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intrApose: Monocular Driver 6 DOF Head Pose
Estimation Leveraging Camera Intrinsics

Markus Roth and Dariu M. Gavrila

Abstract—We present intrApose, a novel method for continuous
6 DOF head pose estimation from a single camera image without
prior detection or landmark localization. We argue that using
camera intrinsics alongside the intensity information is essential
for accurate pose estimation. The proposed head pose estimation
framework is crop-aware and scale-aware, i.e., it keeps poses
estimated within image cut-outs consistent with the whole image.
It employs a continuous, differentiable rotation representation that
simplifies the overall architecture compared to existing methods.

Our method is validated on DD-Pose , a challenging real-
world in-vehicle driver observation dataset that offers a broad
spectrum of poses and occlusion states from naturalistic driving
scenarios. In ablation studies we compare rotation and translation
errors of intrinsics-aware and -agnostic methods, continuous
and discontinuous rotation representations, and data sampling
strategies.

Experiments show that leveraging camera intrinsics and a
continuous rotation representation (SVDO+) results in a balanced
mean angular error (BMAE) of 5.8◦ compared to the intrinsics
agnostic baseline with a discontinuous rotation representation
(14.8◦). Furthermore, training with an unbiased data distribution
(most driver measurements are close-to-frontal) improved BMAE
on the hard subset (extreme orientations and occlusions) from
15.3◦ to 9.5◦.

Index Terms—Head Pose Estimation, Driver Observation

I. INTRODUCTION

HEAD pose estimation plays an essential role in human
understanding, as it is our natural cue for inferring focus

of attention, awareness, and intention. For machine vision, the
task is to estimate both translation and rotation of the head
from camera images.

A wide range of uses exist for head pose estimation, either
directly or for derived tasks such as gaze estimation, facial
identification, facial expression analysis, augmented reality,
surveillance, and automotive applications. In the latter, inferring
a driver’s head pose has been used in safety applications, like
estimation of distraction [1], intention, fatigue/drowsiness [2],
awareness, and maneuver prediction, e.g., by gaze zone
estimation [3], or mirror-checking [4]. It is vital for driver-
pedestrian-interaction, e.g., for path-prediction and collision
risk estimation [5], or negotiating the right-of-way [6].

Head pose has been employed in on-market vehicles as early
as 2007 (Toyota/Lexus) to estimate driver alertness. Cadillac
(Super Cruise, 2018), BMW (Extended Traffic Jam Assistant,
2018), and Nissan (ProPilot, 2019) implement extended SAE
level 2 capabilities and leverage a driver camera to assess
the readiness of the driver to take over the task of driving.
Mercedes-Benz’s latest S-Class features a stereo driver camera

M. Roth and D. M. Gavrila are with the Intelligent Vehicles Group at
TU Delft. M. Roth is also with the Perception and Maps Department at
Mercedes-Benz AG. markus.r.roth@mercedes-benz.com

Fig. 1. intrApose is an intrinics-Aware head pose estimation method. The
method estimates continuous 6 DOF head pose (rotation and translation) from
a single intensity image and known camera intrinsics. Left: Input intensity
image (DD-Pose validation set). Right: 3D scene with camera frustum (blue).
Face mesh and RGB axes: 6 DOF head pose result of intrApose. Gray axes:
ground truth head pose.

that monitors the driver’s readiness to take over from automated
driving mode on highways in an SAE level 3 system. This
legally allows the driver to perform non-driving related tasks
for up to 10 s under specific conditions. In addition, the latest
S-Class features a volumetric heads-up display (HUD), an auto-
stereoscopic 3D display and multi-modal human-car interaction,
each facilitated by head pose.

In-vehicle driver head pose estimation provides particular
challenges to vision-based head pose estimation systems due
to difficult illumination conditions (such as harsh sunlight
covering parts of the face), occlusions (by worn objects such
as glasses, but also due to the driving action) and extreme
head poses imposed by naturalistic, complex driving scenarios
while demanding a precise pose estimate and high availability
in a non-invasive setting (no blinding illumination, no worn
sensors). These challenges come in addition to the ones vision-
based human-centric methods have to face, such as the wide
variance of appearance, e.g., due to age, gender, ethnicity,
or accessories. On the other hand, operating in-vehicle also
provides advantages, such as a fixed perspective defined by the
known extrinsic and intrinsic camera parameters, and the sparse
number of faces simultaneously present within the cabin [7].

Unlike most previous work that have estimated only a subset
of the 6 DOF, e.g., by not estimating translation, estimating less
than 3 DOF of rotation, or by estimating coarse bins of rotation,
we focus on full 6 DOF on a continuous scale, as required by
most of the aforementioned applications. Both the estimation
of translation and rotation can be seen as a regression problem,
based on the intensity input image. Parameters determining
how the head is being projected into the camera image are the
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intrinsic camera parameters, i.e., focal lengths and principal
point. These factors directly affect the estimation accuracy. We
will show that a head pose estimation method needs to be
intrinsics-aware for precise estimation, i.e., being a camera-
based method rather than an intrinsics-agnostic image-based
method. On the contrary, a head pose estimation method which
does not explicitly consume camera parameters encodes implicit
assumptions which hinders generalization to different camera
setups.

Stereo cameras bring potential benefits by allowing depth
estimates via disparity on a fully calibrated setup, i.e., camera
intrinsics for both cameras and the extrinsic rigid transform
between them. Yet, a stereo setup brings additional challenges,
such as noisy depth estimates, need for (online) re-calibration
(e.g., due to thermal deformation of the mounting), synchro-
nization, and a higher cost of hardware.

There are different representations for 3 DOF rotations, most
commonly Euler angles and Quaternions. Both come with
discontinuities (i.e., Euler angles between 359◦ and 0◦) and
non-linearities that we discuss in more detail in Section III-C.
We observed that rotation estimation methods have applied
workarounds for dealing with the discontinuity of rotation
representations rather than intrinsically using a continuous
representation [8], [9]. Neural networks are being trained
using gradient descent, meaning during error backpropagation
a gradient ∇ is being subtracted from the model weights.
The adapted weights do not necessarily yield elements of
the same space anymore (i.e., q − ∇q /∈ H for a quaternion
q ∈ H) and needs further post-processing. As a solution, several
continuous rotation representations suitable for deep learning
methods have been proposed and analyzed in recent years
[10], [11]. We follow the definition of Zhou et al. [10]: a
rotation representation is continuous, if the function f mapping
from the representation space R (i.e,. what a neural network
estimates) to the original rotation space X (e.g., the special
orthogonal group SO(3)) has a continuous function g, such
that f(g(x)) = x ∀x ∈ X .

