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SUMMARY

This dissertation is dedicated to understanding the potential of improving the motion
comfort of automated vehicles and explores multiple options that serve this purpose.
Comfort is usually prioritized behind factors such as safety and efficiency but is nev-
ertheless influential to the acceptance of automated vehicles. The goal of enhancing
motion comfort overlaps with the need to overcome challenges brought by the motion
sickness phenomenon. Motion sickness is found to impact a significant portion of trav-
elers in all types of transport. It tends to develop faster among occupants who are not
engaged in the driving task. Its symptoms can cause difficulties for non-driving-related
tasks (NDRTs) to be performed effectively by the passengers. Therefore, a part of the re-
search in this dissertation is directed specifically toward mitigating motion sickness in
automated vehicles.

The potential improvement in motion comfort is represented by the difference be-
tween a performance baseline of human drivers and the level achievable by automated
vehicles. The performance is indicated as a combination of motion comfort and time
efficiency due to the conflicting nature between them. The measure of comfort is fur-
ther divided into two branches, one focusing on accelerations in general while the other
targets motion sickness specifically by analyzing the frequency composition of the ac-
celerations experienced by the passengers. At first, an attempt to establish the human
driver baseline was made by analyzing existing naturalistic driving data at roundabouts.
An optimization-based scheme was implemented to overcome measurement noise and
erroneous recordings were removed using the technique of principal component anal-
ysis. The data suggested a preference for peak accelerations, which is approximately
1.90 m/s2 in the longitudinal direction and 3.57 m/s2 in the lateral direction in the most
complex type of maneuver. However, no meaningful indication of time efficiency was
obtained due to the inconsistent and incomplete coverage of the recordings contained
in the readily available dataset. This has directly led to an on-road experiment to collect
tailored data for the purpose of understanding human driving comfort. A group of par-
ticipants was recruited from the public and instructed to drive an instrumented vehicle
through a designated route that involves significant speed changes and multiple consec-
utive turns in quick succession. An average duration of 76.5 s has been observed from
the recorded runs while the average acceleration discomfort was found at 211.4 m2/s3.
The average peak lateral acceleration coincides with the analysis of naturalistic driving
data while the average peak longitudinal acceleration is around 48% higher than previ-
ous findings due to the extension of the recording coverage.

The upper limit of comfort and time efficiency performance of automated vehicles
is determined with an optimization-based motion planning algorithm. A frequency-
weighting representation of predicted nauseogenicity has been proposed and incorpo-
rated into the algorithm in order to prove the idea of mitigating motion sickness with
automated vehicles. Because being free from motion sickness symptoms is deemed as
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xii SUMMARY

an interpretation of motion comfort especially meaningful in the context of automated
vehicles. The motion planner generates the spatiotemporal trajectory of the vehicle by
determining its relative position within the driving lane alongside a speed profile. When
compared with optimizing for the alternative objective that targets all planar acceler-
ations equally, a potential reduction of 11.3% in squared motion sickness dose value
(MSDV) was achieved when the same amount of travel time was used. The reduction
in squared MSDV, when using squared MSDV as the objective, is found to be 32% when
compared with the best-performing human driver. Meanwhile, the reduction in gen-
eral acceleration energy measures 19% with the objective of minimizing acceleration in
the motion planner. Additional causes of such differences have been analyzed in or-
der to clarify the conditions of referencing the claimed differences. Whereas the inferior
precision of human drivers in controlling vehicle motion is a major contributing factor,
the motion planner’s assumption of no elevation change and smooth pavement further
influenced the reported numbers. One should also bear in mind that human drivers
may further tend to reduce physical input efforts and fuel consumption and maintain a
safety margin for unexpected traffic interactions. The receding-horizon formulation, re-
flective of the practically feasible operation of the proposed algorithm, has been further
explored. A properly chosen set of preview parameters, including the preview time and
planning interval, could lead to an acceptable level of performance loss over the integral
planning case (i.e. solving for the entire maneuver) while maintaining a computational
complexity close to real-time feasibility.

Further potential lies in recent developments in suspension technology, hence re-
lated concepts and their impacts have been analyzed. Specifically, roll-compensated lat-
eral acceleration enabled by active suspension actuators is deemed a possible solution
and has been implemented on railroad vehicles for decades. Transferring this concept
onto passenger vehicles involves challenges including the demand for capable and af-
fordable actuators on the hardware side but also a suitable control strategy. A nonlinear
model predictive control (NMPC) method has been developed for vehicles controlled
by human drivers. The reference generation relies on curvature preview to predict the
magnitude of lateral acceleration and ensure a phase lead in roll motion over yaw mo-
tion. Throughout the highway, rural, and urban driving scenarios, the proposed method
outperforms specifically tuned feedforward-PID control, which is representative of the
state-of-the-art solution used in the industry. A dedicated warm-start strategy based on
hybrid MPC reduced computational time, enabling the NMPC controller to operate in
real-time hardware-in-the-loop (HIL) tests. However, the control method does not fully
resolve the problem of cooperating with human drivers. The limitations prompt coordi-
nation between planar and roll motion in a combined motion planning framework on
automated vehicles. Hence, a novel optimization-based planning algorithm coordinat-
ing the roll and planar motions has been proposed. A further reduction of up to 30.5%
in acceleration comfort could be achieved compared with optimizing only within the
horizontal plane, i.e. planning vehicle trajectory and velocity.

Nonetheless, the research work done in this dissertation is of an exploratory nature.
The solutions have been studied as proof of concept showing their potential and feasi-
bility. The suggested values in terms of potential performance benefit should be referred
to with caution by mentioning the specific scenarios and parameters. Further research
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could improve the works in this dissertation by overcoming some of the disadvantages.
For example, recent advances in evaluating subjective motion comfort and predicting
motion sickness could be utilized to guide the design of motion planning and suspen-
sion control algorithms. There is also a strong need for validation in terms of improved
motion comfort or reduced motion sickness in real-world experiments. Performing such
experiments requires various resources including but not limited to testing grounds, ve-
hicles with self-driving capability, and legislative approvals. The outcome could assist in
standardizing the evaluation of motion planners of future AVs regarding their comfort
level.





SAMENVATTING

Dit proefschrift is gewijd aan het begrijpen van het potentieel van het verbeteren van het
bewegingscomfort van geautomatiseerde voertuigen en onderzoekt meerdere opties die
dit doel dienen. Comfort krijgt meestal voorrang op factoren als veiligheid en efficiën-
tie, maar is desondanks van invloed op de acceptatie van geautomatiseerde voertuigen.
Het doel om het bewegingscomfort te verbeteren overlapt met de noodzaak om de uit-
dagingen van het fenomeen bewegingsziekte te overwinnen. Bewegingsziekte blijkt een
aanzienlijk deel van de reizigers in alle soorten vervoer te treffen. Het ontwikkelt zich
meestal sneller bij inzittenden die niet betrokken zijn bij de rijtaak. De symptomen kun-
nen het voor passagiers moeilijk maken om taken uit te voeren die niet met het rijden te
maken hebben (NDRT’s). Daarom is een deel van het onderzoek in dit proefschrift spe-
cifiek gericht op het verminderen van bewegingsziekte in geautomatiseerde voertuigen.

De potentiële verbetering in bewegingscomfort wordt weergegeven door het ver-
schil tussen een basisprestatie van menselijke bestuurders en het niveau dat haalbaar
is voor geautomatiseerde voertuigen. De prestatie wordt aangeduid als een combinatie
van bewegingscomfort en tijdsefficiëntie, vanwege het conflicterende karakter tussen
beide. De meting van comfort is verder onderverdeeld in twee takken, de ene richt zich
op versnellingen in het algemeen, terwijl de andere zich specifiek richt op bewegings-
ziekte door de frequentiesamenstelling van de door de passagiers ervaren versnellingen
te analyseren. Eerst werd een poging gedaan om de basislijn van de menselijke bestuur-
der vast te stellen door bestaande naturalistische rijgegevens op rotondes te analyseren.
Er werd een op optimalisatie gebaseerd schema geïmplementeerd om meetruis te on-
dervangen en foutieve registraties werden verwijderd met behulp van de techniek van
principale-componentenanalyse. De gegevens suggereerden een voorkeur voor piekver-
snellingen van ongeveer 1.90 m/s2 in de lengterichting en 3.57 m/s2 in de dwarsrichting
bij het meest complexe type manoeuvre. Er werd echter geen zinvolle indicatie van de
tijdsefficiëntie verkregen vanwege de inconsistente en onvolledige dekking van de regi-
straties in de direct beschikbare dataset. Dit heeft direct geleid tot een experiment op de
weg om gegevens op maat te verzamelen met als doel het menselijk rijcomfort te begrij-
pen. Een groep deelnemers werd gerekruteerd uit het publiek en kreeg de opdracht om
met een met instrumenten uitgerust voertuig door een aangewezen route te rijden waar-
bij snel opeenvolgende snelheidsveranderingen en meerdere bochten voorkomen. Een
gemiddelde duur van 76,5 seconden werd waargenomen bij de opgenomen ritten, ter-
wijl het gemiddelde acceleratieongemak werd gevonden op 211.4 m2/s3. De gemiddelde
piekversnelling in de dwarsrichting komt overeen met de analyse van gegevens van na-
tuurlijke ritten, terwijl de gemiddelde piekversnelling in de lengterichting ongeveer 48%
hoger is dan eerdere bevindingen door de uitbreiding van het registratiebereik.

De bovengrens van comfort en tijdsefficiëntieprestaties van geautomatiseerde voer-
tuigen wordt bepaald met een optimalisatiegebaseerd bewegingsplanningsalgoritme. Een
frequentie-gewogen weergave van voorspelde misselijkheid is voorgesteld en opgeno-
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xvi SAMENVATTING

men in het algoritme om het idee van het verminderen van bewegingsziekte met geauto-
matiseerde voertuigen te bewijzen. Omdat het vrij zijn van symptomen van bewegings-
ziekte wordt beschouwd als een interpretatie van bewegingscomfort die vooral zinvol
is in de context van geautomatiseerde voertuigen. De bewegingsplanner genereert het
spatiotemporele traject van het voertuig door de relatieve positie binnen de rijbaan te
bepalen naast een snelheidsprofiel. In vergelijking met het optimaliseren voor de alter-
natieve doelstelling die alle vlakke versnellingen gelijkelijk aanpakt, werd een potentiële
vermindering van 11,3% in gekwadrateerde dosiswaarde voor bewegingsziekte (MSDV)
bereikt wanneer dezelfde hoeveelheid reistijd werd gebruikt. De vermindering in gekwa-
drateerde MSDV, wanneer gekwadrateerde MSDV als doelstelling wordt gebruikt, blijkt
32% te zijn in vergelijking met de best presterende menselijke bestuurder. Ondertussen
is de reductie in algemene versnellingsenergie maatregelen 19 met de doelstelling van
het minimaliseren van versnelling in de bewegingsplanner. Aanvullende oorzaken van
dergelijke verschillen zijn geanalyseerd om de voorwaarden voor het refereren aan de
geclaimde verschillen te verduidelijken. Hoewel de inferieure precisie van menselijke
bestuurders bij het besturen van de beweging van het voertuig een belangrijke factor is,
heeft de aanname van de bewegingsplanner dat er geen hoogteverschillen zijn en dat
het wegdek glad is, de gerapporteerde cijfers verder beïnvloed. Men moet ook in ge-
dachten houden dat menselijke bestuurders verder geneigd kunnen zijn om fysieke in-
spanningen en brandstofverbruik te verminderen en een veiligheidsmarge aan te hou-
den voor onverwachte verkeersinteracties. De terugwijkende-horizonformulering, die
de praktisch haalbare werking van het voorgestelde algoritme weerspiegelt, is verder on-
derzocht. Een goed gekozen set preview-parameters, waaronder de preview-tijd en het
planningsinterval, kan leiden tot een acceptabel niveau van prestatieverlies ten opzichte
van het integrale planningsgeval (d.w.z. het oplossen van de gehele manoeuvre), terwijl
de rekencomplexiteit dicht bij de realtime haalbaarheid blijft.

Verdere mogelijkheden liggen in recente ontwikkelingen in ophangingstechnologie,
vandaar dat gerelateerde concepten en hun effecten zijn geanalyseerd. Meer specifiek
wordt rolgecompenseerde laterale versnelling door actieve ophangingsactuatoren be-
schouwd als een mogelijke oplossing die al tientallen jaren wordt toegepast op spoor-
wegvoertuigen. De toepassing van dit concept op passagiersvoertuigen brengt uitdagin-
gen met zich mee, waaronder de vraag naar geschikte en betaalbare actuatoren aan de
hardwarekant, maar ook een geschikte besturingsstrategie. Er is een niet-lineaire mo-
delvoorspellende controlemethode (NMPC) ontwikkeld voor voertuigen die bestuurd
worden door menselijke bestuurders. De referentiegeneratie is gebaseerd op een krom-
mingsvoorspelling om de grootte van de laterale versnelling te voorspellen en een fase-
voorsprong in de rolbeweging ten opzichte van de gierbeweging te garanderen. In de
rijscenario’s op de snelweg, op het platteland en in de stad presteert de voorgestelde
methode beter dan de specifiek afgestemde feedforward-PID-regeling, die representa-
tief is voor de state-of-the-art oplossing die in de industrie wordt gebruikt. Een speciale
warmstartstrategie op basis van hybride MPC verkort de rekentijd, waardoor de NMPC-
regelaar kan werken in real-time hardware-in-the-loop (HIL) tests. De besturingsme-
thode lost het probleem van samenwerking met menselijke bestuurders echter niet vol-
ledig op. De beperkingen vragen om coördinatie tussen vlakke en rolbewegingen in
een gecombineerd planningskader voor bewegingen van geautomatiseerde voertuigen.
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Daarom is er een nieuw, op optimalisatie gebaseerd planningsalgoritme voorgesteld dat
de rollende en vlakke bewegingen coördineert. Een verdere reductie tot 30,5% in acce-
leratiecomfort kan worden bereikt in vergelijking met het optimaliseren van alleen het
horizontale vlak, d.w.z. het plannen van de voertuigbaan en -snelheid.

Desalniettemin is het onderzoekswerk in dit proefschrift van verkennende aard. De
oplossingen zijn bestudeerd als proof of concept om hun potentieel en haalbaarheid
aan te tonen. Naar de voorgestelde waarden in termen van potentiële prestatievoorde-
len moet met voorzichtigheid worden verwezen door de specifieke scenario’s en para-
meters te vermelden. Verder onderzoek zou de werken in dit proefschrift kunnen ver-
beteren door enkele van de nadelen te overwinnen. Recente vooruitgang in het evalu-
eren van subjectief bewegingscomfort en het voorspellen van bewegingsziekte zou bij-
voorbeeld gebruikt kunnen worden als leidraad voor het ontwerpen van algoritmen voor
bewegingsplanning en ophangingscontrole. Er is ook een sterke behoefte aan validatie
in termen van verbeterd bewegingscomfort of minder bewegingsziekte in echte expe-
rimenten. Het uitvoeren van dergelijke experimenten vereist verschillende middelen,
inclusief maar niet beperkt tot testterreinen, voertuigen die zelf kunnen rijden en wet-
telijke goedkeuringen. De resultaten zouden kunnen helpen bij het standaardiseren van
de evaluatie van het comfortniveau van bewegingsplanners van toekomstige AV’s.





1
INTRODUCTION

The light which puts out our eyes is darkness to us.
Only that day dawns to which we are awake.

