has to adjust
the prior velocity and RCS values, e.g., faster and more reflec-
tive targets should be expected from a cyclist. For the camera
based detectors (IS, SSD), the expected class of object has to be
changed. Multiple road users can also be tracked with the filter
by modifying the state estimation step in Eq. (25) to expect
more than one peak in the particle distribution. Consideration
of objects other than vehicles as occlusions, e.g., walls, is also
possible, and the observed visible height should be treated as in
this study. However, the type of occlusion must be considered for
radar, since multipath propagation is not possible if the occlusion
has no space under it, such as walls.

Finally, we did state estimation in this research and showed
quantitative benefits of both fusion and occlusion awareness.
However, extending the scope to trajectory prediction, the gained
reaction times detecting/predicting dangerous situations could
be even greater.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we proposed a generic occlusion aware multi-
sensor Bayesian filter to detect occluded crossing pedestrians.
To facilitate our and future research of these scenarios, we
publish our dataset of more than 500 relevant scenarios with
stereo camera, radar, LiDAR, and odometry data. We applied the
proposed filter to camera and radar data using this dataset, and
provided techniques to account for the unique characteristics
of these sensors. Our results show that both the inclusion of
radar sensor and occlusion information is beneficial for this use
case, as pedestrians are detected earlier in dangerous walking
scenarios. For example, the threshold of 0.5 for the estimated
existence probability of a pedestrian in the scene is reached on
average 0.26 seconds earlier by our occlusion aware fusion than
by a naive camera only detector, and 0.15 seconds earlier than
by the method that fuses the two sensors in a naive way.

We also showed in an application example of our filter that
it can distinguish between dangerous and non-dangerous situa-
tions, which is necessary to avoid false alarms. In this task, too,
the inclusion of the radar proved to be beneficial.

Future work may include a more precise expected distribution
of background noise, improved scene classification by extend-
ing the scope for trajectory prediction, and the inclusion of
further sensors, more particularly a 3+1D radar as discussed
Section VII.
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