Training and evaluating a method that estimates full, con-
tinuous 6 DOF head pose demands a dataset that provides
camera intrinsics alongside continuous 3 DOF translation
annotation and continuous 3 DOF rotation annotation. An
additional measurement device or model knowledge about the
head geometry is needed for precise ground truth. To that
end, we will base our analysis on DD-Pose [12], an in-vehicle
dataset with precise 6 DOF head pose annotations offering a
variety of non-frontal poses and occlusions occurring during
the complex, naturalistic driving scenarios.

In this paper, we present intrApose, a method for full,
continuous 6 DOF head pose estimation which explicitly
leverages camera intrinsics and uses a continuous rotation
representation. It operates directly on intensity images and
camera intrinsics without a previous face detection or landmark
estimation step. See Figure 1 for exemplary input to and output
of our method.

The rest of this article is organized as follows: Section II
reviews previous work. Section III defines head pose, analyzes
why camera intrinsics matter for accurate head pose estimation
and proposes intrApose, a novel 6 DOF head pose estimation

method. In Section IV, we evaluate intrApose on DD-Pose [12]
with respect to rotation and translation accuracy. Section V sets
the gained insights into a broader scope. Finally, in Section VI
conclusions are drawn.

II. RELATED WORK

In this Section, we review different representations of
rotations with a focus on applications within deep neural
networks. We further survey methods for image-based head
pose estimation.

A. Rotation Representations

There is an abundance of 3 DOF rotation representations,
most prominently Euler angles, Tait-Bryan angles, rotation
matrices, and quaternions. See Shuster et al. [13] for a survey
and Table I for a tabular overview.

TABLE I
3 DOF ROTATION REPRESENTATIONS WITHIN DEEP NEURAL NETWORKS

AND THE NUMBER OF VALUES (#VAL) THEY ESTIMATE.
⊥: REPRESENTATION IS WITHIN SO(3) WITHOUT POST-PROCESSING AND
AFTER EACH STEP OF BACKPROPAGATION. HPE: APPLIED TO HEAD POSE

ESTIMATION. ⟲: REPRESENTATION IS CONTINUOUS IN ACCORDANCE WITH
THE DEFINITION OF ZHOU et al. [10].

Representation #val Method ⊥ HPE ⟲

YPR [8] 3 Euler / Tait–Bryan angles ✓ ✓ -
Rotation vector [14] 3 (rotvec). Compact axis-angle ✓ ✓ -
Axis-Angle [10] 4 3-vector for axis, scalar angle - - -
Quaternion [15] 4 Quaternion + normalization - ✓ -
Ortho5D [10] 5 Stereographic projection ✓ - ✓
Ortho6D [10], [16] 6 Gram-Schmidt process ✓ ✓ ✓
M [10] 9 3x3 matrix (unconstrained) - - -
SVD-inf [9], [11] 9 SVD (inference) on M, ortho loss [9] - ✓ -
SVDO+ [11] 9 Differentiable SVD (training) on M ✓ - ✓

Euler angles and Tait-Bryan angles describe a rotation by
three rotation components and an implicit or explicit convention
of the order of axes the individual rotation components are
applied on. In addition, the rotation can be extrinsic, defining
the rotation about axes of the original coordinate frame which
is assumed to be motionless, or intrinsic, having the axes
rotate along the chain of the three elemental rotations. This
results in 12 different conventions for obtaining a well-defined
rotation based on three given angles. Euler and Tait-Bryan angle
components are restricted on a bound interval, thus offering
discontinuities (360◦ and 0◦ represent the same amount).

Rotation quaternions (q ∈ H) are a compact 4-element rep-
resentation allowing for efficient computation using quaternion
algebra. Rotation quaternions suffer from the antipodal problem
making q and −q represent the same rotation.

A rotation matrix R (R ∈ SO(3) ⊂ R3×3, RRT = I,
det(R) = +1) maps an orthonormal basis in R3 to another
orthonormal basis in R3, spanned by the three columns of R.
SO(3) is the special orthogonal group containing all rotations
in 3D.

There are less frequently used representations, such as axis-
angle (axis a ∈ R3, ||a||2 = 1, angle θ ∈ [0, 2π]), and rotation
vectors (rotvec; r ∈ R3, with angle θ = ||r||2).

The above representations have the drawback of being
discontinuous, which are less suitable for learning, by leading
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to higher errors or slower convergence [10]. Recently, rotation
representations have been proposed to overcome these draw-
backs. Zhou et al. [10] proved that in the three-dimensional
space any rotation representation with less than 5 dimensions
is discontinuous and thus harder to approximate by a neural
network. Zhou et al. [10] construct an Ortho5D and an Ortho6D
representation which are both continuous. Out of the 5 (6)
values, a rotation matrix ∈ SO(3) is built using a stereographic
projection (a Gram-Schmidt process). Levinson et al. [11]
explore the viability of integrating symmetric orthogonalization
SVDO+ (based on Singular Value Decomposition (SVD))
directly into the neural network following an unconstrained
intermediate representation of 9 values (a degenerate rotation
matrix M ). SVDO+ is continuous and differentiable, thus
suitable within deep neural networks.

B. Head Pose Estimation

Head pose estimation from images has been a popular topic
for decades and can be categorized from different perspec-
tives, i.e., the methodical perspective, the I/O (input/output)
perspective, and the application perspective.

1) Methodical Perspective: Both surveys of Murphy-
Chutorian et al. [17] and Abate et al. [18] use a high-
level method-based categorization: template-based meth-
ods, subspace-based methods, feature-based methods, and
regression-based methods.

Template-based methods estimate head pose by matching
appearance templates, i.e. by comparing test images to a set of
exemplars with known pose. Subspace-based methods map the
input space (e.g. image intensities) to a head pose manifold.
E.g., Derkach et al. [19] use tensor decomposition to model a
non-linear manifold of 3D head poses. Feature-based methods
make use of an intermediate geometric representation of the
face. E.g., Baltrusaitis et al. [20] localize facial landmarks
by a constrained local model (CLM) and estimate head pose
by a successive generalized adaptive view-based appearance
model. Tran et al. [21] fit a 3D morphable model to the head
which implicitly encodes head pose. Chang et al. [22], point
out several drawbacks of facial landmark locations: they (a)
are ill-defined, therefore vary in interpretation of the annotator,
(b) represent facial contours, therefore change with a different
viewpoint, and (c) become occluded depending on viewpoint.
This introduces certain errors in head pose estimates based on
facial landmark locations.