Henry David Thoreau

1
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2 1. INTRODUCTION

1.1. MOTIVATION

Automated vehicles (AVs), more commonly known to the public as self-driving cars, bear
the hope of changing future mobility. Human errors are most frequently found at guilt
for causing road accidents, many of which are life-costing. Around 19.1% of the drivers
involved in fatal traffic accidents in the US in 2020 were found exceeding speed limits,
11.6% were under alcohol or drug influence, and 7.3% were categorized as operating in
a careless manner [1]. In contrast, AVs are believed to operate vigilantly and responsibly
without a sense of fatigue. AVs could be equipped with a variety of sensors to simulta-
neously exploit different sources of information. These additional sensors significantly
enhance their perception capability especially in adverse visibility conditions, e.g. in
darkness, fog, or heavy precipitation. Meanwhile, AVs are expected to be more capable
of controlling vehicle motion and hence improve safety. As demonstrated by the reduc-
tion in certain types of road accidents after mandating the anti-lock braking systems
(ABS) and electronic stability control (ESC) on passenger vehicles, basic driver assistant
functions already have a considerable positive impact [2]–[5]. One can extrapolate with
confidence that AVs, when given more control over vehicle motion, would further pre-
vent accidents due to instability. Besides enhancing safety, AVs are expected to bring
environmental benefits [6]. They could help reduce the consumption of fossil fuel or al-
ternative energy and utilize the roads more efficiently [7], [8]. These are enabled by the
communication and cooperation between AVs in interactive scenarios including merg-
ing from ramps [9], forming platoons [10], and crossing intersections without the need
for traffic lights. They could also improve society’s well-being and productivity, by letting
those unable to drive a car still enjoy the convenience of moving unburdened and freeing
the hands and eyes of those who used to be at the controls. These attractive advantages
have drawn significant and continuously growing research interests and development
efforts.

However, the benefit of boosting productivity by deploying AVs is not guaranteed. It
faces challenges from a phenomenon called motion sickness. As suggested by its name,
motion sickness is a syndrome that occurs when human bodies are subjected to mo-
tions. It is commonly observed in various modes of transport as well as in amusement
rides. The symptoms of motion sickness can vary from stomach awareness and sweat-
ing to nausea and vomiting, depending on the severity. It is difficult for the occupants
to efficiently conduct other activities under the influence of motion sickness symptoms
[11]. The susceptibility to motion sickness varies between individuals but approximately
% of the population is affected by it. The provision of an external view, especially a front-
facing one, is found to be highly effective in mitigating motion sickness [12]. Hence, the
more susceptible passengers are recommended to take the seats in the front rows. How-
ever, most secondary activities tagged as productive require sustained visual attention.
This is why bus passengers are generally less likely to be constantly engaged in tasks
such as reading or watching videos than those on a train. Meanwhile, drivers are found
to suffer from motion sickness less frequently than passengers [13]. This advantage is
because of the drivers’ active engagement in controlling vehicles and their better ability
to predict vehicle motion as a result. In the case of automated vehicles, the benefit of
boosted productivity comes primarily from the attention previously paid by the drivers
to the driving task. Now that the role has shifted, the used-to-be drivers are no longer
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exempted from motion sickness. Therefore, the potential in boosting society’s produc-
tivity is complicated and constrained by motion sickness. Only the part of the travel time
where the vehicle motion is less aggressive, for example, on a motorway absent of con-
gestion, could be utilized in a more productive way. This certainly seems disappointing
in contrast to the high expectations from AVs. Nevertheless, a high degree of automa-
tion does offer extra opportunities. Researchers have found certain correlations between
the occurrence of motion sickness and specific features of vehicle motion. Multiple ex-
perimental studies revealed that low-frequency acceleration components play the most
important role in causing motion sickness [14]–[16]. Hence a driving style that exhibits
less low-frequency accelerations could possibly help prevent or mitigate motion sick-
ness. While it is unrealistic to teach human drivers to consistently follow such a driving
style, it is feasible to spread certain driving styles widely alongside the deployment of
AVs. The vehicles could behave as programmed by utilizing their advantages in precise
perception and actuation.

Aside from motion sickness, the general motion comfort of future passenger vehicles
should be improved, too. Further possibilities are brought about by advanced chassis
actuation. The suspension system has been widely regarded as responsible for verti-
cal motion comfort. However, recent development has enabled suspension actuators to
generate forces actively and thus add energy to the suspension system for active control
purposes. This is contrary to the conventional ones where energy can only be dissipated
through heat generated by the forced flow of the hydraulic fluid in the shock absorber.
These new actuators are known as active suspensions. They are already highly attractive
from a vehicle dynamics perspective despite the drawbacks of increased power demand,
complexity, and cost. Moreover, the active force generation capability allows manipu-
lating vehicle body attitude to a certain extent. The function of tilting the vehicle body
when cornering, first seen on railroad vehicles in the 1970s, could therefore be applied
to road vehicles thanks to the active suspension actuators. There remain challenges in
coping with the highly dynamic vehicle motion and more importantly, in predicting the
inputs of human drivers. AVs could possibly avoid the latter because of the presence
of the motion planner. Coordinating the vehicle’s tilting motion with the longitudinal,
lateral, and yaw motion would be an investigation of unique potential value and contri-
bution to improving the motion comfort of AV passengers.

The main purpose of this dissertation is to explore the concepts derived from the
discussions above to enhance the motion comfort of AVs and help realize the societal
benefits of boosting productivity. The demonstration of the advantages will be achieved
through comparison with baselines represented by what would otherwise be achievable
with human-driven vehicles. The latter should be determined with extra caution. An un-
derestimated baseline may likely lead to exaggerated benefits of the proposed methods.
The conclusions and recommendations based on these inflated figures are deemed mis-
leading for allocating future efforts and resources. Therefore, the performance baselines
in this dissertation are primarily based on separate research works with the objective of
finding the actual limits. Through this process, the need for new technical solutions is
validated and new insights into human drivers are generated.
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1.2. RELATED WORKS

1.2.1. MOTION SICKNESS
Transportation is not at all enjoyable to a large portion of the population. Regardless
of whether inside a car, a bus, a boat, or an airplane, some passengers would start to
develop motion sickness rapidly. Researchers have been working on understanding the
underlying mechanism of motion sickness in order to mitigate and prevent its occur-
rence. The most popular and convincing theory on the cause of motion sickness is sen-
sory conflict. Human beings can sense their ego-motion from various sources, primarily
using their eyes and the vestibular system. The former relies on the optic flow, i.e., how
the surrounding objects move when imaged in human eyes. It provides a relative sense
of motion with respect to certain reference objects. The latter refers to the sensory sys-
tem existing in vertebrates critical for balancing body movements. It comprises semi-
circular canals and the otolith organ. The semicircular canals are mainly responsible
for sensing spatial orientation, whereas the otolith organ is mainly responsible for sens-
ing translational accelerations. Essentially, the human brain compares these resources
of information in order to balance the body. According to the sensory conflict theory
[17], a consensus may not be reached in certain circumstances when the two primary
sources conflict with each other. This then causes problems for the brain to estimate
ego movement and hence motion sickness occurs. It was argued that a mismatch can
also occur within the vestibular system itself, given the evidence that a similar nauseous
sense could arise when, for example, the head is tilted when subjected to sustained yaw
motion.

Several models for predicting the occurrence and severity of motion sickness have
been developed based on the sensory conflict theory. A neural mismatch model was
proposed in [17], suggesting that motion sickness occurs when the brain is unable to
find a pair of motor commands and sensory inputs in its memory that matches the cur-
rent ones. The mismatch causes motion sickness when its strength exceeds a certain
threshold and an update in the stored information happens in the meantime, which al-
lows gradual adaptation to the current inputs and reduction in the severity of motion
sickness. While the model can very well explain the occurrence of motion sickness in a
variety of situations, it raises the question of whether the symptoms are advantageous
reflexes that, for example, increase the chance of survival. It is also only a rule-based
model that does not quantitatively predict the severity of motion sickness, nor its evo-
lution in time. The temporal dynamics of motion sickness were modeled in [18], [19]
in an attempt to quantify the strength of the sensory conflict, by utilizing an observer
that is typically used in control systems to determine states that are not directly mea-
surable (see Fig. 1.1). Despite the similarity in the general trend of subjective discom-
fort between the actual response of participants and the model output, it was indicated
that there were nonlinear dynamic processes that could not be captured by the observer.
Furthermore, the imaginary conflict signal had not seen support from any physiological
evidence. The observer model was then extended or effectively simplified in [20] where
it was asserted that only the conflict between the sensed vertical and expected vertical is
a provoking factor of motion sickness.

Meanwhile, skepticism on the sensory conflict theory arises from the hypothesized
conflict signal without biological evidence and its shortcomings in distinguishing whether
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Figure 1.1: The observer model of motion sickness according to the sensory conflict theory, adopted from [18].

certain situations would or would not be nauseogenic [21]. This is aligned with the ac-
knowledgment that observer-based models could well mimic the trajectory of motion
sickness in multiple situations but not universally and reliably predict its occurrence. An
alternative theory to motion sickness was proposed in [22], based on the observations of
postural instability as a company to motion sickness symptoms. It is asserted that rather
than failing to estimate the body posture, failing to stabilize it is what causes motion sick-
ness. According to this theory, increasing physical restraint should help reduce motion
sickness. This prediction is dismissed by experiments in [23] that no significant differ-
ence was found. The postural instability theory also cannot explain the occurrence of
visually induced motion sickness, e.g., when using virtual reality equipment. Some be-
lieve that postural instability is still a second-order effect of a centralized control mech-
anism, similar to other motion sickness symptoms albeit preceding them in time [24],
[25]. Therefore, understanding, modeling, and predicting motion sickness remains an
open research area.

There were other attempts aimed at directly linking body motion to the occurrence
and intensity of motion sickness by skipping the discussions over the underlying mecha-
nism. Early studies focused on seasickness, mainly caused by translational motion in the
vertical direction combined with pitch and roll rotations. The concept of motion sick-
ness dose value (MSDV) was proposed for vertical oscillations, indicating that the inci-
dence of vomiting is strongly correlated to a value equivalent to the root-mean-square
acceleration times the square-root of the duration [26]. The knowledge generated from
these studies was partly incorporated into the standards for evaluating human body vi-
brations and comfort [27]. However, the motion regimes in road transportation are fun-
damentally different. Passengers are more often subjected to lateral and longitudinal ac-
celerations combined with yaw rotations. A series of studies were conducted focusing on
the occurrence of motion sickness in public road transport [14]–[16], where a strong cor-
relation between motion sickness and low-frequency lateral accelerations was observed.
Several further experiments were conducted in a more controlled setup to determine the
exact frequency range that is the most influential. The horizontal translational oscilla-
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tions at around 0.2 Hz are reported as the most nauseogenic according to experiments
on human subjects [28]. Further research suggests that between 0.0315 and 0.2 Hz, the
lateral oscillation is comparably provoking [29]. The relative importance between lon-
gitudinal and lateral motion in provoking sickness is not validated but it was recom-
mended that the same weighting could be used [29]. The comfort threshold for fore-
aft, lateral, and vertical vibrations was studied albeit for a higher frequency range than
what is interesting for motion sickness research [30]. Meanwhile, no significant variance
in the subjects’ frequency sensitivity from 0.15 to 0.5 Hz has been observed in terms
of group-average motion sickness index but the individual differences were strong[31].
Nevertheless, the findings in these studies agree that low-frequency acceleration is the
major contributing factor to motion sickness. This might provide an opportunity for AVs
to exploit for better comfort.

1.2.2. MOTION PLANNING

In the context of automated vehicles, motion planning often refers to the intermedi-
ate decision layer between the perception of the environment and motion control [32].
Based on the understanding of the surrounding environment, a motion planner deter-
mines how an automated vehicle should behave on the road and generates the exact
path and velocity for the vehicle, which then serves as the reference for chassis and pow-
ertrain controllers to follow, although the structure could vary as in some approaches
control command comes directly from a motion planner [33]. In a broader scope, the
plan of the route to reach the destination could be considered high-level motion plan-
ning, too [34]. In this dissertation, the primary focus is still on the more commonly
used hierarchy of perception-decision-action while the alternative approaches will be
discussed only briefly. Motion planning algorithms are responsible for multiple aspects
of the performance of an automated vehicle. Safe navigation and interaction with other
road users are evidently the most important next to other aspects including saving en-
ergy and improving traffic capacity, as well as the specific interest of this dissertation,
enhancing motion comfort.

Motion planning for comfort inherited some features from the studies on ensuring
the smooth motion of wheeled or car-like robots [35]–[37]. In these studies, smoothness
is a quality beneficial for minimizing the risk of mechanical damage to the robot itself
or to the payload it carries. Many considered a fixed-speed motion that translates the
requirement into ensuring continuity of curvature in the path or trajectory. A trajectory
with continuous curvature ensures continuous lateral accelerations and bounded jerk in
theory. This can be achieved with the use of Clothoid segments [38], [39], also known as
the Euler spiral. There were complaints about the difficulty of computing the parame-
ters and hence some approximate methods were developed. Nevertheless, its use case
is mostly limited to smoothing the transition between line segments. A higher smooth-
ness level could be achieved by constructing the trajectory with parametric curves such
as Bezier curves [40], [41] or splines [42], [43]. By discretizing the state or action space,
the techniques of lattice planning and motion primitives have been utilized [44]–[46]. In
lattice planning, a grid of nodes is pre-defined in the discrete state space. Possible tra-
jectory segments to transition from one node to another are calculated. When planning
with motion primitives, on the other hand, discrete actions are to be chosen in order to
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find the next node. In either approach, the resulting motion plan is limited to choosing
from precalculated trajectory segments.

Some studies focused on planning vehicle velocity alone. This could be considered
a generalized category of motion planning in 1-dimensional space. Velocity planning
sometimes concerns energy-saving benefits. For example, the powertrain characteristics
could be incorporated when deciding the acceleration magnitude in order to operate in
the most efficient range [47], [48]. Vehicle speed could also be planned such that the ve-
hicle arrives at a signalized intersection at the moment when it has the right to pass [49],
[50]. A less aggressive acceleration could be chosen accordingly and the amount of dissi-
pated kinetic energy is minimized. Similarly, the acceleration process on the motorway
ramps could be planned for a safe and comfortable merging [48], [51]. This already partly
overlaps with the need for improving comfort as less change in speed will be incurred.
Smooth transitions between different target velocities could be achieved by using para-
metric curves [41], [52]. Optimization-based approaches have been explored where the
aim was to minimize maneuver time without violating constraints on jerks [53].