Regression-based methods learn a (non-linear) functional
mapping from input data to the head pose parameter space.
There is an abundance of work within this domain, so we point
out some examples representative of the concept and refer
the reader to the comprehensive survey on deep regression
by Lathuiliere et al. [23]. The methods typically perform
regression using a neural network, though other regression
models have been applied. Neural network-based regression
models consist of a CNN-based backbone for feature extraction
and a prediction head. Regressing a discontinuous rotation
representation has an impact on the architecture. One prominent
scheme is coarse-and-fine/ordinal regression, where coarse bins
are classified in addition to continuous regression values [9],

[24]–[27]. Zhou et al. [8] address the discontinuities of
large Euler angles by a wrapped loss. Schwarz et al. [28]
choose quaternions and use a regularization term to keep
quaternion elements small. Hsu et al. [15] additionally propose
losses explicitly dealing with the inter-dependence of certain
quaternion elements and the independence of others. Albiero et
al. [14] use a rotation vector representation. Their method
img2pose estimates the delta from a normalized pose (zero-
mean, unit standard deviation) to increase robustness. Further,
img2pose employs a calibration point loss which uses a set of
head-static 3D points (e.g., 3D head landmarks) and compares
the projected points of ground-truth and predicted pose.

Lately, methods have tackled the constraint of orthogonality.
Cao et al. [9] propose to estimate the basis vectors or the
rotation matrix and use a loss to keep the basis vector close
to orthogonal. Yet, SVD is needed to create an orthonormal
rotation representation. Zhou et al. [10] have proposed the con-
tinuous Ortho6D representation (see Section II-A). Hempel et
al. [16] applied it to a head rotation estimation in a simple deep
neural network estimating 6 values, and employ the Ortho6D
representation. The method does not estimate head translation.

2) I/O (input/output) Perspective: A taxonomy orthogonal
to the above structure follows the available input modality (e.g.,
intensity, depth [29], [30], optical-flow or a combination of
those), and whether a single measurement in time is being
used or multiple consecutive frames (e.g., tracking [31], [32],
RNNs [33]). Another disambiguation is about which of the
3 DOF rotation parameters are being estimated, e.g. from
a single yaw angle [34], [35] up to 3 DOF head rotation
parameters. Finally, methods can be distinguished by whether
they estimate (up to 3 DOF) translation alongside rotation,
and whether a preprocessing step is needed before the pose
estimation, such as a face bounding box detection. This article
focuses on single-image, intensity-based methods estimating
continuous, full rotation (3 DOF) and translation (3 DOF).

3) Application Perspective: Based on the application domain,
different challenges/requirements arise that need to be ad-
dressed by the method. E.g., surveillance applications typically
have to deal with low-resolution and tolerate larger rotation
errors. A widely used application is head pose estimation within
generic images. Generic images are typically easy to obtain
(e.g., collected from the internet), but lack other information,
such as camera intrinsics. Within this category one recent
method is img2pose [14], a Faster R-CNN-based [36] head
pose estimation method which estimates full 6 DOF head pose
without prior face or landmark detection. The method regresses
bounding boxes out of which features are being pooled for a
prediction head. The prediction head regresses a discontinuous
rotation vector and a translation vector for each bounding box.
The prediction head loses context by being presented with
a cut-out of the whole image. Therefore, the bounding-box-
local pose is converted to an image-global pose using scaling
heuristics. img2pose implicitly assumes a fixed focal length
for all input images, leading to erroneous head pose estimates
if the assumption fails (i.e., with images depicting a different
field-of-view). The ground truth pose used for training and
evaluation is obtained using the same focal length assumption
and is thus biased.
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Another domain is in-vehicle applications. Most approaches
focus on head rotation from depth data from structured infrared
light, such as Borghi et al. [30], Schwarz et al. [37], or
Venturelli et al. [38], while Ahn et al. [39], Firintepe et
al. [40] and Schwarz et al. [28] leverage intensity images
to estimate head rotation. Out of the aforementioned methods,
only Schwarz et al. [37] estimate head translation in addition
to rotation, yet only from depth data.

See Table II for the nearest neighbors of the proposed
method.

III. INTRAPOSE - 6 DOF DRIVER HEAD POSE ESTIMATION
LEVERAGING CAMERA INTRINSICS

A. Overview

We propose intrApose, a novel method for image-based
driver head pose estimation based on a deep neural network
that regresses continuous 6 DOF from a single intensity
image without prior face detection or landmark estimation (see
Figure 3). The main building blocks are a Faster R-CNN-based
network which regresses BBoxes and extracts RoI features
within these. intrApose learns raw pose features and converts
them to a continuous, full 6 DOF head pose within the BBox.
This BBox-local pose is converted to an image-global pose
in the camera frame while respecting camera intrinsics (see
Algorithm 1). Using differentiable modules and a continuous
rotation representation allow for a plain overall architecture.

B. Contributions

Our contributions are:
• We observe that neglecting camera intrinsics (e.g., by

using heuristics) introduces both rotation and translation
errors that exceed reported rotation estimation errors.
intrApose uses camera intrinsics consistently within the
deep neural network and is crop-aware and scale-aware:
poses estimated from bounding boxes within the overall
image are converted to a consistent pose within the camera
frame.

• We borrow for the use in head pose estimation the
continuous rotation representation SVDO+ [11] which
was used successfully in other domains.

• Using the challenging in-car driver head pose dataset
DD-Pose [12], we demonstrate that intrApose estimates
translation and rotation more robustly compared to state-
of-the-art methods, especially for extreme out-of-plane
rotations.

Our proposed method is inspired by the recent head pose
estimation method img2pose proposed by Albiero et al. [14].
The latter presents an efficient Faster R-CNN-based model
which regresses 6 DOF head poses without prior face detection
or landmark localization. The method has shown strong
performance on datasets with ground truth head poses obtained
from manually annotated facial landmarks.

The main differences are: (a) intrApose is camera-intrinsic
aware: focal lengths are consistently used as opposed to using
image size as a heuristic for focal length. (b) intrApose uses
a continuous rotation representation which makes both pose

normalization and usage of a calibration point loss as employed
by img2pose obsolete, therefore simplifying the architecture.
(c) intrApose provides an architecture with a differentiable
pose conversion which makes an inverse image-to-bbox pose
conversion step (i.e., inverse of Algorithm 1) at training time
superfluous, therefore further reducing model implementation
complexity. (d) intrApose uses Faster R-CNN anchor box aspect
ratios and sizes tuned for human heads, as opposed to aspect
ratios and sizes of generic objects, such as cars or cats.

C. Definition of Head Pose

We define head pose as a linear homogeneous transformation
matrix T cam←head ∈ SE(3), the special Euclidean group, which
transforms a homogeneous point phead = [xhead, yhead, zhead, 1]T

given in the head coordinate frame to a point pcam =
[xcam, ycam, zcam, 1]T in the cam coordinate frame by pcam =
T cam←head · phead, thus representing translation by 3 DOF and
rotation by 3 DOF on a continuous scale.

Transforms T ∈ SE(3) are constructed as in Eq. (1).
They can be decomposed into a 3x3 submatrix R ∈ SO(3)
representing the rotation and a translation vector t = [tx, ty, tz].
Ultimately, a homogeneous point multiplied from the right-hand
side will be rotated by R and afterward shifted by t.

T cam←head =

[ tx
R ty

tz
0 0 0 1

]
(1)

For the cam frame, we follow the convention: x to the right,
y to the bottom, and z in the viewing direction. The head
frame can be an arbitrary, head static frame.

D. Why Camera Intrinsics are Essential for Pose Estimation

The camera intrinsic matrix K defines, how 3D points in the
cam frame are projected onto a rectified image. See Eq. (2):

K =

[
fx s cx
0 fy cy
0 0 1

]
(2)

It is a 3x3 matrix consisting of focal lengths fx and fy for x
and y axes and principal point (cx, cy) representing the optical
center within the image. The axis skew parameter s is typically
assumed 0. K projects a point pcam = [xcam, ycam, zcam]T

given in the cam frame onto pixel coordinates [u, v] by
[u · w, v · w,w]T = K · pcam. Points residing in a different
frame, e.g., head, can be transformed into the cam frame by
a rigid transform T cam←head ∈ SE(3). K is non-singular: its
inverse K−1 projects an image coordinate [u, v, 1] into a 3D
ray representing all points in cam frame which project onto
[u, v, 1].

Translation and rotation errors: One implication of assuming
focal lengths not corresponding to the camera optics, e.g., kfx
and kfy for a factor k ∈ R will project a central object to k
times the image size (k−1 times the distance to the camera),
compared to focal lengths fx and fy . When estimating object
pose, its z translation will be k times as large.

Another implication is that assuming a wrong camera
intrinsic matrix affects rotation estimations which are more
apparent at the image border. Take the example in Figure 2:
two cameras differing in focal lengths by a factor of two are
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TABLE II
RELATED METHODS FOR INTENSITY-BASED HEAD POSE ESTIMATION WITH THEIR TRANSLATION AND ROTATION REPRESENTATIONS. CROP-AWARE:

WHETHER THE POSE IS CONSISTENT WITH THE IMAGE CROP. IN-VEHICLE: WHETHER THE METHOD HAS BEEN APPLIED TO DRIVER HEAD POSE ESTIMATION.
INTR.-AWARE: WHETHER THE METHOD LEVERAGES CAMERA INTRINSICS. NOTE THAT THE TOP FOUR METHODS DO NOT ESTIMATE HEAD TRANSLATION,

YET ARE OF INTEREST DUE TO THEIR ROTATION REPRESENTATION.

Name Method Translation Rotation Repr. Crop-aware In-vehicle Intr.-aware

TriNet [9] Coarse-to-fine, SVD-inf - R - - -
QuatNet [15] Quaternion, coarse-and-fine - Quaternion - - -
WHENet [8] Coarse-and-fine, address Euler discontinuities - Euler (YPR) - - -
6DRepNet [16] Ortho6D representation of [10] - R - - -
img2pose [14] Faster R-CNN, crop-invariant proposals XYZ Rotation vector ✓ - -

intraApose (ours) Crop-invariant proposals, SVDO+ XYZ R ✓ ✓ ✓

positioned such that their projections of a head pose into the
respective camera images are approximately equal (close to
the right image border). The camera with a larger field of
view (smaller focal length) is closer to the head and rotated.
A pose-from-image estimation using these different camera
intrinsics from the same image results in a translation error of
factor two and a rotation error of > 11◦ (in this example).1

Fig. 2. Motivational example of translation and rotation error introduced by
assuming different focal lengths resulting in similar projections. Left: Frusta
of two cameras resulting in approximately the same projection of face on the
right border of the image. Blue: frustum of camera A with focal length f .
Red: frustum of camera B with focal length f/2. Camera B is closer to the
object due to the larger field of view. In this example, it is rotated against
camera A by > 11◦. The right half depicts the projections into the image
space, with camera A on top and camera B with a larger field of view on the
bottom.

E. Proposed Model

See Figure 3 for an architectural overview. Given an image
I, we estimate full 6 DOF continuous head pose T cam←head

i for
each head i within the image I. The major building blocks are a
Faster R-CNN module which predicts bounding box proposals
along with a faceness score. Our prediction head performs RoI
pooling on the backbone’s feature maps based on the bounding

1The estimated poses using camera A and camera B would differ by the
rigid transform which brings camera A into camera B.

box proposals to obtain RoI features. A raw pose prediction
net predicts an intermediate, unconstrained representation of
raw pose features which are typically of small size (such as 6
to 12 values, see Table I) representing rotation and translation.
The Pose representation converts the potentially degenerate raw
pose features to a head pose ∈ SE(3) wrt. the isolated BBox.
A Pose conversion module converts BBox-local head pose to
an image-global pose such that it projects approximately equal
within the (whole) image. This essentially performs scaling and
rotation of the pose based on image intrinsics and bounding
box location and size (see Algorithm 1 and Figure 4). The
final step is a non-maximum suppression based on projected
bounding boxes and faceness scores and yields a set of head
poses. Let us describe the components in more detail.

Backbone, FPN + RPN: intrApose extends the two-stage
object detection approach of Faster R-CNN [36] with Feature
Pyramid Networks (FPN) [41] by a head pose estimation
module. Faster R-CNN consists of a backbone network that
extracts features on multiple scales from the input image.
Using these features and anchor bounding boxes of typical
object aspect ratio and shape, a region proposal network (RPN)
predicts bounding box proposals alongside an objectness score.
An RoI pooling operation aggregates features for each bounding
box proposal into RoI features.

Head pose estimation module: As in img2pose [14], we
propose a network that regresses a BBox-local head pose and
a faceness score pi for each RoI feature map i. In contrast
to img2pose, which regresses 6-element vectors representing
head pose directly (rotvec and translation), our architecture
allows for a generic scheme by estimating an intermediate raw
pose feature representation by a Raw pose prediction net that
is being converted to a head pose T cam←head

i ∈ SE(3) by a
differentiable Pose Representation module.

Raw pose prediction net: The raw pose prediction net
estimates unconstrained, raw pose features fR,t (R: rotation, t:
translation) wrt. the BBox for each RoI feature map. It consists
of a batch-normalized fully connected layer with 256 features
and ReLU activation followed by another fully connected layer
reducing to the number of raw pose features fR,t.