Nevertheless, the aforementioned approaches do not find the ’most comfortable pos-
sible’ motion plan. Reaching this goal depends fundamentally on the interpretation
of comfort. In the Cambridge Academic Content Dictionary, comfort is defined as the
pleasant and satisfying feeling of being physically or mentally free from pain and suf-
fering [54]. In our view, the pain and suffering would most likely originate from motion
sickness in the context of automated vehicles and their users. The mitigation of mo-
tion sickness relies on the quantitative prediction of its occurrence and severity. Such
knowledge is continuously accumulated and discussed in 1.2.1. For motion planning al-
gorithms, it is the most convenient to use planar accelerations to indicate discomfort.
It partly covers the interest in low-frequency accelerations as the high-frequency com-
ponents are less significant due to the filtering effect of vehicle dynamics. It is possible
to optimize comfort by using the total acceleration in the objective function of an opti-
mization problem [55]. Incorporating frequency sensitivity for predicting motion sick-
ness is challenging for a numerical optimization framework [56]. There are mainly two
approaches to performing such computation. One approach is decomposing the sig-
nal with Fast Fourier Transform (FFT) [57]. The components are weighted according to
recommendations and summed to obtain the total power. This approach gives a high
level of freedom in applying arbitrary weights. The computational complexity of this
approach is tremendous, as FFT is performed for each evaluation of the objective func-
tion. This approach also causes problems for gradient-based optimization algorithms
prone to converge to a local minimum. The other approach is to employ a band-pass
filter. The actual acceleration is fed through a band-pass filter and the output of the
filter is effectively the weighted acceleration. This approach is less demanding on com-
putation because the weighting is merely an additional part of the dynamics described
by the prediction model. However, the weighting on different frequency components is
less flexible and with lower accuracy. This is constrained by the order of a band-pass
filter being an integer. The asymptotic slope of the weighting curve has to be a multi-
ple of -20dB/decade and cannot change abruptly at the cut-off frequencies. Besides, the
order of the filter directly impacts the complexity of computation. Meanwhile, this draw-
back may not be as significant because of the uncertainty in the recommended weight-
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ing pattern. A one-to-one matching of the weighting curve might not be necessary as
the recommendations mostly agree on a frequency range of interest but not on the exact
severity of predicted motion sickness.

1.2.3. ACTIVE SUSPENSION AND CONTROL

The suspension system is critical to the comfort and handling quality of a road vehicle.
Its main function is to support the vehicle body while isolating and absorbing the dis-
turbances from the road. Apart from the vertical oscillations, suspensions are further
responsible for minimizing the pitch and roll rotations of the vehicle body when longi-
tudinal or lateral accelerations are present or asymmetric loads are placed on the wheels.
The supportive and stabilizing function of the suspension system is enabled by the rel-
ative motion between the wheel and the vehicle body, and the forces generated in this
process. The primary source of such forces is the elastic component, most commonly in
the form of a spring, and the damping component, i.e., a damper or shock absorber. The
former plays a supportive role by keeping the vehicle body around an equilibrium while
the latter dissipates the energy stored in the former, suppressing the residual oscillations.
In the majority of past and current passenger vehicles, the spring and damper have a
fixed set of characteristics that is designed by the manufacturer. The spring and damper
characteristics are chosen to achieve a finely balanced compromise between comfort
and handling, an indicator of safety characterized by stable road-wheel contact (often
referred to as road holding). As constrained by the dynamics of the wheel-body system,
improving comfort-related performance indicators causes deteriorating handling per-
formance. In other words, more stable body motion is achieved at the cost of less stable
wheel motion.

Active suspensions were developed to push the boundary of this trade-off. Depend-
ing on their actuation capability, active suspensions are typically classified into adap-
tive, semi-active, and fully active suspensions. Adaptive suspensions feature multiple
user-selected damping modes so that the dynamic characteristics of the suspension can
adapt to user preferences. Semi-active suspensions often include electronically con-
trolled dampers that have continuously adjustable damping or achieve a similar effect
with fast switching between a softer and a stiffer mode [58], [59]. The fundamental dif-
ference between the fully active suspension and the rest is its capability to add energy to
the suspension system. This is most commonly enabled by an additional pump in the
hydraulic circuit [60] but could also be achieved with electromagnetic actuation [61]. Ac-
tive force generation in the suspension system promotes simultaneous improvement in
both comfort and handling [62]. More interestingly, the fully active suspension allows
active control of the vehicle body’s attitude. This is beneficial to the comfort in other
motion regimes than what suspensions are primarily designed for. The concept of tilt-
ing the vehicle body during a turn was proposed in the 1960s for railway applications
[63] to accommodate the demand for operating faster trains on the existing routes (see
Fig. 1.3). The banking angle effectively projects gravity in the opposite direction of the
centrifugal force experienced by the passengers. It hence reduces the passengers’ per-
ceived disturbance on their body postures and the incidence of motion sickness (see Fig.
1.2). However, the implementation of this concept was complicated by the coupling ef-
fects discussed in 1.2.1, that a combined rotational motion regime may strongly provoke
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Figure 1.2: Balancing centrifugal force with gravity by leaning the body of a single-track vehicle inwards.

motion sickness. Therefore, extra caution should be taken when implementing the curve
tilting concept where the yaw rotation is coupled with the roll. It has been recommended
that yaw rotation should trail the roll, meaning that the desired roll angle should be ap-
proached prior to the entry of a turn. While this requirement could be met on railroad
vehicles given the fixed track and the long and gentle turns, the transfer to the automo-
tive domain is faced with challenges. Essentially, the control of such functionality of the
active suspensions relies on the prediction of vehicle motion, especially the yaw rota-
tion and lateral acceleration. The desired tilt angle needs time to be reached as the roll
rate should be bounded for rotation-related comfort. The steering input cannot be used
as a predictor with a sufficient leading margin. Existing applications rely on the cam-
era view for such prediction [64]. By previewing road curvature and measuring vehicle
speed, lateral acceleration could be roughly estimated. Nevertheless, the tilting behavior
is conservative to avoid surprising the driver. In automated vehicles, this function could
be facilitated by the additional sensing and processing capability. Vehicle motion be-
comes more predictable thanks to the advances in motion planning and chassis control,
hence the roll motion could be better coordinated and the actuation capability from the
active suspensions could be better utilized.

1.3. OVERVIEW OF CHAPTERS

This dissertation comprises six chapters in total. The following text aims to help the
readers navigate through the contents by explaining the focus of each chapter and the
connections in between. Chapter 1 has explained the motivation leading to the research
works in this dissertation next to the technical background and related works described
above. The four chapters that follow provide detailed explanations of the research work
conducted and discussions about how the results should be interpreted. Essentially, the
dissertation tries to answer how and how much future automated vehicles could im-
prove motion comfort over the existing ones controlled by human drivers. For this pur-
pose, the first step was to quantify the performance of human drivers, which will be the
topic of Chapter 2. Then, the potential improvement over human drivers using motion
planning algorithms is investigated in Chapter 3. The use of active suspensions is intro-
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Figure 1.3: The Advanced Passenger Train prototype vehicle undergoing the test for maximum tilting angle,
from [65]

duced first in Chapter 4, with an attempt to determine the limitations of the preview-
based curve tilting function in a human-driven vehicle. In Chapter 5, the motion plan-
ning framework proposed in Chapter 3 is modified to incorporate the possibility of curve
tilting, demonstrating the extra benefit of equipping automated vehicles with active sus-
pensions. Chapter 6 contains conclusions based on the findings from Chapters 2-5 and
recommendations for future works in a similar direction. A more informative summary
of the contents of Chapters 2-5 can be found below.

1.3.1. CHAPTER 2

Two approaches to evaluating and quantifying the performance of human drivers in
terms of comfort and time efficiency are introduced. The first approach is based on a
naturalistic driving dataset published online. The data was collected for purposes other
than measuring the driving performance of human drivers. Using optimization-based
processing methods, the noise and discontinuity problem in the raw data was resolved.
However, only insights into the peak acceleration level of human drivers were obtained.
This was due to the lack of control over the start and end of the recordings, which lead
to inconsistent distances among the trajectories. Hence, it is not fair to compare the du-
ration of the recorded runs. In order to overcome these drawbacks, a dedicated experi-
ment was designed and conducted in the Netherlands. The accelerations were measured
with an onboard inertial measurement unit (IMU) and the test runs were timed accord-
ing to GPS positions. The size of the participant group, namely 16, was limited by time
and budget. Nevertheless, valuable knowledge has been obtained from the driving data
recorded from their driving. The data is highly useful in understanding the limitations of
human driving capability and in demonstrating the potential improvement achievable
with automated vehicles.
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1.3.2. CHAPTER 3
An optimization-based motion planning framework is proposed and evaluated. The
fundamental goal is to calculate a trajectory for the vehicle to follow that provides op-
timal motion comfort by fully utilizing the permissible driving space. Two measures of
comfort are explored here: one is the general acceleration comfort and the other is the
frequency-weighted acceleration comfort closely related to motion sickness. Time effi-
ciency is another component of the objectives. Including this factor prevents the choice
of unnecessarily low speeds that are undesirable by both the passengers onboard and
other road users. The weight placed on time efficiency effectively regulates the aggres-
siveness of the planned motion. The performance of the motion planners is compared to
the human driving data obtained and analyzed in Chapter 2. It is evident that automated
vehicles could improve motion comfort over human drivers by an attractive margin. The
potential is greater in mitigating motion sickness than in minimizing accelerations in
general.

1.3.3. CHAPTER 4
The use of nonlinear model predictive control (NMPC) techniques is explored in order
to improve the control quality of the curve tilting functionality in a human-driven vehi-
cle. Similar to previous studies, the function relies on the preview of road curvature to
ensure that the roll motion has a phase lead over the yaw motion. While NMPC is a pow-
erful tool to improve control performance, it suffers from a significant computational
burden when deployed as a real-time control system. Therefore, a warm-start strategy is
developed in order to facilitate online optimization. This is achieved by pre-computing
an explicit sub-optimal control law that serves as an informed initial guess of the so-
lution to the optimal control problem. The control quality and real-time capability of
the proposed method were verified in a hardware-in-the-loop simulation setup using
different driving scenarios. The proposed method could return a control input before
the next sampling step by performing a limited number of iterations in online optimiza-
tion. The control quality is better than the state-of-the-art industrial solution of propor-
tional–integral–derivative (PID) control with feedforward and scenario-specific tuning.
Nevertheless, the application is still hampered by the difficulty in predicting vehicle mo-
tion. More potential is expected from the combination of automated driving and active
suspensions.

1.3.4. CHAPTER 5
The recommended direction of incorporating curve tilting into the motion planning
problem is investigated. The possibility of reducing lateral acceleration with active at-
titude control is explored using the motion planning framework proposed in Chapter 3.
In this study, the roll angle of the vehicle body is further included as a part of the decision
variables. Hence the planar motion and the roll rotation are coordinated, which prompts
better utilization of the active suspensions’ capability. Further reduction of overall accel-
eration discomfort was achieved over the case without active suspensions. Furthermore,
the accurate execution of the planned planar motion was found to simplify the control of
active suspensions. The disturbances in terms of centrifugal accelerations can be com-
pensated for thanks to the knowledge of future vehicle motion. This partly offsets the
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need for a complex control algorithm such as what was described in Chapter 4.

1.4. CONTRIBUTIONS
The research works described in this dissertation have contributed to several steps for-
ward in various directions in the field of motion comfort in automated vehicles. These
include:

• Analysis of a naturalistic driving dataset that reveals the preferences of human
drivers in maximum longitudinal and lateral accelerations. The distribution of
peak magnitudes helps determine a generally acceptable level of aggressiveness
of automated vehicles.

• Experimental collection of human driving data on public roads that quantifies the
performance of human drivers in motion comfort and time efficiency. The data,
published in an open-access dataset, provide especially valuable insights into the
distribution of acceleration power in the frequency domain that is interesting for
motion sickness-related studies. It also reveals additional considerations from hu-
man drivers that lead to the different features in the motion profiles.

• Formulation of a frequency-weighting approach in a spatiotemporal motion plan-
ning framework that enables a targeted minimization of accelerations in the most
sickness-inducing frequency range. The effectiveness of the formulation is demon-
strated by comparison with a non-weighted variant. A receding-horizon variant
further revealed the additional computational complexity involved, showing that
a lower update frequency is feasible for real-time implementation.

• Design of an NMPC controller that realizes the curve tilting concept with active
suspensions. The method outperforms the state-of-the-art approach in terms of
tracking quality. The dedicated warm-start strategy reduces online computational
demand and enables real-time implementation on prototype hardware with scarce
computational resources.

• Formulation of a novel 3-dimensional motion planning algorithm that computes a
coordinated plan of planar and roll motion of automated vehicles. The algorithm
suggests a considerable advantage over only optimizing the planar motion.



BIBLIOGRAPHY

[1] N. C. for Statistics and Analysis, “Traffic safety facts 2020: A compilation of motor
vehicle crash data”, National Highway Traffic Safety Administration, Washington,
DC, Tech. Rep. DOT HS 813 375, Oct. 2022.

[2] L. Evans and P. H. Gerrish, “Antilock brakes and risk of front and rear impact in
two-vehicle crashes”, Accident Analysis & Prevention, vol. 28, no. 3, pp. 315–323,
1996.

[3] A. Lie, C. Tingvall, M. Krafft, and A. Kullgren, “The effectiveness of esp (electronic
stability program) in reducing real life accidents”, Traffic Injury Prevention, vol. 5,
no. 1, pp. 37–41, 2004.

[4] C. J. Kahane and J. N. Dang, “The long-term effect of abs in passenger cars and
ltvs”, National Highway Traffic Safety Administration, Washington, DC, Tech. Rep.
DOT HS 811 182, Aug. 2009.

[5] A. Lyckegaard, T. Hels, and I. M. Bernhoft, “Effectiveness of electronic stability con-
trol on single-vehicle accidents”, Traffic Injury Prevention, vol. 16, no. 4, pp. 380–
386, 2015.

[6] M. Taiebat, A. L. Brown, H. R. Safford, S. Qu, and M. Xu, “A review on energy, envi-
ronmental, and sustainability implications of connected and automated vehicles”,
Environmental science & technology, vol. 52, no. 20, pp. 11 449–11 465, 2018.

[7] A. Talebpour and H. S. Mahmassani, “Influence of connected and autonomous
vehicles on traffic flow stability and throughput”, Transportation research part C:
emerging technologies, vol. 71, pp. 143–163, 2016.

[8] D. Milakis, M. Snelder, B. Van Arem, B. Van Wee, and G. H. de Almeida Correia, “De-
velopment and transport implications of automated vehicles in the netherlands:
Scenarios for 2030 and 2050”, European Journal of Transport and Infrastructure
Research, vol. 17, no. 1, 2017.

[9] Z. Gao, Z. Wu, W. Hao, K. Long, Y.-J. Byon, and K. Long, “Optimal trajectory plan-
ning of connected and automated vehicles at on-ramp merging area”, IEEE Trans.
Intell. Transp. Syst., vol. 23, no. 8, pp. 12 675–12 687, 2022.

[10] M. Wang, S. van Maarseveen, R. Happee, O. Tool, and B. van Arem, “Benefits and
risks of truck platooning on freeway operations near entrance ramp”, Transp. Re-
search Record, vol. 2673, no. 8, pp. 588–602, 2019.

[11] J. Smyth, S. Birrell, A. Mouzakitis, and P. Jennings, “Motion sickness and human
performance–exploring the impact of driving simulator user trials”, in Int. Conf.
Applied Human Factors and Ergonomics, Springer, 2018, pp. 445–457.

13



1

14 BIBLIOGRAPHY

[12] T. Irmak, D. M. Pool, and R. Happee, “Objective and subjective responses to mo-
tion sickness: The group and the individual”, Experimental Brain Research, vol. 239,
no. 2, pp. 515–531, 2021.

[13] T. Wada, “Motion sickness in automated vehicles”, in Advanced Vehicle Control
AVEC’16, Crc Press, 2016, pp. 169–174.

[14] M. Turner and M. J. Griffin, “Motion sickness in public road transport: The rela-
tive importance of motion, vision and individual differences”, British J. Psychol-
ogy, vol. 90, no. 4, pp. 519–530, 1999.

[15] M. Turner, “Motion sickness in public road transport: Passenger behaviour and
susceptibility”, Ergonomics, vol. 42, no. 3, pp. 444–461, 1999.