Pose representation: The Pose representation module
converts the raw pose features into a T cam←head

bbox ∈ SE(3)
representation. We have seen in Section II that there is a
number of pose representations available. As Zhou et al. [10]
and Levinson et al. [11] pointed out, a continuous, differentiable
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Module
(differentiable)
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Input

Raw pose
prediction net

Raw pose features

Pose representation

Head poses wrt. BBox

Head poses wrt. image

Head pose to BBox

Refined BBoxes

Output:
Head poses,

faceness,
bounding 

boxes

Backbone, FPN + RPN

Faster R-CNN BBox proposals

RoI features Faceness prediction net

Faceness Non-maximum 
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Poses wrt. BBox
(bounding box)

Poses wrt. image

Pose conversion (BBox to image) (Alg. 1)

𝑅, 𝑡

(vanilla) Faster R-CNN 
with FPN

New (intrApose)

Fig. 3. Architectural overview of intrApose, our proposed head pose estimation method, with novel parts highlighted in bold. intrApose takes intensity images
and camera intrinsics as an input. RoI features are obtained from BBox (bounding box) proposals based on Faster R-CNN with feature pyramid network
(FPN) [36], [41] (gray box). A Raw pose prediction net regresses raw pose features which the Pose representation module converts to head poses ∈ SE(3).
Up to here, the poses are relative to their respective BBox (orange box). The BBox-local poses are converted to be image-global (blue box); see Algorithm 1
and Figure 4. Bounding boxes are obtained based on the predicted head poses. A non-maximum suppression step filters overlapping predictions. The
output is a set of head poses, faceness scores and bounding boxes. During training, losses are applied to BBox proposals and head poses (dashed lines). The
whole architecture is intrinsics-aware, specifically in the Pose conversion (BBox to image) module and the Head pose to BBox projection module, but also
with respect to augmentations (see Section III-F) and cropping/resizing.

rotation representation is favorable. We will analyze different
rotation representations, such as the (discontinuous) rotation
vector representation of Albiero et al. [14], but also Ortho6D
and SVDO+. The translation part of the pose is treated in a
regular manner, meaning 3 DOF metric translation is being
regressed.

From an integration perspective, both Ortho6D and SVDO+

take 6, respectively 9 unconstrained values as an input and
create a rotation matrix R ∈ SO(3). One important aspect
is that the pose representation needs to be differentiable to
allow for gradients to pass during training. Both Ortho6D and
SVDO+ are differentiable.

Note that using a continuous pose representation allows
designing a network without bells and whistles, i.e. no coarse-
to-fine approach, no estimation of delta to a mean pose, no
dealing with values at discontinuities, etc.

Pose conversion (BBox to image): As posed by Albiero et
al. [14], each BBox proposal is a cut-out of the image and lost
its information about the location within the image. Therefore,
head poses are estimated wrt. their BBox and need conversion
to the full image. To that end, we propose an intrinsics-, crop-
and scale-aware BBox pose to image pose conversion method
that extends the conversion method of img2pose [14] and is
described in Algorithm 1 and illustrated in Figure 4. In essence,
the conversion method builds a homogeneous canonical BBox
camera matrix Kbbox which has the same focal length as

the image camera matrix Kimage, and the principal point in
the bounding box center. The distance-to-camera tz is being
scaled by the ratio of image focal length to bounding box size.
Therefore, BBox head pose is estimated within a canonical
BBox camera. Scaling accounts for the fact that a cut-out with
a close-by head is tightly enclosed by the bounding box and
reflects a head further away in the image. Inter-individual head
sizes are learned implicitly from the training data. The pose is
afterward projected into the pixel space with Kbbox and back
into the 3D space of the camera with the inverse of Kimage.
The homography K−1imageKbbox is not orthonormal, meaning it
does not keep the basis vectors of the transform orthogonal
and in unit length. Therefore, a successive (differentiable)
orthogonalization of the rotation is necessary to stay within
SE(3).2 Overall, Algorithm 1 makes the method intrinsics-,
crop- and scale-aware.

Head Pose to Box: With head pose and camera intrinsics,
we can get well-defined bounding boxes at minimum additional
cost. If we define bounding boxes as a rectangle in the image
which encloses all parts of the object of interest, then we can
define 3D points representing extrema in the head frame (chin
to the top of forehead, nose, ears), transform them into the

2Note that Albiero et al. [14] do not explicitly formalize the orthogonalization
of the degenerate rotation. In their reference implementation, orthogonalization
happens implicitly during the pose conversion step from rotation matrix to
rotation vector (rot_mat_to_rot_vec()). We explicitly formalize this
step.
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Algorithm 1 Pose conversion (BBox to image)
def convert_pose_bbox_to_image(T_cam_head, bbox, K_image):
# create bbox intrinsic matrix with same focal lengths
# as image and principal point in center of bbox
K_bbox = copy(K_image)
K_bbox(cx) = get_center_u(bbox)
K_bbox(cy) = get_center_v(bbox)

# scale: ratio of image focal length and
# bbox size (canonical bbox camera)
f_image = K_image(fx)
size_bbox = get_w(bbox) + get_h(bbox)
scale = f_image / size_bbox
T_cam_head(z) *= scale # scale z

# apply 4x4 homography matrix to head pose
H_image_bbox = homogen(inv(K_image) @ K_bbox)
T_cam_head = H_image_bbox @ T_cam_head
T_cam_head = orthogonalize_svdo+(T_cam_head)

return T_cam_head # image-global

Fig. 4. Illustration of the pose conversion of Algorithm 1. Left: Frusta of
whole image camera Cimage (blue), BBox camera Cbbox (green) and a head
pose (mesh). Right: projection of the 3D scene into the camera image using
Kimage and a bounding box of the head (green). Cbbox is a virtual camera
with a focal length proportional to its bounding box size, thus representing a
canonical size. Cbbox is closer to the head pose and the principal axis goes
through the bounding box center. As a result, a nearly frontal pose estimated
within the bounding box will be converted to a head pose close to the right
border of the whole image, rotated and further away from Cimage.

camera frame and project them into image space using Kimage.
The image bounding box is defined by the extrema of the
projected pixel coordinates. A margin can be defined either in
3D space (by taking 3D points outside a typical head), or in
image space (by adding a margin to the projected bounding
box).

Training objective: During training, we aim to optimize
the following objectives: (a) RPN bounding box proposals
(vanilla Faster R-CNN), (b) RPN objectness score (vanilla
Faster R-CNN), (c) Faceness score, and (d) Head pose outputs
wrt. image, which is a multi-task problem. For (a) and (b)
we refer to Ren et al. [36] (Lbbox: smooth L1 on positive
samples; Lobjectness: binary cross entropy Lcls). For the other
representations, we define the following loss functions.

Faceness score: We match ground truth bounding boxes
(automatically generated from head pose ground truth) with
proposal bounding boxes using Intersection-over-Union (IoU).
Positive matches yield a faceness loss of Lface = Lcls(pi, 1) for
the predicted faceness score pi. Negative matches get Lface =

Lcls(pi, 0).
Head pose: The head pose matrix T cam←head can be decom-

posed into a 3x3 rotation matrix R and a translation vector
t = [tx, ty, tz]

T as in Eq. (1). Positive matches are considered
for a head pose loss Lpose = LR + Lt, consisting of rotation
loss LR and translation loss Lt. We apply the loss to predicted
poses wrt. full image.

We define the translation loss Lt(t, t̂) = ||t − t̂||22 for the
estimated translation t and the ground truth translation t̂.
The rotation loss LR(R, R̂) = Lgeodesic = arccos

(
tr(RR̂T )−1

2

)
corresponds to the geodesic distance between the predicted
rotation R and the ground truth R̂. We optimize the overall
loss L:

L = Lobjectness + Lbbox + Lfaceness + LR + Lt (3)

F. Intrinsics-consistent Image and Pose Augmentations

Augmentations are a scheme to create further training data
to obtain a more robust model. The ground truth to our model
is given by the tuple (image (h, w), camera intrinsics K,
head pose T cam←head). The invariant of each augmentation
is that the tuple remains consistent in the sense that the
augmented head pose is being projected onto the corresponding
locations of the augmented image using the augmented camera
intrinsics. We implemented intrinsics-aware crop, scale, and
flip augmentations.

Crop image with bboxcrop = [u, v, w, h] needs a shift of the
principal point for the augmented camera intrinsics: Kcrop =[
fx 0 cx−u
0 fy cy−v
0 0 1

]
. Head pose remains the same.

Scaling image height/width with factor sh/sw needs rescaling
of focal lengths and principal point: Kscale = diag(sw, sh, 1) ·
K.

Flip (left-right) flips the principal point cx: Kflip =[
fx 0 w−cx
0 fy cy
0 0 1

]
. The head pose needs to be flipped on the yz-

plane of the camera frame, which can be obtained by the
following Hadamard product (◦, piecewise multiplication) and
keeps the transform right-handed:

T cam←head
flipped =

[
1 −1 −1 −1
−1 1 1 1
−1 1 1 1
1 1 1 1

]
◦ T cam←head

G. Training Details

We implemented the proposed intrApose model in PyTorch
with a ResNet-18 backbone [42] which was pretrained on
natural images. All implemented modules are differentiable
to allow gradients to flow backward from the losses. This
includes orthogonalization and pose conversion modules. We
used stochastic gradient descent (SGD) on mini-batches of
four images with an initial learning rate of 0.001 and a weight
decay of 5 · 10−4. We reduce the learning rate by a factor of
10 if the model has not improved over the last three epochs on
the validation set. Similarly, we perform early stopping after 5
epochs without improvement on the validation set.

For training the RPN, we randomly sampled 256 bounding
box proposals per image. For training the faceness prediction
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net and the raw pose prediction net, we sampled 512 proposals
per image.

We augmented the training data by intrinsics-aware scaling,
mirroring, and cropping, as detailed in Section III-F. Unbiasing:
To make the model more robust in non-frontal poses, training
samples with non-frontal poses are sampled more frequently
compared to the dataset distribution which typically consists
of more frontal driver head poses in in-car settings.

Training converged after 11 epochs and took approximately
2.5 days on a single NVidia Tesla V100 GPU. The model has
4.2 · 107 parameters. Inference time on the float32 model
is 18.4 samples per second.

IV. EXPERIMENTS

A. Dataset

Evaluation of intrApose puts specific requirements on
the evaluation dataset. Datasets that do not provide camera
intrinsics become out of scope as argued in Section III-D.
We therefore chose DD-Pose [12], a large-scale in-car dataset
(330k images) that offers complex naturalistic driving scenarios.
6 DOF continuous head pose annotations are provided with
the help of an optical marker tracker which is worn by the
driver. The head-worn marker is spatially calibrated once for
each of the 27 drivers and results in head pose measurements
free of drift and latency. The complex driving scenarios offer a
broad distribution of head poses (see Fig. 5), yet representative
of typical driving, including challenging lighting conditions.
DD-Pose offers dataset splits depending on occlusion anno-
tation and angle-from-frontal (all, easy, moderate, hard). We
chose subjects {8, 19, 23} for validation, subjects {3, 6, 10,
11, 14, 15, 16, 17} for testing (as defined by Roth et al. [12])
and the other subjects for training.

B. Model Variants

We conduct our experiments with 5 different approaches,
distinguished by model used (img2pose vs. intrApose), training
dataset (WIDER vs. DD-Pose), and rotational representation
(rotvec vs. SVDO+). We evaluate recall, translation error, and
rotation error.

img2pose(WIDER, rotvec): Pretrained img2pose model pro-
vided by Albiero et al. [14] (see Section II). The authors
trained the model on the WIDER face dataset, which does not
provide camera intrinsics. 3D head poses on the WIDER dataset
were created by the authors using Perspective-n-Point on facial
landmarks with a large head model and an assumed focal
length equaling the sum of image width and image height, i.e.,
the same focal length assumption the method makes internally.
One important fact to mention is that using the same focal
length for the creation of the ground truth pose imposes a bias.
The large head model (width ≈ 1.5m, 10 times as large as a
mean head) introduces head translations about 10 times as far
away from the camera.

img2pose(DD-Pose, rotvec): This is the same model as
img2pose(WIDER, rotvec), but trained on DD-Pose using the
training scheme of Albiero et al. [14], i.e., using assumed focal
lengths instead of the true camera intrinsics provided with
the DD-Pose dataset. Bounding boxes and head poses were

used as provided by DD-Pose. We needed to use 3D head
landmarks of typical size (width ≈ 0.15m) in the calibration
point loss of img2pose for the training to converge, potentially
caused by points of the large model being projected outside
the image in the calibration point loss. Note that the points
used by calibration point loss are not to obtain a scale (as with
landmark-based approaches), but rather to guide the model in
adapting its parameters for pose estimation during training.

intrApose(DD-Pose, rotvec): Our proposed model with the
discontinuous rotation vector (rotvec) representation and the
L2 loss function of img2pose. This model is intrinsics-aware.
We use pose normalization as in img2pose, i.e., estimating the
pose with zero-centered mean and unit standard deviation. We
use a head model of typical size for the calibration point loss
and applied the proposed intrinsics-aware crop, flip, and scale
augmentations defined in Section III-F.

intrApose(DD-Pose, SVDO+): Our proposed model with the
continuous pose representation SVDO+ [11] and geodesic loss.
The model is intrinsics-aware. We found pose normalization
to be unnecessary. We tuned anchor sizes and aspect ratios on
the DD-Pose training set. Compared to img2pose, no point
calibration loss was necessary. We used a typical scale head
model to create bounding boxes from the predicted head poses.

intrApose(DD-Pose, SVDO+, unbiased): Same model as
intrApose(DD-Pose, SVDO+), but trained with an unbiased dataset
by sampling more non-frontal poses.

C. Recall
Recall defines on which percentage of the images a head

hypothesis from head pose estimation method exists. Images
without a hypothesis are left out when evaluating translation
and rotation. For matching ground truth and hypotheses, we
use an Intersection-over-Union (IoU) threshold of 0.3 for
the respective bounding boxes. Predicted head poses with a
faceness score of > 0.9 are considered.