[16] M. Turner and M. J. Griffin, “Motion sickness in public road transport: The effect
of driver, route and vehicle”, Ergonomics, vol. 42, no. 12, pp. 1646–1664, 1999.

[17] J. T. Reason, “Motion sickness adaptation: A neural mismatch model”, J. Royal So-
ciety of Medicine, vol. 71, no. 11, pp. 819–829, 1978.

[18] C. M. Oman, “Sensory conflict in motion sickness: An observer theory approach”,
1989.

[19] C. M. Oman, “Motion sickness: A synthesis and evaluation of the sensory con-
flict theory”, Canadian J. Physiology and Pharmacology, vol. 68, no. 2, pp. 294–
303, 1990.

[20] J. Bos and W. Bles, “Modelling motion sickness and subjective vertical mismatch
detailed for vertical motions”, Brain Res. Bulletin, vol. 47, no. 5, pp. 537–542, 1998.

[21] T. A. Stoffregen and G. E. Riccio, “An ecological critique of the sensory conflict
theory of motion sickness”, Ecological Psychology, vol. 3, no. 3, pp. 159–194, 1991.

[22] G. E. Riccio and T. A. Stoffregen, “An ecological theory of motion sickness and pos-
tural instability”, Ecological Psychology, vol. 3, no. 3, pp. 195–240, 1991.

[23] L. Warwick-Evans, N. Symons, T. Fitch, and L. Burrows, “Evaluating sensory con-
flict and postural instability. theories of motion sickness”, Brain research bulletin,
vol. 47, no. 5, pp. 465–469, 1998.

[24] R. S. Kennedy and K. M. Stanney, “Postural instability induced by virtual reality ex-
posure: Development of a certification protocol”, International Journal of Human-
Computer Interaction, vol. 8, no. 1, pp. 25–47, 1996.

[25] J. E. Bos, “Nuancing the relationship between motion sickness and postural sta-
bility”, Displays, vol. 32, no. 4, pp. 189–193, 2011.

[26] A. Lawther and M. J. Griffin, “Prediction of the incidence of motion sickness from
the magnitude, frequency, and duration of vertical oscillation”, J. Acoustical Soci-
ety of America, vol. 82, no. 3, pp. 957–966, 1987.

[27] “Mechanical vibration and shock — evaluation of human exposure to whole-body
vibration — part 1: General requirements”, International Organization for Stan-
dardization, Geneva, CH, Standard, May 1997.



BIBLIOGRAPHY

1

15

[28] J. F. Golding, A. Mueller, and M. A. Gresty, “A motion sickness maximum around
the 0.2 hz frequency range of horizontal translational oscillation”, Aviation, Space,
and Environ. Medicine, vol. 72, no. 3, pp. 188–192, 2001.

[29] B. E. Donohew and M. J. Griffin, “Motion sickness: Effect of the frequency of lateral
oscillation”, Aviation, Space, and Environ. Medicine, vol. 75, no. 8, pp. 649–656,
2004.

[30] M. Morioka and M. J. Griffin, “Magnitude-dependence of equivalent comfort con-
tours for fore-and-aft, lateral and vertical whole-body vibration”, J. Sound and Vi-
bration, vol. 298, no. 3, pp. 755–772, 2006.

[31] T. Irmak, K. N. de Winkel, D. M. Pool, H. H. Bülthoff, and R. Happee, “Individual
motion perception parameters and motion sickness frequency sensitivity in fore-
aft motion”, Experimental Brain Res., vol. 239, no. 6, pp. 1727–1745, 2021.

[32] L. Claussmann, M. Revilloud, D. Gruyer, and S. Glaser, “A review of motion plan-
ning for highway autonomous driving”, IEEE Transactions on Intelligent Trans-
portation Systems, vol. 21, no. 5, pp. 1826–1848, 2019.

[33] L. Ferranti, B. Brito, E. Pool, et al., “Safevru: A research platform for the interac-
tion of self-driving vehicles with vulnerable road users”, in 2019 IEEE Intelligent
Vehicles Symposium (IV), IEEE, 2019, pp. 1660–1666.

[34] Z. Li, I. V. Kolmanovsky, E. M. Atkins, J. Lu, D. P. Filev, and Y. Bai, “Road disturbance
estimation and cloud-aided comfort-based route planning”, IEEE transactions on
cybernetics, vol. 47, no. 11, pp. 3879–3891, 2016.

[35] J.-P. Laumond et al., Robot motion planning and control. Springer, 1998, vol. 229.

[36] X.-N. Bui, J.-D. Boissonnat, P. Soueres, and J.-P. Laumond, “Shortest path synthesis
for dubins non-holonomic robot”, in Proceedings of the 1994 IEEE International
Conference on Robotics and Automation, IEEE, 1994, pp. 2–7.

[37] A. Scheuer and T. Fraichard, “Continuous-curvature path planning for car-like ve-
hicles”, in Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent
Robot and Systems. Innovative Robotics for Real-World Applications. IROS’97, IEEE,
vol. 2, 1997, pp. 997–1003.

[38] J. A. Silva and V. Grassi, “Clothoid-based global path planning for autonomous
vehicles in urban scenarios”, in Proc. IEEE Int. Conf. Robot. and Automat. (ICRA),
IEEE, 2018, pp. 4312–4318.

[39] S. Zhang, Y. Chen, S. Chen, and N. Zheng, “Hybrid A*-based curvature continuous
path planning in complex dynamic environments”, in Proc. IEEE Intell. Transp.
Syst. Conf. (ITSC), IEEE, 2019, pp. 1468–1474.

[40] X. Qian, I. Navarro, A. de La Fortelle, and F. Moutarde, “Motion planning for urban
autonomous driving using bézier curves and mpc”, in Proc. IEEE 19th Int. Conf.
Intell. Transp. Syst. (ITSC), Ieee, 2016, pp. 826–833.

[41] R. Lattarulo, L. González, and J. Perez, “Real-time trajectory planning method based
on n-order curve optimization”, in Proc. 24th Int. Conf. Syst. Theory, Control and
Computing (ICSTCC), IEEE, 2020, pp. 751–756.



1

16 BIBLIOGRAPHY

[42] F. Hegedüs, T. Bécsi, S. Aradi, Z. Szalay, and P. Gáspár, “Real-time optimal mo-
tion planning for automated road vehicles”, IFAC-PapersOnLine, vol. 53, no. 2,
pp. 15 647–15 652, 2020.

[43] H. Cao and M. Zoldy, “Implementing B-spline path planning method based on
roundabout geometry elements”, IEEE Access, vol. 10, pp. 81 434–81 446, 2022.

[44] C. L. Bottasso, D. Leonello, and B. Savini, “Path planning for autonomous vehicles
by trajectory smoothing using motion primitives”, IEEE Trans. Control Syst. Tech-
nol., vol. 16, no. 6, pp. 1152–1168, 2008.

[45] M. McNaughton, C. Urmson, J. M. Dolan, and J.-W. Lee, “Motion planning for au-
tonomous driving with a conformal spatiotemporal lattice”, in Proc. IEEE Int. Conf.
Robot. and Automat. (ICRA), IEEE, 2011, pp. 4889–4895.

[46] M. Mischinger, M. Rudigier, P. Wimmer, and A. Kerschbaumer, “Towards comfort-
optimal trajectory planning and control”, Veh. Syst. Dynamics, vol. 57, no. 8, pp. 1108–
1125, 2019.

[47] B. Zhang, W. Cao, and T. Shen, “Two-stage on-board optimization of merging ve-
locity planning with energy management for hevs”, Control Theory and Technol-
ogy, vol. 17, no. 4, pp. 335–345, 2019.

[48] S. Xu and H. Peng, “Design and comparison of fuel-saving speed planning algo-
rithms for automated vehicles”, IEEE Access, vol. 6, pp. 9070–9080, 2018.

[49] G. Mahler and A. Vahidi, “An optimal velocity-planning scheme for vehicle energy
efficiency through probabilistic prediction of traffic-signal timing”, IEEE Transac-
tions on Intelligent Transportation Systems, vol. 15, no. 6, pp. 2516–2523, 2014.

[50] E. R. Müller, B. Wahlberg, and R. C. Carlson, “Optimal motion planning for auto-
mated vehicles with scheduled arrivals at intersections”, in 2018 European Control
Conference (ECC), IEEE, 2018, pp. 1672–1678.

[51] I. A. Ntousakis, I. K. Nikolos, and M. Papageorgiou, “Optimal vehicle trajectory
planning in the context of cooperative merging on highways”, Transportation re-
search part C: emerging technologies, vol. 71, pp. 464–488, 2016.

[52] D. González, V. Milanés, J. Pérez, and F. Nashashibi, “Speed profile generation based
on quintic bézier curves for enhanced passenger comfort”, in Proc. IEEE 19th Int.
Conf. Intell. Transp. Syst. (ITSC), IEEE, 2016, pp. 814–819.

[53] A. Artuñedo, J. Villagra, and J. Godoy, “Jerk-limited time-optimal speed planning
for arbitrary paths”, IEEE Transactions on Intelligent Transportation Systems, vol. 23,
no. 7, pp. 8194–8208, 2021.

[54] C. U. Press, Cambridge Academic Content Dictionary (Cambridge Academic Con-
tent Dictionary). Cambridge University Press, 2008, ISBN: 9780521871433. [On-
line]. Available: https://books.google.nl/books?id=gaYUAAAACAAJ.

[55] H. Shin, D. Kim, and S.-E. Yoon, “Kinodynamic comfort trajectory planning for
car-like robots”, in Proc. IEEE/RSJ Int. Conf. Intell. Robots and Syst. (IROS), IEEE,
2018, pp. 6532–6539.

https://books.google.nl/books?id=gaYUAAAACAAJ


BIBLIOGRAPHY

1

17

[56] Z. Htike, G. Papaioannou, E. Siampis, E. Velenis, and S. Longo, “Fundamentals
of motion planning for mitigating motion sickness in automated vehicles”, IEEE
Trans. Veh. Technol., vol. 71, no. 3, pp. 2375–2384, 2021.

[57] D. Li and J. Hu, “Mitigating motion sickness in automated vehicles with frequency-
shaping approach to motion planning”, IEEE Robot. and Automat. Lett., vol. 6,
no. 4, pp. 7714–7720, 2021.

[58] Y. Liu, T. Waters, and M. Brennan, “A comparison of semi-active damping control
strategies for vibration isolation of harmonic disturbances”, Journal of sound and
vibration, vol. 280, no. 1-2, pp. 21–39, 2005.

[59] C. Poussot-Vassal, C. Spelta, O. Sename, S. M. Savaresi, and L. Dugard, “Survey
and performance evaluation on some automotive semi-active suspension control
methods: A comparative study on a single-corner model”, Annual Reviews in Con-
trol, vol. 36, no. 1, pp. 148–160, 2012.

[60] S. Cytrynski, U. Neerpasch, R. Bellmann, and B. Danner, “The active suspension
of the new mercedes-benz gle”, ATZ worldwide, vol. 120, no. 12, pp. 42–45, 2018.

[61] B. L. Gysen, J. J. Paulides, J. L. Janssen, and E. A. Lomonova, “Active electromag-
netic suspension system for improved vehicle dynamics”, IEEE transactions on ve-
hicular technology, vol. 59, no. 3, pp. 1156–1163, 2009.

[62] H. E. Tseng and D. Hrovat, “State of the art survey: Active and semi-active suspen-
sion control”, Vehicle system dynamics, vol. 53, no. 7, pp. 1034–1062, 2015.

[63] H. Harris, E. Schmid, and R. Smith, “Introduction: Theory of tilting train behaviour”,
Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and
Rapid Transit, vol. 212, no. 1, pp. 1–5, 1998.

[64] M. Bär, Vorausschauende Fahrwerkregelung zur Reduktion der auf die Insassen
wirkenden Querbeschleunigung. Forschungsges. Kraftfahrwesen (fka), 2014.

[65] D. Boocock and B. King, “The development of the prototype advanced passen-
ger train”, Proceedings of the Institution of Mechanical Engineers, vol. 196, no. 1,
pp. 35–46, 1982.





2
COMFORT PERFORMANCE OF

HUMAN DRIVERS

Great minds discuss ideas;
average minds discuss events;

small minds discuss people.

Eleanor Roosevelt

Parts of this chapter have been published in IEEE International Conference on Intelligent Transportation Sys-
tems [1] and in review at IEEE Transactions on Intelligent Transportation Systems.

19



2

20 2. COMFORT PERFORMANCE OF HUMAN DRIVERS

2.1. INTRODUCTION
Automated driving must demonstrate its superiority over human drivers in order to be
accepted by, and ultimately attractive for the general public. Meanwhile, explainable
behaviors similar to human drivers are helpful in this process, too. For either purpose,
an in-depth understanding of human drivers is a necessary first step. Multiple studies
explored promoting human-like driving by training a motion planner with trajectories
recorded from human drivers [2]–[4]. They mainly emphasize resemblance to human
actions but lack an in-depth understanding of the reasoning behind such actions. More-
over, the comfort aspects of human drivers are not extensively covered by existing litera-
ture. Specifically, there is no consensus on the choices of comfort indicator and scenario
despite several valuable attempts [5], [6].

Comfort is an abstract and subjective concept that is difficult to quantify. Here, it
is interpreted as a state with minimal discomfort caused by vehicle motion. It was rec-
ommended in standards to use the root-mean-square (RMS) value of the accelerations
as a measure of vibrational discomfort. While it can be useful for sustained exposure
of human bodies to mechanical vibrations, the focus does not match the motion com-
fort discussed in this dissertation. In most use cases of passenger vehicles, mechanical
vibrations mainly arise from the powertrain and the road. The electrified powertrain
has made substantial improvement over that relying on combustion engines in this re-
gard. The road excitations are primarily filtered out by the suspension design and con-
trol, while the pavement quality of roads is usually high in the areas where the deploy-
ment of automated vehicles is deemed suitable. These aspects of motion comfort are
not what human drivers or automated driving are primarily responsible for. Instead, the
planar motions are more relevant as the most significant disturbance comes from the
inertial accelerations. The planar accelerations are the results of driving inputs to the
vehicle including steering wheel angle, pedal positions, and possibly the gear shifts. The
RMS value may still be used on longitudinal and lateral accelerations as a measure of
average comfort level for long journeys. However, averaging over time is affected by the
diluting effect that driving slowly may appear to be more comfortable according to the
RMS accelerations. Hence, the RMS could be misleading when used as the sole indica-
tor of motion comfort, especially when evaluating transitional vehicle motions. In such
situations, the duration is more sensitive to the choice of speed, contrary to longer trips
where fixed-speed driving could be the majority.

The discussion above indicates the necessity of including time as a factor when eval-
uating motion comfort. Improving comfort can come at the cost of extending travel time.
While turning, a gentle motion is reflected by a smaller lateral acceleration achieved by
adopting a lower speed. Less aggressive acceleration and braking mean the vehicle takes
a longer period of time to reach the goal speed, traveling a longer distance at a lower
speed in between. These additions to the total trip time would cause frustration to the
passengers. It is possible to factor in and eventually minimize such frustration by eval-
uating motion comfort with a two-fold indicator, with time being the additional dimen-
sion. It reflects the goal of improving motion comfort without consuming extra time, or
from another perspective, saving time without sacrificing comfort. It further describes a
choice of balance between comfort and time, which can be influenced by the urgency of
the trip or individual preferences.
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This chapter introduces two separate approaches to establishing a quantitative un-
derstanding of the comfort-related driving performance of human drivers. In the first
approach, the ACFR naturalistic driving dataset [7] was analyzed. The dataset was col-
lected at 5 public roundabouts with a total of over 23,000 recorded trajectories of pass-
ing vehicles. The traffic vehicles were tracked primarily using LiDAR, which is installed
on top of the data collection vehicle parked close to the intersection. The position of
recorded vehicles was estimated using the center of its bounding box. There were mul-
tiple naturalistic driving datasets available when this study was conducted with various
scopes. The ACFR dataset focuses on the scenario of roundabouts, which is especially
relevant and interesting for comfort-related research. On one hand, a roundabout usu-
ally involves quick consecutive changes in vehicle orientation combined with significant
changes in speed. These features make it a preferable scenario that is sufficiently chal-
lenging to expose the differences among human drivers themselves as well as between
human drivers and motion planners of automated vehicles. On the other hand, the sce-
nario is compact in both space and time. This is beneficial for the purpose of comparison
as the impact of uncontrolled factors is limited.