Figure 5 depicts the recall over the angle difference from
frontal head pose. The rotation vector-based methods (rotvec)
have a recall of > 0.8 for frontal faces and drop towards
0.6 for rotations 60◦ off-frontal. Out of these, the model
variants trained on DD-Pose have a higher recall for close-
to-frontal poses. The baseline img2pose(WIDER, rotvec) offers a
higher recall for highly off-frontal faces ([70◦, 100◦]) compared
to the other rotation vector-based methods. We explain this
by the WIDER dataset having a more homogeneous angular
distribution compared to DD-Pose, which offers more close-
to-frontal faces (see histogram in Figure 5).

Using the continuous SVDO+ rotation representation
(intrApose(DD-Pose, SVDO+)) shows a considerable benefit
across the whole angular spectrum compared to the rotation
vector representation (intrApose(DD-Pose, rotvec)), keeping the
recall above 0.6 for angles up to 105◦ and dropping towards
0.4 for 110◦. The same model trained with an unbiased
dataset (intrApose(DD-Pose, SVDO+, unbiased) shows remarkable
improvement of recall for extreme poses, keeping the recall
above 0.8 across the whole angular spectrum until 105◦, only
afterward dropping towards 0.4. The right side of Table III
shows recall aggregated over the subsets (all, easy, moderate,
hard) in accordance with the observations from Figure 5.
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Fig. 5. Recall and data distribution over the angular difference from frontal pose
for the DD-Pose test set. Compared to the baseline (img2pose(WIDER, rotvec)),
the recall improves incrementally by training on DD-Pose (img2pose(DD-Pose,
rotvec)), switching to the proposed architecture (intrApose(DD-Pose, rotvec)), using
a continuous rotation representation (intrApose(DD-Pose, SVDO+)) and training
using an unbiased dataset with more non-frontal poses (intrApose(DD-Pose,
SVDO+, unbiased)).

D. Translation Error

We evaluate the mean Euclidean distance MAEt between
ground truth head origin and predicted head origin.

The errors in head translation estimation (MAEt) are listed
in Table III. The pretrained baseline img2pose(WIDER, rotvec)
depicts an error of over 7.7m. Overestimated distance to
camera (tz) contributes most to the error. This is caused by
two facts: for one, img2pose(WIDER, rotvec) assumes a focal
length defined by the image size which does not correspond
to the true intrinsics of the camera. Also, the WIDER dataset
consists of 2D facial landmark labels which Albiero et al.
use to generate the ground truth head poses by Perspective-
n-Point and a 3D head model which is ∼ 1.5m wide. The
model trained on WIDER therefore estimates heads presented
in DD-Pose further away. As Albiero et al. use WIDER for
both training and evaluation, this fact had not become apparent.
In comparison, the img2pose-based model trained on DD-Pose
(img2pose(DD-Pose, rotvec)) shows a better estimation of the
head translation, caused by the correct head pose ground
truth obtained by a measurement device. Overall, the head
is estimated 18mm from the ground truth for the all subset
and 78mm for the hard subset. The non-unbiased intrApose
model variants perform similarly in translation estimation,
being less than 21mm off for the all subset. Comparing
the SVDO+ model variants shows that unbiasing the training
dataset decreases translation error from 47mm to 41mm on
the hard subset, though sacrificing MAEt for the other subsets
(easy, moderate). We explain the worsening on the latter subsets
by the use of significantly fewer training samples from these
subsets while evaluation is biased in the sense that a large
portion of samples resides in the easy and moderate subsets
(see data distribution in Fig. 5). Another hypothesis is a higher
imbalance of rotation loss and translation loss (unbiasing is
based on angle from frontal).

E. Rotation Error

We evaluate rotation error by mean angular error MAER

of the geodesic distance between ground truth rotation and
predicted rotation. For an unbiased evaluation of head rotation,
we use balanced mean angular error (BMAE) as proposed
by Schwarz et al. [28]. It splits the dataset in bins based on
the geodesic distance from the frontal pose and averages the
MAER of the bins:

BMAEd,k :=
d

k

∑
i

ϕi,i+d, i ∈ dN ∩ [0, k]

where ϕi,i+d is the MAER of all hypotheses, where the
geodesic distance between ground truth and frontal pose is
between i and i+d. During evaluation, we use bin size d := 5◦

and maximum angle k := 120◦.
The overall mean angular error (MAER) and balanced mean

angular error (BMAE) are displayed in Table III and the
MAER over the angular difference from a frontal pose are
depicted in Figure 6.

The pretrained baseline img2pose(WIDER, rotvec) shows a
MAER/BMAE of 7.8◦/10.3◦ on the all subset of DD-Pose,
though being trained on WIDER, a dataset based on images
downloaded from the internet, therefore shows good general-
ization to unseen data.

Retraining the img2pose model on DD-Pose
(img2pose(DD-Pose, rotvec)) decreased the MAER to 6.9◦, yet
increasing the BMAE to 14.8◦. This is due to the worse
performance for non-frontal poses (see increasing MAER with
increasing angle-from-frontal in Figure 6). We explain this by
the majority of the training samples within DD-Pose being
close-to-frontal, making the model tend to estimate the mean
pose with the discontinuous rotation vector representation.

intrApose(DD-Pose, rotvec) uses the same data and pose
representation within the proposed intrinsics-aware intrApose
framework including the proposed augmentations. We can see
the BMAE decrease to 7.5◦ on the all subset and considerably
improve on the hard subset to 12.6◦ (from 20.3◦ and 48.3◦

of the img2pose models trained on WIDER and DD-Pose,
respectively). We attribute this improvement to the intrinsic-
aware model.

Switching to the continuous rotation representation SVDO+

(intrApose(DD-Pose, SVDO+)) decreases the MAER to 5.0◦,
yet increases in terms of BMAE (8.0◦). A look at the
corresponding recall on the hard subset shows that it now
predicts more extreme poses (71% vs. 24%) and still tunes
towards close-to-frontal poses, as shown by the best MAER on
the easy subset. Overall, one can say that the closer the BMAE
of a model is to the MAER, the better it covers data-imbalance.

The final, proposed model intrApose(DD-Pose, SVDO+, unbi-
ased) resolves this data imbalance by being trained with more
off-frontal pose samples. We can see an improvement of both
MAER and BMAE on the hard subset of DD-Pose . The model
variant shows a consistently low error along the full spectrum
of angles from frontal (Figure 6) and results in a BMAE of
9.5◦ on the hard subset, being very close to the corresponding
MAE of 8.9◦.

Experiments with the continuous Ortho6D rotation represen-
tation of Zhou et al. [10] showed results similar to the SVDO+
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Fig. 6. Mean angular errors (MAER) on the DD-Pose test set. MAER

increases with larger angular distance from frontal. The model variant
intrApose(DD-Pose, SVDO+, unbiased) provides a consistently low angular error
over the whole depicted angular spectrum.

rotation representation, in accordance with the observations of
Levinson et al. [11].

F. Qualitative Results

Figure 7 provides qualitative results of the baseline
img2pose [14] and the proposed model. The small axes of
img2pose confirm the overestimated head translation observed
in Table III. As designed, the unbiased proposed model depicts
a smaller qualitative error for off-frontal poses compared to the
unbiased variant. Samples where only the proposed model could
provide a head pose estimate (faceness > 0.9) are depicted in
Figure 8. The model shows robustness towards high occlusions
by hands and steering wheel, and extreme poses, though with
a larger qualitative error compared to the samples given in
Figure 7.

V. DISCUSSION

We presented a 6 DOF head pose estimation method which
employs a continuous rotation representation. For more than
two decades, authors have committed to Euler angles or
quaternions and treated the values as a simple regression
problem, thus ignoring the underlying manifold at hand. This
led to complex mitigations dealing with the drawbacks of the
representations, such as coarse-to-fine approaches, normalizing
values (zero mean, unit standard deviation, quaternion normal-
ization), explicitly handling discontinuities (e.g., at 360◦) or
proposing special losses (e.g., by encouraging orthogonality
or projection of calibration points). This paper confirmed the
importance of the proper choice of rotation representation of
Levinson et al. [11]: we could represent 3 DOF rotation without
special pre- or postprocessing, thus leading to a plain network
without bells and whistles.

When evaluating, representing rotation errors by Euler
angles shows drawbacks due to their ambiguity (order of
axes, direction, handedness). Therefore, we reside to geodesic
distance, making it agnostic of single angle components and
the frame, but at the cost of lacking insight into the contribution
of individual axes to the geodesic distance.

img2pose(WIDER) intrApose(DD-Pose) intrApose(DD-Pose)
rotvec SVDO+ SVDO+ (unbiased)

Fig. 7. Qualitative head pose estimation results on samples with challenging
off-frontal head poses. We project the poses into the camera image using the
camera intrinsics. Ground truth head pose is denoted by a white axis. Predicted
head pose is denoted with an RGB axis and a transparent red face mesh of
typical head size. The translation error can be judged by comparing the axis
length. All images are crops to ease judgement.

Our architecture is based on the Faster R-CNN framework. In
general, it can be adapted to other, potentially deeper backbones
or to single-shot detection networks.

Our method is intrinsics-aware, therefore requiring camera
parameters alongside the image itself. In Section III-D
we showed that assuming incorrect camera intrinsics can
introduce large errors beyond accepted tolerances. With missing
calibration information the error behavior of the proposed
method assimilates to methods that are intrinsics-agnostic.

The pose prediction network operates on feature RoIs, there-
fore can only estimate a local pose within the BBox. Albiero et
al. [14] proposed a pose conversion to the whole image.
We generalized the pose conversion algorithm by making
it intrinsics-aware, allowing for generic pose representations,
and explicitly formalizing a necessary orthogonalization step.
Essentially, this shows that the pose conversion is a rigid
coordinate transformation that approximates the projections of
the BBox and the whole image.
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TABLE III
ROTATION ERRORS, TRANSLATION ERRORS AND RECALL ON THE DD-Pose TEST SET FOR THE MODEL VARIANTS ON DIFFERENT SUBSETS (ALL, E: EASY,
M: MODERATE, H: HARD). SEE SECTION IV-B FOR DETAILS ON THE MODELS. ROTATION ERRORS ARE GIVEN IN DEGREES (◦), AND TRANSLATION ERRORS

IN MILLIMETERS (mm). ↑/↓: HIGHER/LOWER VALUES DENOTE BETTER PERFORMANCE.

Method BMAE (◦) ↓ MAER (◦) ↓ MAEt (mm) ↓ recall (%) ↑

all e m h all e m h all e m h all e m h

img2pose(WIDER, rotvec) [14] 10.3 6.4 11.1 20.3 7.8 6.7 9.4 18.4 7849 7746 8068 8431 85 99 64 56
img2pose(DD-Pose, rotvec) 14.8 5.9 12.5 48.3 6.9 5.1 8.7 42.6 18 14 23 78 81 92 68 33
intrApose(DD-Pose, rotvec) 7.5 6.4 7.5 12.6 6.3 6.0 6.8 9.7 19 18 21 26 89 99 80 24
intrApose(DD-Pose, SVDO+) 8.0 4.0 8.0 15.3 5.0 4.0 5.9 16.0 21 18 24 47 95 100 90 71
intrApose(DD-Pose, SVDO+, unbiased) 5.8 4.2 6.2 9.5 4.8 3.9 5.9 8.9 25 22 29 41 97 100 93 93

Fig. 8. Random subset of samples of the DD-Pose test set where a head pose
estimate could only be provided by our proposed model (unbiased).

Rendering a face mesh overlay is an appealing visualization
of head pose. However, using a fully opaque one makes the
viewer tolerate more errors both in rotation and translation, by
still appearing natural. To that end, we suggest rendering the
face mesh transparent and also visualizing the frame axes.

The evaluations have shown that the proposed model provides
robust per-frame pose estimates, also for large out-of-plane
rotations. However, a recall of 93% on the hard subset might be
insufficient for safety-relevant in-vehicle applications. A driver-
monitoring system would integrate these 6 DOF measurements
in a temporal filtering scheme to increase the recall. Such a
system could also benefit from estimated uncertainties for all
6 DOF. To that end, Bingham belief [43] could be a fitting
representation for rotation uncertainties in SO(3).

VI. CONCLUSION

This manuscript has tackled the problem of 6 DOF head pose
estimation from images and their associated camera intrinsics in
the domain of driver-observation. This domain poses interesting
in-car applications and challenges such as difficult illumination
conditions and large out-of-plane rotations.

We showed that explicit use of camera intrinsics is required
for precise head pose estimation and use it consistently within
our novel intrinsics-aware head pose estimation method.

Discontinuous rotation representations such as Euler angles
and quaternions have shown drawbacks that led to complex
architectures. Our method employs a continuous rotation repre-
sentation (SVDO+) which simplifies the network architecture

to a simple regression head and a pose conversion which yields
a rotation in SO(3).

Evaluations on the challenging in-car dataset DD-Pose have
shown that leveraging camera-intrinsics alongside a continuous
rotation representation results in a balanced mean angular
error (BMAE) of 5.8◦ compared to the intrinsics-agnostic
baseline (14.8◦). Also, using an unbiasing data sampling
strategy lowered the BMAE on the hard subset (extreme
rotations and occlusions) from 15.3◦ to 9.5◦. The proposed
method showed translation errors of 22/29/41mm over the
easy/moderate/hard subsets in the DD-Pose test set.

Overall, our proposed method allowed for a simple architec-
ture that yields robust head pose estimates across a broad
spectrum of head poses. Future work involves integration
of uncertainties, e.g., by Bingham belief, as well as state
estimation over consecutive timesteps.
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