In the second approach, an experiment was designed and conducted in order to col-
lect the driving data that better suited the research goal. The experiment was motivated
by the certain limitations of analyzing existing naturalistic driving datasets. Despite be-
ing in a smaller quantity, the data collected through a dedicated experiment allows more
control over the conditions. Typically, two types of experiment setups are available for
this purpose. The first option is to use a driving simulator. Moving-base driving simula-
tors can be highly beneficial, especially when investigating safety-critical scenarios [8],
[9] because it minimizes the risk of causing physical harm to the participants and test
equipment. In a virtual environment, it is possible to fully control factors such as traffic,
weather, and lighting that are otherwise uncontrollable in the real world. This improves
the consistency of recording between repetitions. A positive correlation has been found
between better performance on a driving simulator and a higher pass rate on the driv-
ing test [10]. However, this does not imply a matching between the magnitudes of the
vehicle motion in the virtual and real world. Motion cueing is the main limiting factor
causing the mismatch. The perceived vehicle motion is downscaled significantly despite
the efforts in improving the motion cueing algorithms [11]. In addition, the visualization
of the virtual world could be of insufficient fidelity. Even with realistic graphics, the loss
of depth perception could still cause the driver to perceive the surroundings differently
and hence behave differently. Nevertheless, it is not guaranteed that a higher-fidelity
simulator leads to more valid experiment results reflective of real-world driving perfor-
mance. There are further issues with learning and adapting to a driving simulator before
the participants could feel comfortable and confident in driving in the virtual world. The
importance of adaptation has been shown with experimental studies [12], [13]. The ma-
jority of participants recruited from the general public would have little to no experi-
ence with a driving simulator. There is a risk that the results are not representative of the
drivers’ actual performance due to a lack of adaptation and influences from the simula-
tor setup being used. Therefore, an on-road experiment using an instrumented vehicle
was proposed. It is easier for any participant with basic driving experience to adapt to
and perform properly. The measurement quality of accelerations can be improved sig-
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nificantly over data collected in a remote fashion. These advantages outweigh the con-
cern of an uncontrolled environment, especially in terms of traffic interaction, as well as
the significantly higher demand on time and effort arising from sensor installation and
testing, data processing, and vehicle maintenance.

2.2. PROCESSING OF NATURALISTIC DRIVING DATASET

2.2.1. OPTIMIZATION-BASED TRAJECTORY RECONSTRUCTION
The volume of data contained in the ACFR dataset is highly beneficial from a statistics
viewpoint. However, the data is provided in a raw condition that requires further pro-
cessing. As mentioned before, the position of passing vehicles was measured with the
LiDAR sensor mounted on the roof of a parked vehicle, calculated as the center of the
bounding box generated from the point cloud. This method is highly dependent on the
robustness of the algorithm responsible for generating bounding boxes, hence the posi-
tion data is sensitive to factors such as the orientation of the measured vehicle. This be-
comes an evident problem when the position data is differentiated in time in order to ob-
tain velocity and acceleration that are of major interest when analyzing motion comfort.
An optimization-based trajectory reconstruction method was proposed for handling the
noise and error in the raw measurement data. The motion profiles are reconstructed
based on the point-mass kinematics (2.1) to ensure feasibility and continuity. The mo-
tion of the vehicle is described by x, y , velocity v , and heading angle ψ. The motion is
controlled by the longitudinal acceleration v̇ and angular acceleration ψ̈i . The equations
of motion are integrated with an Euler step of ts , the sampling time of the original data.
The motion profile obtained from an input sequence is evaluated with a cost function in
the form of (2.2) that penalizes the spatial deviation from the measured positions added
to the input effort involved.

xi+1 = xi + vi cosψi · ts

yi+1 = yi + vi sinψi · ts

vi+1 = vi + v̇i · ts

ψ̇i+1 = ψ̇i + ψ̈i · ts

ψi+1 =ψi + ψ̇i · ts

(2.1)

J1 =
N∑

i=1

(
εi

T Qεi +ui
T Rui

)
εi =

[
xi

yi

]
rec

−
[

xi

yi

]
est

,ui =
[

v̇i

ψ̈i

] (2.2)

By minimizing this cost function, an optimal reconstruction of the recorded trajec-
tory could be achieved. The total processing time of the entire dataset is approximately
3 days on a desktop PC (Intel Xeon W-2145 CPU). A 7th-order polynomial fitting method
was implemented as an alternative approach, in order to demonstrate the benefits of
incorporating basic kinematics and penalizing the input effort. Each trajectory is de-
scribed with the x- and y-coordinates versus time and the two sequences are fitted into
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Figure 2.1: An example of the reconstructed trajectory by the optimization-based method in comparison to
polynomial fitting.

two corresponding polynomials. The comparison between the two methods is given in
Fig. 2.1, performed on a random recording in the dataset. It is evident that the original
data is of poor quality. A strong discontinuity can be found on the left-hand side of the
recorded trajectory. Both methods are able to reconstruct a smooth spatial path. How-
ever, the velocity and acceleration profiles from the polynomial method are less feasible
because it solely minimizes the fitting error. The optimization-based method reflects a
more reasonable driving behavior in contrast.

2.2.2. ERROR DETECTION AND REMOVAL
The ACFR dataset contains an unknown amount of erroneous recordings that are not
representative of driving a passenger vehicle, for example, those of a bicycle, motorcycle,
bus, or truck. To exclude these samples, the DBSCAN (density-based spatial clustering
of applications with noise) algorithm is adopted. Essentially, the algorithm clusters the
samples according to a distance metric (e.g., the Euclidean distance). In each iteration, a
new cluster starts with a random sample that does not yet belong to any existing cluster.
The cluster grows by repetitively including the nearby samples whose distance to exist-
ing samples in the cluster is below a certain threshold. The reconstructed trajectories
are first interpolated into an equal number of steps so that the dimensions match. The
trajectories recorded at the same location and having identical entry-exit combinations
are grouped together and DBSCAN is performed separately on each group. The sam-
ples belonging to the largest cluster are considered the most representative and the rest
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Figure 2.2: Comparison between an acceptable sample and a sample deemed invalid by DBSCAN.

are discarded. The standard implementation of DBSCAN in MATLAB is used, where the
critical parameter is the distance metric. Ideally, the parameter is tuned to distinguish
between erroneous samples and the samples that are only different so that the diver-
sity in the accepted samples is still preserved. This parameter is adapted to different
types of maneuvers, considering that a longer maneuver would naturally have a larger
variance between drivers. Although it is infeasible to manually check all the samples,
a random example of rejected recording is present in Fig. 2.2 in comparison to an ac-
cepted one. The rejected recording indeed exhibits a different behavior as the object
had a significantly lower speed towards the end and departed from the drive lane after
the roundabout. This could be, e.g., a cyclist mistakenly classified as a motor vehicle,
diverting to the sidewalk. Fig. 2.3 shows the variance of the data before and after remov-
ing the outliers. The points on the 2-D plane represent the coefficient of the first and
second principal components (PC1 and PC2, respectively) determined by the principal
component analysis (PCA). The high-ranking principal components are the projected
directions in which the samples have a larger variance. Thus PCA highlights the data
variation in a compact manner and also simplifies the visualization. The results sug-
gest a better concentration of data after the outliers are removed. The processed and
validated recordings are collected in a dataset that is open-access via IEEE DataPort1.

2.3. DESIGN OF DRIVING EXPERIMENT
As to be presented later in this Chapter (See Section 2.5), several shortcomings have
been identified from the approach of relying on existing naturalistic driving datasets,
especially one for a different purpose and with remote measurement methods. They
hence motivated the conduction of a dedicated experimental study intended for gath-
ering driving data specifically relevant to the evaluation of driving comfort and motion
sickness. This Section explains the experimental design in detail.

2.3.1. PROCEDURES

Volunteers were recruited publicly to participate in the experiment. The participants
were required to drive an instrumented vehicle through a part of the public road as the
test route. They were specifically asked to drive smoothly and fast while staying within

1https://ieee-dataport.org/open-access/reconstructed-roundabout-driving-dataset

https://ieee-dataport.org/open-access/reconstructed-roundabout-driving-dataset


2.3. DESIGN OF DRIVING EXPERIMENT

2

25

Figure 2.3: A compact visualization of data variance with PCA before (upper row) and after (lower row) remov-
ing the outliers.

the range of aggressiveness they are confident with. They were briefed about the exper-
iment and non-sensitive personal data including gender, age range, driving frequency
and experience, and familiarity with the route were collected. This is to verify if there
is a statistical bias in the group. After getting seated in the vehicle, the participants
were given sufficient time to familiarize themselves with the driver interface before they
started driving. While driving to the starting point of the test route, they were given the
opportunity to get accustomed to the vehicle’s handling, e.g. the steering and pedal
feel and the vehicle’s response. During the actual test, the participants drove the ve-
hicle through a pre-defined route while the position and acceleration data were being
recorded. It is obvious that interacting with other road users has a negative impact on
the measured driving performance characterized by the duration of the drive and the
total accelerations. Therefore, the experiment was only conducted outside rush hours.
All tests were in one of the following time slots: 9:45-12:00, 13:15-15:30, or 18:15-20:30.
Furthermore, each participant needed to drive the route twice in order to increase the
chance of capturing a run without being influenced by other vehicles in the traffic.

2.3.2. TEST ROUTE

A challenging scenario is needed to sufficiently expose the variance in driving perfor-
mance. Ideally, the test route requires the vehicle to change its speed across a wide range
and negotiate a fair amount of turns. In addition, the distance and duration should be
reasonably short and with a minimal trivial portion where most drivers would behave
very similarly by driving almost straight and sticking to the speed limit. For these rea-
sons, a test route located to the west of Woerden, the Netherlands has been chosen. As
depicted in Fig. 2.4, the start of the route is on the exit ramp of Motorway A12 on the
side of eastbound traffic. At the end of the ramp is a double-lane roundabout (further
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Figure 2.4: Illustration of the test route on the satellite image.

referred to as RB1) where the vehicle needs to turn to the left by taking the 3rd exit. Fol-
lowing up is an intermediate sector where the vehicle follows the road and passes 3 turns
in a right-left-right order (further referred to as RLR). The vehicle then enters the second
roundabout (further referred to as RB2) where it takes the exit towards distributor road
N420 further to the east. After departing the roundabout, the vehicle is allowed to ac-
celerate until the speed limit is reached. Through the test route, there are two occasions
where the test vehicle may need to yield to other road users, namely when the vehicle
enters RB1 and RB2. For the rest of the route, the test vehicle travels on a priority lane
where it would not be impeded by other road users according to traffic rules.

2.3.3. PARTICIPANTS

The majority of participants were recruited from the neighboring area using flyers dis-
tributed to residential addresses and companies. This potentially promotes a more in-
clusive group than recruiting only on campus. Besides, the test route is an important
part of the daily commute of the local population. Most participants were familiar with
the route prior to the experiment and therefore did not require much learning and prac-
tice in order to perform to the best of their capability. A total of 16 participants registered
for the experiment. According to the collected non-sensitive personal data, only 2 par-
ticipants reported that they were not familiar with the test route and 3 reported that they
drive a car less frequently than once a week. Meanwhile, 12 participants have been in
possession of a driving license for over 10 years and three reported over 4 years. In terms
of age, 5 participants were under 30 at the time of the experiment, 2 were above 60, and
the rest were between 31 and 59. The largest bias was present in terms of gender with
only 4 female participants in the group. Given these figures, the group can be considered
representative of an averagely skillful and experienced human driver.
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Figure 2.5: Instrumented vehicle used in the experiment

2.3.4. VEHICLE AND DATA ACQUISITION

The experiments were conducted on a Hyundai Kona (Fig. 2.5) that features an auto-
matic transmission (AT) and a hybrid powertrain. The AT was chosen on purpose in
order to reduce the participants’ workload during the experiment. It eliminates the need
to consider gear changing and to learn the clutch pedal characteristics. The hybrid pow-
ertrain was a compromised option as no combustion engine-powered vehicle with AT
was available. To minimize the impact of driving with a less familiar powertrain, the re-
generative braking is set to the minimum so that releasing the throttle pedal does not
cause a strong deceleration.

The Racelogic VBOX VBSS100 GPS speed sensor and the XSENS MTi-100 inertial
measurement unit (IMU) were used for data acquisition. The 100-Hz speed sensor had
two roof-mounted GPS antennas secured with vacuum cups and tension straps. The
antennas were aligned on a horizontal plane and with the centerline of the vehicle. Ac-
cording to [14], a passenger car typically has its center of gravity located behind the front
axle by 35-50% of the wheelbase, and at 35-40% of the overall vehicle height. Therefore,
the IMU was mounted on the bottom of the central glove box, which is the closest hori-
zontal surface to the center of gravity according to the aforementioned figures. The IMU
was calibrated when the vehicle was parked on a horizontal surface to ensure proper
alignment.

With the GPS sensor, the recording of each test run was triggered automatically when
the vehicle crossed a predefined gate defined with GPS coordinates. This ensured the re-
liable timing of the test run. However, the IMU sensor could not share this trigger signal
and therefore had to be operated manually based on some landmark features. In prac-
tice, a misalignment of less than 0.2 s is observed when comparing the recorded data,
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which was compensated for when processing the data. The surrounding environment
of the test route posed further challenges to the GPS sensor. Because the experiment
was conducted on open public roads, the GPS signal was occasionally blocked by other
vehicles of a larger size (e.g., semi-trailer trucks) as well as static objects such as trees
and lamp posts. Moreover, the test route included an underpass across the motorway A4
where the connection to satellites was lost for approximately 15 s. The vehicle trajectory
for this period of time could only be estimated with IMU measurements.

2.3.5. DATA PROCESSING

The motion of the vehicle was reconstructed using both sources of information, i.e., from
GPS and IMU. As mentioned above, there were certain practical challenges in estimating
the actual vehicle trajectory. An optimization-based processing method was developed
in order to overcome these challenges. In principle, our method finds a motion profile by
minimizing a cost function that includes the error between the measured and estimated
positions and accelerations:

J (Xest) = w1 JGPS +w2 JIMU (2.3)

Where,

JGPS =
N∑

k=1

((
xGPS,k −xk

)2 + (
yGPS,k − yk

)2
)

JIMU =
N∑

k=1

((
ax,IMU,k −ax,k

)2 + (
ay,IMU,k −ay,k

)2
) (2.4)

The decision variable Xest in the optimization problem includes heading angles and ve-
locities along with the initial position:

Xest =
[
x0, y0,ψ1 · · ·ψN , v1 · · ·vN

]
(2.5)

The positions and accelerations can be calculated based on the decision variables as
follows:

xk+1 = xk + vk Ts cosψk

yk+1 = yk + vk Ts sinψk

ax,k = (vk+1 − vk ) fs

ay,k = vk
(
ψk+1 −ψk

)
fs

(2.6)

As mentioned in Subsection 2.3.4, the obstruction of the GPS signal causes the positional
measurements to be less reliable. Hence the IMU measurement should be trusted more
by placing a larger weight on the acceleration error. For the most part of the maneu-
ver, a weight distribution of w1 = 1, w2 = 5 is used, which accounts for the relative scale
between position and acceleration errors. For the period where the connection is lost,
however, zero weight is given to the position error while the acceleration error is penal-
ized alone with w2 = 10. This does not mean that the estimated accelerations during
this section of the route will match the IMU measurements exactly. The solution to the
optimization problem still needs to balance the two error types for the other parts of the
test run.
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Figure 2.6: An example of the motion reconstruction method: estimated path vs. GPS measurement.

The following example is used to demonstrate the effectiveness of our proposed method
for reconstructing vehicle motion during the test runs. The measured and estimated tra-
jectories are compared in Fig. 2.6 and the accelerations and velocities in Fig. 2.7. Us-
ing our optimization-based method, the estimated trajectory exhibits a stable curvature
when the measurement is of poor quality or unavailable. The estimated accelerations
follow the measurements closely in general. The mismatch in longitudinal acceleration
is more significant, possibly because of the elevation changes along the test route. The
exit ramp where the initial braking phase happened shows a downward slope so that
gravity is projected along the vehicle’s longitudinal axis. Combining with positional mea-
surement helped mitigate such effects.

2.4. RESULTS

2.4.1. FROM NATURALISTIC DRIVING DATASET

The analysis of the naturalistic driving dataset reveals some insights into how human
drivers navigate the roundabouts. Fig. 2.8 is a collection of reconstructed trajectories
overlaid on the satellite image of the roundabout. The color variation reflects the change
in the velocity of the vehicle. The satellite image shows that the horizontal road at this
specific location has a wide median. The geometry is optimized to allow the traffic
along that direction to pass easily. The effect is evident from the higher average velocity
adopted by the corresponding traffic. The vehicles turning in other directions, on the
other hand, have to reduce speed to incorporate the larger curvature. The right-turning
vehicles approach the minimal distance to the center island in the third quadrant (i.e.
the lower-left quarter) and the minimal velocity is obtained in approximately the same
location. Driving in this manner reduces the maximum curvature of the path and thus
reduces the lateral disturbance on the occupants. The distribution of maximum abso-
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Figure 2.7: An example of the motion reconstruction method: estimated accelerations vs. IMU measurement
(top) and estimated velocity vs. GPS measurement (bottom).
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Figure 2.8: Naturalistic driving trajectories of human drivers at a roundabout. The velocity is reflected in the
color map on the right. The bold lines represent the average trajectories from the same type of maneuver.

Table 2.1: Statistics of the fitted Gamma distributions.

Travel Direction Acceleration [m/s2] Mode Mean SD
Left Longitudinal 1.25 1.35 0.37

Lateral 2.82 2.93 0.57
Straight Longitudinal 0.54 0.82 0.48

Lateral 1.42 1.55 0.44
Right Longitudinal 1.15 1.28 0.39

Lateral 3.62 3.80 0.82

lute longitudinal and lateral accelerations are given in Fig. 2.9. Both variables at each
recording location were fitted into a Gamma distribution. The statistics of the fitted dis-
tribution are given in Table 2.1. The figures may not be fully representative due to the
incompleteness of the recordings. The traffic vehicles are only detected shortly before
the entry. It is likely that the velocity has been adjusted before the recording starts. The
same applies to the speed-up phase after leaving the roundabout. This is evident from
the fact that the highest recorded velocity is in the range of 8.5 m/s or 31 km/h, much
lower than the speed limit for urban roads.

2.4.2. FROM ON-ROAD EXPERIMENT

A total of 31 test runs have been recorded during the experiment while in one other case,
the participant did not follow the correct test route. Among these, 14 are considered
usable. The decision is primarily based on the fact that the minimum speed of the ve-
hicle is over 18 km/h. It suggests that the test vehicle was not required to yield when
entering either of the two roundabouts. The total acceleration energy calculated with
the reconstructed motion profiles is on average 12.2% lower than that from the IMU sig-
nals. This amount of reduction accounts for factors including road elevation change,
rotation of the vehicle body (roll and pitch), and noise. Without knowing the ground
truth, one cannot rule out the possibility that the resulting motion profiles contain un-
derestimated accelerations at some parts. However, this risk is accepted because it then
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Figure 2.9: Distribution of peak longitudinal and lateral accelerations obtained by human drivers at a round-
about. The sample counts on the histograms are normalized to the form of a probability distribution function
and the fitted Gamma distribution is described by the red line.

indicates a higher performance level of human drivers. Comparing with such a baseline
performance avoids claiming an exaggerated advantage of automated vehicles.

The collection of all motion profiles from the participants, characterized by their ve-
locity and planar accelerations, are shown in Fig. 2.10. The signals are plotted against
the normalized distance, i.e. the relative position within the test run. In terms of initial
velocity when crossing the starting line, the values vary roughly between 79 and 91 km/h
because the participants were not given strict instructions to maintain a specific speed.
The participants adopted a speed of around 22 km/h upon entering the first roundabout,
with a gradually increasing magnitude in longitudinal acceleration. In the intermediate
sector, the participants mostly maintained a constant speed of around 40 km/h before
decelerating for the second roundabout, where they could choose a slightly higher speed
thanks to a larger curvature radius. The acceleration after leaving the roundabout peaks
at a magnitude of under 2 m/s2 before falling due to the power constraint of the vehicle
and the potential idea of avoiding excessive jerk upon reaching the speed limit. Similar to
what was observed in the naturalistic driving dataset, the peak longitudinal acceleration
is lower than that of the lateral acceleration (1.90 and 3.57 m/s2 on average, respectively).
Compared to the distribution of peak accelerations observed from the ACFR dataset, the
lateral accelerations match well with a difference of merely 6% less than the right-hand
turn at the roundabouts. The peak longitudinal accelerations recorded from the on-road
experiment are around 48% higher than what the dataset showed. Such difference could
be attributed to the higher complexity of the test route chosen for the experiment. The
involvement of significant speed changes (e.g. on the exit ramp from the motorway)
possibly prompted more aggressive ac-/deceleration.

The longer test runs recorded from the experiment further enabled the analysis of
the frequency composition of the acceleration signals. This was not possible with the
ACFR dataset where most recordings had a duration shorter than 10 seconds. The power
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Figure 2.10: The velocity and acceleration profiles of all valid test runs. The horizontal axis is the normalized
distance, representing the vehicle’s progress into the test route.
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Figure 2.11: The PSD of the longitudinal and lateral acceleration signals recorded from the test runs.

spectral density of the accelerations is shown in Fig. 2.11. In both longitudinal and lat-
eral acceleration, the majority of power is distributed below 0.5 Hz. In this frequency
range, the magnitude and variance in the PSD of lateral acceleration between the par-
ticipants are significantly lower than that in the longitudinal direction. This is already
evident from Fig. 2.10 where the longitudinal acceleration signals are scattered across
a wide range. Presumably, this is due to more freedom in selecting vehicle speed than
in choosing its spatial trajectory. The latter is constrained by the shape of the road. It
is also likely that the control of longitudinal motion is more difficult than that of lateral
motion. The longitudinal response of the vehicle is less predictable due to the low-level
controllers in the powertrain and transmissions, as well as the need for switching be-
tween two pedals. Contrary to the steering wheel that provides direct haptic feedback in
the form of wheel torque, the control of pedals relies on the perceived vehicle accelera-
tion. The prolonged loop involves more delays and low-level dynamics that potentially
harm the control quality of the vehicle’s longitudinal motion.

2.5. CONCLUDING REMARKS

This chapter has been dedicated to understanding the driving preferences and perfor-
mance of human drivers in balancing comfort and time efficiency. The goal was ap-
proached with two different methods. Initially, insights into how human drivers negoti-
ate a roundabout were obtained through processing and analyzing the ACFR naturalistic
driving dataset. The scenario was chosen for its maneuvering complexity and compact-
ness. The original data was processed with significant efforts, including the use of an
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optimization-based motion reconstruction method, in order to overcome the noise and
errors. The processed dataset containing smoothed velocity and acceleration informa-
tion has been made openly accessible via IEEE DataPort2. The data suggests that most
frequently, the peak acceleration falls between 0.54 and 1.25 m/s2 and the lateral acceler-
ation between 1.42 and 3.62 m/s2, depending on the type of maneuver being performed.
The longitudinal acceleration appears to be significantly lower than the lateral accelera-
tion. This is partly attributed to the absence of the major acceleration and deceleration
phases in the recordings. Lower peak lateral accelerations are observed from vehicles
driving straight at the roundabout as the geometry was optimized to improve traffic flow
capacity in this direction. Nevertheless, the roundabouts alone are not fully representa-
tive of the daily use of a passenger vehicle and the incomplete recordings in the dataset
prevent us from fairly evaluating the time efficiency of human drivers. Thus some doubts
remain about the observed distribution of the longitudinal acceleration.

In an attempt to partly address the disadvantages of relying on existing naturalistic
driving data, a subsequent experiment-based study was conducted. The driving data
of publicly recruited participants have been collected while they drove an instrumented
vehicle through the predefined route. An optimization-based processing method simi-
lar to that in the first approach was used to handle sensor noise and bias and thus ob-
tain a more accurate estimate of the actual vehicle motion. The data gathered through
the time span of 10 days revealed more about the performance and preferences of hu-
man drivers. The peak acceleration observed from this more complex scenario closely
matches the naturalistic driving data in the lateral direction while suggesting a signif-
icantly higher value in longitudinal motion. The difference is primarily caused by the
inclusion of the part of driving where major speed changes occur. Moreover, the exper-
imental data enabled the part of the analysis on time efficiency which was not possible
in the previous attempt. The participants consumed an average of 76.5 s of travel time
through the 920-meter route in traffic-free conditions while incurring a total accelera-
tion energy of 211.4. Overall, it appears that human drivers control the lateral dynamics
better than the longitudinal dynamics, evident from the distribution of lateral accelera-
tions being more concentrated in both time and frequency domains. Also observed in
the frequency-domain analysis is that the acceleration power is primarily distributed in
the low-frequency area. It could partly support the arguments in [15] on using only a
high-pass filter to evaluate motion sickness because the higher frequency components
are filtered by vehicle dynamics. Nevertheless, such filtering effects do not accurately
match the recommended frequency weighting in [16].

Due to the limited resources, the number of participants is relatively small and the
gender composition is male-dominant. Combined with the lack of control over the traf-
fic situation, only 14 recorded runs were considered useful for our purpose. The small
sample size may limit the findings from being considered statistically significant and
convincing. Hence, it is recommended not to consider the group average as a perfor-
mance baseline representative of human drivers. Instead, the best-performing drivers
could be used in order not to underestimate human drivers and exaggerate the potential
of automated vehicles. Contrary to common expectations, however, the female partic-
ipants in the experiment are not distributed towards the more gentle side. It might be

2https://ieee-dataport.org/open-access/reconstructed-roundabout-driving-dataset

https://ieee-dataport.org/open-access/reconstructed-roundabout-driving-dataset
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explained by the fact that male participants refrained from driving more aggressively be-
cause the vehicle was not their own property. The male drivers’ aggression might also
be misinterpreted as the conclusion was more often drawn from a higher rate of traffic
violations, which does not necessarily means a higher acceleration magnitude in all sit-
uations. It is nevertheless recommended to conduct such an experiment with a larger
participant group with extra attention on a balanced meta-data distribution. Besides,
the limitations of GPS measurement of vehicle trajectory are exposed due to the occlu-
sion by tall objects around the test route, including trees, lamp posts, and heavy vehicles,
even when the test route is chosen on purpose to avoid an underpass. Alternative or
complementary position measurement techniques are needed. For example, one could
use cameras to estimate the vehicle’s relative position within the lane using intrinsic pa-
rameters. Regarding the choice of a test vehicle, some participants appeared to have
no experience with an automatic transmission. The phenomenon roots in the limited
popularity of automatic transmissions in Europe. This might partly offset the benefit of
having a simpler learning process with one fewer pedal to adapt to. The hybrid pow-
ertrain could have further complicated the speed control task for the participants due
to the switching of power sources between the combustion engine and the electric mo-
tor. It is uncertain if a fully electric vehicle would be more suitable. In order to observe
more naturalistic driving behavior, the participants might have to drive their own vehi-
cles. However, this would make it more difficult to find participants due to the increased
demand and risk allocated to the participants. It also involves repeated installation and
testing of the experimental setup, requiring significantly more time and physical effort.
Alternatively, one may seek access to driving data collected by insurance companies that
offer usage-based insurance options [17]. The drivers undertaking such insurance are
required to upload data from an additional accelerometer and GPS sensor in order to
prove their safe driving. Despite the challenges, upscaling the data acquisition with on-
board measurement is valuable for a deeper understanding of human drivers with more
certainty. A larger dataset could serve more convincingly as a performance baseline for
motion planners to compare with. The raw and processed data gathered through the
experiment have been uploaded onto an open-access data platform3. Sharing the re-
search data from this study would benefit researchers in a relevant field and allow more
potential value to be extracted.

3https://data.4tu.nl/datasets/1ba011fc-7621-444d-ba7e-e3443aeddd98

https://data.4tu.nl/datasets/1ba011fc-7621-444d-ba7e-e3443aeddd98
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3
COMFORT-ORIENTED MOTION

PLANNING

To achieve great things, two things are needed; a plan, and not quite enough time.

Leonard Bernstein

Parts of this chapter have been accepted to IEEE Transactions on Intelligent Vehicles and in review at IEEE
Transactions on Intelligent Transportation Systems.
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3.1. INTRODUCTION
It has been argued in Section 1.1 the importance of improving motion comfort and miti-
gating motion sickness with automated driving. The motion planning algorithm plays a
critical role in the vehicle’s comfort level. Given the perception inputs on available driv-
ing space and other road users, a motion planer essentially generates the desired path
and velocity profile that low-level tracking controllers should then follow. Early studies
aim at improving general motion comfort in a qualitative manner by ensuring the conti-
nuity of the motion. There are works on constructing the motion with curve components
that feature continuous curvature. This guarantees a bounded jerk if the vehicle travels
at a constant speed and is often achieved with variations of clothoid [1], [2]. Some stud-
ies exploit the smoothness of parametric curves, e.g., splines and Bezier curves, to plan
a path or velocity profile [3]–[6]. These approaches ensure that the higher-order time
derivatives of the motion profile are bounded. The parametric curves can also be incor-
porated into an optimization-based framework where the placement of control points is
optimized. In addition, state lattices and motion primitives have been used by some au-
thors to improve smoothness under a sampling- or optimization-based planning frame-
work [7]–[9]. Most studies mentioned above do not explicitly consider motion sickness
or accelerations in general and therefore have limited applicability in the dynamic driv-
ing scenarios that automated vehicles encounter. Although there has been an attempt
to analyze the frequency components in the resulting acceleration patterns arising from
the use of different transition curves [10].

Some studies exploit optimization techniques to reduce acceleration. A comfort-
oriented planner was proposed for car-like mobile robots, where the motion is planned
by minimizing a cost function concerning travel time, accelerations, and clearance from
an obstacle [11]. This study also mentioned the trade-off between time and comfort in
motion planning. The trade-off problem in real traffic is investigated for a roundabout
scenario where naturalistic driving data is analyzed [12]. Furthermore, an optimal plan-
ning framework has been proposed, which considers the possibility of reducing lateral
accelerations with active roll motion [13]. Some recent works paid more attention to
mitigating motion sickness by considering the frequency sensitivity discussed above. Ex-
plicit minimization of MSDV in addition to travel time has been explored in [14], where
the vehicle motion is formulated in curvilinear coordinates and details were provided
on the distribution of acceleration energy in the frequency domain and on the trade-off
between comfort and travel time [14]. An alternative approach to the problem was pro-
posed using a time-domain planning algorithm by including a second-order high-pass
filter in the objective function [15]. The weighting is done in the frequency domain after
performing the Fourier transform of the acceleration signals.

This chapter focuses on the description and validation of an optimization-based
motion planning algorithm proposed for mitigating motion sickness. It targets the fre-
quency range of interest in a different approach than in the existing studies. Detailed ex-
planations of calculating frequency-weighted accelerations using a band-pass filter are
provided. The effectiveness of frequency weighting is demonstrated by comparing it to
using an alternative objective, where all accelerations are penalized equally. A receding-
horizon formulation of the algorithm is further proposed, which resembles real-world
deployment more closely. The real-time capability of the receding-horizon planner has
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Figure 3.1: A visual explanation of the definition of stations and waypoints on a demonstrative road section
with right-hand traffic.

been examined for different combinations of parameters. The motion planner variants
are then compared with the human driving data gathered in the experiment described
in Chapter 2.

3.2. OPTIMIZATION PROBLEM
This section introduces the underlying components that construct an optimization prob-
lem reflecting the goal of mitigating motion sickness in automated vehicles. The vehicle
motion is defined within the lane space using the lateral position relative to the lane
center, in addition to vehicle velocity. The relative lateral position and velocity are the
decision variables that enable the evaluation of the objective function that should be
minimized. The optimization problem is formulated for an integral approach and a
receding-horizon approach. The former represents the theoretical upper limit of per-
formance while the latter reflects a level that is achievable in practice.

3.2.1. MOTION DEFINITION

The proposed motion planner assumes that the vehicle drives on well-paved roads with
clear lane marks so that the information about the available driving space along the
road is clearly defined by the perception systems. The vehicle trajectory is constructed
through a series of waypoints. Along the center of the lane where the vehicle is driving, a
string of stations is distributed with a nominal interval dnom. To locate a waypoint with
regards to its corresponding station, we first define a local lateral axis at the station per-
pendicular to the normal driving direction (see Fig. ). Then the location of the waypoint
Pk is determined by its lateral position yk . The station is placed at yk = 0, i.e., at the lane
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center. With a positive yk , the vehicle deviates to the left-hand side of the lane. Con-
necting the waypoints results in a spatial trajectory while assigning a velocity to each
waypoint further defines the trajectory in time. This allows for calculating the acceler-
ations of the vehicle when the steps below are followed. First, the Euclidean distance
between waypoint k and k +1 is given by:

dk =
√

(Xk+1 −Xk )2 + (Yk+1 −Yk )2 (3.1)

Assuming that the vehicle has constant longitudinal acceleration when traveling this dis-
tance, we could determine the longitudinal acceleration given the velocity at waypoint k
and k +1 with:

ax,k = v2
k+1 − v2

k

2dk
(3.2)

Further assuming that the vehicle heading at waypoint k, denoted by h⃗k , points from
waypoint k to waypoint k +1:

h⃗k =
(

Xk+1

Yk+1

)
−

(
Xk

Yk

)
(3.3)

The change of heading can be calculated as the angle between h⃗k and h⃗k+1:

ψk = h⃗k · h⃗k+1∣∣∣⃗hk

∣∣∣ ∣∣∣⃗hk+1

∣∣∣ (3.4)

The curvature of the vehicle path in this section is given by:

κk = ∆ψk

dk
(3.5)

The lateral acceleration is then approximated using the average speed:

ay,k =
(

1

2
vk+1 +

1

2
vk

)2

κk (3.6)

Here, the accelerations are calculated purely from the waypoint locations and velocities
without considering vehicle dynamics. In this formulation, we only constrain the lat-
eral position of the waypoints according to the lane width and the velocities according
to speed limits. Because the main goal of this study is to explore how to effectively in-
corporate the frequency sensitivity in motion sickness into an optimization-based mo-
tion planning scheme, and to demonstrate how time efficiency and motion comfort can
be balanced. Therefore, we try to design here a general motion plan in the form of a
spatiotemporal trajectory that receives minimal influence from the choice of prediction
model and constraints. The accurate tracking of the desired trajectory is expected to be
handled by the low-level tracking controllers that incorporate individual differences in
vehicle dynamics. In addition, including a vehicle dynamics model in the optimization
problem increases the computational complexity. If the computation time from the cur-
rent formulation is sufficiently short and the resulting motion plan would show signs of
infeasibility, it is possible to add a low-level loop consisting of a vehicle dynamics model
and a tracking controller, resembling the approach proposed in [16].
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3.2.2. OBJECTIVES
The primary objective of the proposed method is to minimize the incidence of motion
sickness indicated by frequency-weighted accelerations. Nevertheless, the motion plan-
ner should also take into account the factor of time efficiency in the optimization. This
prevents the planner from driving unnecessarily slow and hence ensures a driving be-
havior that is acceptable to the passengers and other road users. We define the objective
of the optimization as a weighted sum of motion sickness and time efficiency:

JMS = DMS +W T (3.7)

Where DMS is a criterion related to motion sickness, T is a measure of time efficiency,
and W is the weighting factor on time efficiency. A larger W means a shorter travel time
is preferred over a less sickening ride. A viable range of W should be determined before-
hand through simulation while the user could be given the freedom to adjust it during
the trip according to personal preferences. The time efficiency is described by the total
duration of the planned motion. Under the assumption of constant longitudinal accel-
eration between two adjacent waypoints, travel time at a given step can be found as:

∆tk = 2dk

vk+1 + vk
(3.8)

The total duration is simply the sum of the travel time of all the steps:

T =∑
k
∆tk (3.9)

Quantitative evaluation of motion sickness, on the other hand, is less straightforward.
We adopt the following form as is used in [11], [12]:

DMS, Motion =
N∑

k=1

(
a2

x f ,k +a2
y f ,k

)
∆tk (3.10)

Where, axw and ay w are the frequency-weighted longitudinal and lateral accelerations,
respectively. The total energy of the frequency-weighted accelerations is used to quantify
the comfort level related to motion sickness. This is effectively the square of MSDV for
longitudinal and lateral motion proposed in [17]:

MSDV =
(∫ T

0

(
a2

xw +a2
y w

)
d t

)1/2

(3.11)

The benefit of using squared MSDV instead is that the penalization on discomfort is am-
plified by itself. This choice may not directly impact the resulting trade-off given that W
is varied through a wide range. Rather, it influences the way that W regulates the balance
between time and comfort. With the squared MSDV, W has to be increased more sharply
to further promote aggressive driving behavior. This could be more friendly to the users
when they are given the option of W especially when they are inexperienced.

In order to apply frequency-weighting on accelerations, we implement two separate
band-pass filters, incorporating the different frequency sensitivities in the longitudinal
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and lateral directions. Each band-pass filter can be expressed as a transfer function con-
structed from a low-pass filter and a high-pass filter:

H (s) = afil (s)

aact (s)
= 1

τ1s +1

s

τ2s +1
(3.12)

Where τ1 and τ2 are the time constants corresponding to the desired cut-off frequencies
of the band-pass filter. The transfer function has an equivalent continuous-time state-
space formulation of:

ẋ = Ax +B aact

afil =C x
(3.13)

The state-space matrices are calculated as:

A =
( −τ1

−1 −τ1
−1 1

−τ1
−1τ2

−1 0

)
B =

(
τ1

−1τ2
−1

0

)
C = (

1 0
) (3.14)

Given a time step of ∆t and assuming zero-order hold for the input, the state-space
model can be discretized as:

xk+1 = Ad xk +Bd aact,k

afil,k =Cd xk
(3.15)

Where,
Ad = e A∆t

Bd = A−1 (Ad − I )B
Cd =C

(3.16)

Given the current filter states and assuming the actual acceleration to be constant through
a time period ∆t , it is possible to calculate the filtered acceleration at the end of the pe-
riod using the method described above. This is useful to find the frequency-weighted
acceleration when the vehicle travels between two consecutive waypoints. Because the
step travel time, ∆tk varies per waypoint, the matrix exponential e A∆tk is different for
every time step. Diagonalization is a commonly used technique in calculating matrix
exponentials. Instead of diagonalizing A∆tk for every given ∆tk , we first diagonalize
matrix A:

Ω= P−1 AP (3.17)

The matrix exponential is then equivalent to:

e A∆t = PeΩ∆t P−1 (3.18)

The matrix exponential of diagonal matrixΩ∆t is simply:

eΩ∆t =
(

eω11∆t 0
0 eω22∆t

)
(3.19)
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Because matrix P is invariant of ∆t , it can be pre-computed without the need to repeat
the computation in every evaluation step. Using these steps, we reduce the complexity
of computation from a matrix exponential to the exponential of two real numbers on
top of basic matrix multiplications with a size of 2-by-2. This allows us to efficiently de-
termine the value of DMS,Motion given a time-stamped acceleration sequence. However,
the output of a band-pass filter accumulated through the travel time is not equal to the
squared MSDV because the filter has its temporal dynamics. Both the internal states of
the filter and the output require extra time to dissipate and converge to zero after the
input is removed. This process needs to be taken into account as the output in this pe-
riod contains a part of the information describing the nauseogenicity of the acceleration
input. Neglecting it would allow the optimal solution to exploit the filter dynamics by
commanding unreasonably high acceleration towards the end of the planning horizon.
Hence, we calculate the output of the filter given zero input for a period of 30 seconds at
a sampling time of 0.2s and include this amount in the evaluation of the planned motion:

DMS, Tail =
N+NTail∑
k=N+1

(
a2

x f ,k +a2
y f ,k

)
∆tk (3.20)

The choice of 30 seconds is based on the choice of τ1 for lateral accelerations. The total
cost term reflecting motion sickness is:

DMS = DMS, Motion +DMS, Tail (3.21)

To demonstrate the effectiveness of the proposed formulation in targeting a specific fre-
quency range in accelerations, we add an alternative objective where the frequency de-
pendency is neglected. This variant is further referred to as minimal-acceleration plan-
ning or MA in short. It minimizes a cost function of similar form to (3.7) although the
term DMS is replaced with DMA, a measure of general acceleration comfort:

DMA, Motion =
N∑

k=1

(
a2

x,k +a2
y,k

)
∆tk (3.22)

The rest of its implementation is identical to the proposed sickness-mitigating planning
method (further referred to as MS).

3.2.3. INTEGRAL APPROACH
The integral approach here refers to planning for the entire driving scenario by solving a
single large-scale optimization problem in the following form:

min: J (X)
where: X = [

y1 . . . yN , v1 . . . vN
]

s.t.: ymin ≤ y1 . . . yN ≤ ymax

vmin ≤ v1 . . . vN ≤ vmax

(3.23)

where N is the total number of stations for the scenario. The choice of J depends on the
purpose of the planner. It contains either DMS for mitigating motion sickness or DMA for
minimizing overall acceleration. The process of evaluating J using the decision variables
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X given a road profile has been shown above. In the case of the integral approach, the
motion planner is given all the information about the maneuvering scenario and pro-
duces an optimal motion plan in one go. This approach requires detailed and highly ac-
curate information and could be difficult to realize in practice. In case of unpredictable
events from other road users, the motion plan may have to be abandoned in order to re-
spond. It nevertheless provides a benchmark that represents the ideal performance that
a motion planner could achieve. It can be used to evaluate other planning methods that
aim to improve computational efficiency.

3.2.4. RECEDING-HORIZON APPROACH
In the receding-horizon approach, the planner solves an optimization problem repeat-
edly over a receding horizon, concerning motion predictions for only a limited distance
ahead:

min: J (XRH)
where: XRH = [

y1 . . . yN p , v1 . . . vN p
]

s.t.: ymin ≤ y1 . . . yN p ≤ ymax

vmin ≤ v1 . . . vN p ≤ vmax

(3.24)

where Np represents the number of stations distributed within the preview distance Dp .
It concerns a shorter distance ahead that is visible to the vehicle instead of being given
the full knowledge of the driving scenario. The rest of the formulation is identical to the
integral approach. This approach is more applicable in the real world as it receives up-
to-date information about a limited distance ahead. After reaching the first waypoint
planned previously, new information is processed to update the motion plan. In this
way, the vehicle could also respond to unforeseeable changes in the traffic situation. The
optimization problem to be solved at each step has significantly lower complexity and is
easier to solve on automotive-level hardware, potentially enabling real-time operation.
Although the limited preview range may impact the optimality of the planned motion
when compared to the integral approach that gives the theoretically optimal solution.

The preview distance is expected to be the most influential factor and needs to be
chosen with care. However, a fixed preview distance cannot achieve a good balance be-
tween having good resolution and keeping a low complexity when the vehicle speed is
allowed to vary in a wide range. A long preview distance is needed to ensure safety when
driving on motorways while a shorter preview distance is enough for driving in built-up
areas. In order to account for varying velocities, we propose a speed-dependent preview
distance for the receding-horizon planner. Instead of a fixed value, we instead calculate
the preview distance using the vehicle’s velocity multiplied by a chosen preview time
Tp , i.e., Dp,k = vk Tp . The distance is divided equally into Np intervals to find reference
stations. The Np defined in (3.24) is further referred to as the planning horizon. Con-
sequently, the nominal sampling time Ts is Tp /Np . Because in reality, the travel time
between two consecutive waypoints depends on the velocity in that segment. We inves-
tigate the performance corresponding to different combinations of Tp and Np as listed
in Table 3.1. We choose Tp = 3 s as the minimum for safety concerns. It is realistic to
consider a case where the vehicle has to reduce its speed from 100 km/h to a full stop.
With a preview time of 3 s, the vehicle has approximately 83 m to complete the decelera-
tion process, leading to an average longitudinal deceleration of approximately 4.7 m/s2.
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Tp [s] Np [-] Ts [s]
3 30 0.1
3 15 0.2
3 6 0.5
4 40 0.1
4 20 0.2
4 8 0.5
5 50 0.1
5 25 0.2
5 10 0.5

Table 3.1: Preview parameters of the receding-horizon planner

Sustained deceleration with such a level of aggressiveness will not be considered as com-
fortable and a preview time shorter than this may even be a threat to safety. On the other
hand, we chose the longest preview time of 5 s. This is based on the observed compu-
tation time when combining Tp =5 s and Ts =0.1 s. The simulation then becomes ex-
tremely time-consuming.

3.3. SIMULATION RESULTS

3.3.1. INTEGRAL PLANNING
The comparison between MS and MA planners using the integral approach can be found
in Fig. 3.2. Both motion profiles have a travel time of approximately 69 s. This value is
chosen according to the fastest human driver run that we have recorded. The MS plan-
ner initiates the first deceleration later and with a higher peak magnitude than the MA
planner. The entry velocity to the first right-hand turn is significantly lower (at around
12 s), leading to a lower lateral acceleration through the first roundabout. At the inter-
mediate part of the road, the MS planner commands a swifter acceleration to the speed
limit, exhibiting higher peak lateral acceleration through the turns. Then upon entering
the second roundabout, the MS planner again adopts a lower speed for the turning part
and then accelerates more aggressively to reach the speed limit of 80 km/h. In general,
the MS planner is more aggressive in changing vehicle speed while taking sharper cor-
ners more gently. This is partly an effect of applying separate filters to the longitudinal
and lateral accelerations.

3.3.2. VARYING PARAMETERS IN RECEDING-HORIZON PLANNING
When using the receding-horizon planner, the preview time Tp and planning horizon Np

(or the resulting nominal sampling time Ts ) greatly influence the planning performance.
One may naturally expect that a longer Tp and larger Np would be beneficial. This is
mostly true in the case of MA planning as Fig. 3.3 suggests. The loss of acceleration com-
fort is limited when using a smaller Np or longer Ts up to 0.5 s. The major difference
is caused by preview time as highlighted in Fig. 3.4. All three motion profiles are with
Ts = 0.2s and have a duration of 69 s. It is obvious from the first braking maneuver that
a longer preview time leads to more gentle deceleration. At the first right-hand turn, a
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Figure 3.2: Comparison of motion profiles between planner variations aimed at motion sickness mitigation
and acceleration minimization.
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Figure 3.3: Comparison of acceleration comfort and time efficiency performance of receding-horizon planner
variations using different preview times and sampling times.
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Figure 3.4: Comparison of motion profiles of the receding-horizon motion planner aimed at acceleration min-
imization using different preview times.
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Figure 3.5: Comparison of nauseogenicity and time efficiency performance of receding-horizon planner vari-
ations using different preview times and sampling times.

shorter preview time leads to more aggressive turning due to the less desirable position-
ing of the vehicle (i.e., not as far to the left). At around 30 s, the planner with a shorter
preview time is more reluctant in speeding up between consecutive turns because the
benefit of taking the turns slowly outweighs the time-saving effect when they are cal-
culated for a shorter distance ahead. Similar observations can be made at the second
roundabout. The MS planner behaves somewhat differently than expected when vary-
ing Tp and Ts . The former has a similar effect on the planned motion as is observed with
the MA planner, that a longer Tp leads to better overall performance. The latter, however,
causes a more significant difference that is acting in the opposite direction. Contrary
to what is commonly expected, a longer Ts has led to better overall performance when
combined with a longer Tp (Fig. 3.5). This might be a consequence of using a discrete-
time band-pass filter. When the step time between two waypoints ∆tk is shorter, the
planner is given the opportunity to command a very high initial acceleration without
getting penalized due to the slow dynamics of the filter. Then because only the first step
in this plan is actually applied and the rest is discarded, the resulting motion features
more abrupt jumps in acceleration. This statement is supported by Fig. 3.6 where all
three motion profiles are with Tp = 5s and have a duration of 75 s.

3.3.3. EFFICACY OF FREQUENCY WEIGHTING

It has been demonstrated by previous examples that incorporating frequency sensitiv-
ity in the optimization scheme leads to obvious changes in the shape of the accelera-
tions. To quantify whether the features are reflected by quantitative measures, we col-
lect and compare the value of DMS. In the MS planners, the value is directly available
by solving the optimization problem. In the MA planners, however, we need to obtain
this by passing the time-stamped acceleration sequence through the band-pass filter.
The long-tail effect is also taken into account here. Using the integral approach, the
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Figure 3.6: Comparison of motion profiles of the receding-horizon motion planner aimed at motion sickness
mitigation using different sampling times.
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Figure 3.7: Demonstration of performance loss of the receding-horizon approach over the integral approach.

sickness-mitigating planner shows a squared MSDV 7.5-11.3% lower than the minimal-
acceleration planner across the range of reasonable travel time. At the same time, the
MS planner causes an increase of approximately 8.3-11.7% in acceleration discomfort
over the MA planner. This observation suggests a potential conflict of interest between
mitigating motion sickness and improving general motion comfort.

3.3.4. ACCELERATION MAGNITUDES AND FEASIBILITY

The optimization scheme does not impose any explicit constraint on the aggressiveness
of the planned motion. The physical feasibility of the planned motion is verified by the
peak acceleration magnitude. Fig. 3.8 shows the maximum absolute acceleration to be
experienced by the vehicle with the MS planners, while Fig. 3.9 shows that of the MA
planners. The former exhibits slightly higher combined acceleration in general. The
values observed here are well aligned with the findings in [18] where a peak accelera-
tion of around 6.0 m/s2 for urban driving is observed from naturalistic driving data. It
can be seen from the receding-horizon approaches using either of the objectives that
the peak combined acceleration is closely following the peak longitudinal acceleration
for more gentle driving and switches to the peak lateral acceleration in between. When
time efficiency receives a smaller weight, the vehicle reduces its speed so much as to
achieve smaller lateral acceleration throughout the turns. A larger weight, on the other
hand, causes the planner to prefer cornering faster to save time, consequently leading to
a higher peak value in lateral acceleration.

3.3.5. COMPUTATION TIME

The receding-horizon approach is expected to have a lower computation complexity and
to be capable of real-time implementation. We collected the computational time when
the algorithm runs as MATLAB scripts on a desktop PC. The computation is limited to a
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Figure 3.8: Maximum magnitude of longitudinal, lateral, and combined acceleration observed from the MS
planner variants. The preview time is varied from 3s to 5s while the sampling time is fixed at 0.5s.
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Figure 3.9: Maximum magnitude of longitudinal, lateral, and combined acceleration observed from the MA
planner variants. The preview time is varied from 3s to 5s while the sampling time is fixed at 0.2s.
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Figure 3.10: Computation time of receding-horizon MS planners using different preview times and sampling
times.
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Figure 3.11: Computation time of receding-horizon MA planner using different preview times and sampling
times.

single CPU core with a clock frequency of 4.1 GHz. Fig. 3.10 and 3.11 show the variation
in computation time with different Np . With the same Tp , increasing Ts from 0.1 s to
0.2 s reduces computation time by a factor of 5-6. An extra 5-fold reduction can be ob-
served when Ts increases to 0.5 s. With Ts = 0.5 s, the MS planner is marginally capable
of operating at Tp =5 s. We expect that performing only a limited number of iterations
and easing the termination criteria could guarantee that the peak computation time is
below the real-time threshold. The algorithm may also be accelerated when running as
compiled code instead of MATLAB script. The computation time of the MA planner is
approximately 25% to 30% of the MS planner. This allows for a wider margin from the
real-time threshold. Alternatively, it could be feasible to use the setting of Tp = 5 s and
Ts = 0.2 s if the algorithm can indeed run faster after the modifications proposed above.
The comparison between Fig. 3.10 and 3.11 highlights the complexity of incorporating
the frequency sensitivity in motion sickness. It remains an open question whether the
MS planner’s effectiveness in mitigating motion sickness is worth the extra computation.
This needs to be investigated further with experimental studies on human subjects.
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Figure 3.12: A collection of velocity profiles in normalized time, where the human driving data is compared
with the optimized motion plans that have the same duration.

3.4. COMPARISON WITH HUMAN DRIVERS

3.4.1. COMPARISON WITH INDIVIDUALS

For each valid test run, we generated optimization-based motion profiles using the mo-
tion planning algorithm described in Section 3.2 with the two different objective func-
tions. The weight on duration has been adjusted accordingly in order to obtain an ap-
proximate matching of travel time between the human driver and the motion planner.
Because minimal instructions were given to the participants regarding how they should
drive, the initial velocities at the start of the run are different. Hence we also adjusted the
initial velocity in the motion planner to ensure a fair comparison.

The velocity profiles of human drivers and motion planners are provided in Fig. 3.12.
Several differences between human drivers and our motion planners can be observed
in multiple examples. First, most human-driven runs exhibit a more significant speed
reduction at the beginning of the run. This is because of the drivers’ attempt to save
control effort by letting the vehicle coast for a reasonable distance ahead of an inter-
section as long as it does not impede other road users. Another potential cause of this
difference is that the drivers were maintaining a wider safety margin when approaching
an intersection with a higher initial speed. At the end of this braking period, the vehi-
cle would enter RB1 where it needs to give way to vehicles traveling inside. By reducing
speed in advance, the drivers have more time to observe the traffic situation and react
safely. This is especially relevant because of the poor visibility at this roundabout as de-
picted by Fig. 3.13. It is hardly possible for the drivers following our test route to detect
other road users entering the roundabout from behind occlusions. Therefore, the par-
ticipants could have decided to decelerate earlier to ensure comfort for the unforeseen
case where they need to come to a full stop at the entry to RB1. Inside RB1, however,
most drivers adopted a higher speed than the motion planners. The drivers might have
overestimated the time loss or they were concerned about the following vehicle. Alterna-
tively, they subconsciously tried to minimize fuel consumption and mechanical wear in
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Figure 3.13: The visibility condition when entering the first roundabout on the test route. Vehicles entering
from two other directions, represented by the arrows, only become visible at a distance of approximately 30 m.
Image source: Google Street View

the braking system. Again, the driving effort could have also played a role here because
passing the roundabout with a lower speed means more pedal inputs.

In the RLR sector, the human drivers reached a lower top speed that is well below the
imposed limit of 60 km/h. We believe this difference is primarily caused by the damaged
pavement at the left-hand turn. The participants drove here at a lower speed in order
to maintain good vertical comfort while the motion planners are developed under the
assumption of ideal pavement conditions. Limited by this, the drivers would not attempt
to reach the speed limit before the next right-hand turn that lies less than 100 m ahead,
where the vehicle needs to slow down again.

Finally, upon entering RB2, the participants often chose to decelerate later and more
aggressively. In contrast to the first one, the second roundabout is located in an open
area where oncoming traffic can be observed with little obstruction. This supports the
discussion above that the visibility condition at an intersection may influence human
drivers’ choices of speed. Meanwhile, the feature of a higher speed by human drivers
inside RB2 is similar to what was observed at RB1. After leaving RB2, most participants
commanded a less aggressive acceleration than the motion planners. This could be rele-
vant to the arguments above that human drivers may consider fuel consumption in their
decision-making.

3.4.2. GROUP PERFORMANCE

The performance of human drivers is evaluated with the objectives of the motion plan-
ners: travel time and acceleration energy with or without frequency weighting. On av-
erage, the participants took 76.5 s to complete the test run while the average acceler-
ation energy is 211.4 m2/s3 and the average frequency-weighted acceleration energy is
147.1 m2/s3. In Fig. 3.14, the human driving performance is compared with the MA plan-
ner with the acceleration energy being the comfort criterion. The participants exhibited
up to 50% more discomfort than the MA planner when consuming the same amount
of time. The average disadvantage is 23.5% with the majority (11 out of 14) lying be-
tween 0 and 30%. It suggests that human drivers are reasonably good at planning ve-
hicle motions that reduce the accelerations when they are experienced with the route.
In contrast, human drivers’ performance in mitigating motion sickness is significantly
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Figure 3.14: The performance of human drivers in improving acceleration comfort and minimizing travel time.
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contours corresponding to amplified discomfort when consuming the same amount of time.
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Figure 3.16: Distribution of human drivers’ performance deficiency to the corresponding optimization-based
motion planners.

worse as suggested by Fig. 3.15. The best-performing human driver still inflicted 20%
higher frequency-weighted acceleration energy than the MS planner while the average
deficiency is 70.2%. We highlight the distribution of performance deficiency with Fig.
3.16. The more significant difference in mitigating motion sickness is probably caused
by the human driver’s lower susceptibility to motion sickness due to their active engage-
ment in vehicle control. When they cannot sense certain driving behaviors that give rise
to motion sickness among the passengers, it is unlikely that they are able to avoid such
behaviors.

3.4.3. FREQUENCY-DOMAIN COMPARISON

The distribution of acceleration energy in the frequency domain is closely related to the
incidence of motion sickness. The frequency components in the acceleration data from
human drivers are presented in Fig. 3.17, 3.18 in comparison with the motion plans from
our optimization-based motion planners. Human drivers have more longitudinal accel-
eration energy distributed in the range above 0.2 Hz, which reflects more fluctuations
in speed. These fluctuations could be perceived as uncomfortable or disturbing rather
than nauseogenic because they are outside the most sensitive frequency range. We sus-
pect that smooth control of vehicle speed is challenging for human drivers. Intuitively, it
is physically demanding for human drivers to ensure smooth pedal inputs. As discussed
before, they may attempt to save input effort when it does not significantly hamper com-
fort. Moreover, smooth input does not necessarily mean smooth vehicle speed because
of the characteristics of the powertrain and the braking system. For example, when the
transmission controller selects a higher gear, more throttle input is required in order to
maintain the previous acceleration level. The driver has to sense a drop in acceleration
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Figure 3.17: A collection of power spectral density in longitudinal accelerations, where the human driving data
is compared with the optimized motion plans that have the same duration.
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Figure 3.18: A collection of power spectral density in lateral accelerations, where the human driving data is
compared with the optimized motion plans that have the same duration.
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before starting to adjust his throttle input. It is possible that they would accept a drop in
acceleration and keep the input unchanged.

In lateral acceleration, the difference between human drivers and motion planners
appears to be less significant. A higher magnitude can be seen from most human drivers
for the frequency range below 0.2 Hz. This is mainly due to their choice of a higher speed
when driving inside RB1 and RB2 because the low-frequency range is more reflective
of the sustained accelerations. Given the frequency sensitivity in motion sickness, this
difference could contribute significantly to motion sickness among passengers. In the
higher frequencies, however, human drivers did not exhibit significantly more energy.
The characteristics of the steering system could be one of the reasons. In general, the
lateral acceleration of the vehicle is approximately linear with respect to the steering
wheel input for the most common range of dynamics in daily driving, given that the tires
are in the linear range. The steering ratio further reduces the scaling ratio between the
steering wheel input and the resulting lateral and yaw motion of the vehicle. The haptic
feedback is another factor that facilitates the lateral control task. The drivers can feel
the torque on the steering wheel, which is indicative of lateral acceleration. Although a
similar relationship exists between the brake pedal force and longitudinal acceleration,
human beings are in general more sensitive with their hands than feet. Hence is lateral
acceleration more smoothly controlled than longitudinal acceleration.

3.5. CONCLUDING REMARKS
This chapter introduced a novel formulation for incorporating the frequency sensitivity
to accelerations in the development of a comfort-oriented optimization-based motion
planning framework. The proposed method reduced the squared MSDV, an indicator of
motion sickness, by up to 11.3% compared with minimizing accelerations in general. A
receding-horizon formulation of the optimal planning problem is compared with opti-
mizing for a complex driving scenario in an integral manner. The performance differ-
ence from the integral planning approach is quantified for a variety of combinations of
the preview parameters in the receding-horizon planner. We consider a preview time
of 3 s as the lower limit since this leaves the vehicle with limited time to prepare for a
corner entry, resulting in worse motion comfort and a higher chance of motion sickness.
We found a longer nominal sampling time of 0.5 s beneficial for the purpose of mitigat-
ing motion sickness due to the slow dynamics in the frequency-weighting filter. On the
other hand, a nominal sampling time of 0.2 s is sufficiently short for optimizing accel-
eration comfort. We further investigated the computation time of the receding-horizon
planners. The algorithm is close to achieving real-time capability if it could be compiled
as machine code and certain parameters of the optimization solver could be adjusted.
Furthermore, on-road experiments revealed a performance gap between human drivers
and the optimization-based planners described in this study. The proposed sickness-
mitigating method achieved a reduction in frequency-weighted accelerations by 32%
from the best-performing human driver, while its counterpart without considering the
frequency sensitivity improves general acceleration comfort by 19%. The difference sug-
gests that automated vehicles can be even more effective in mitigating motion sickness
than in improving general motion comfort.

The motion profiles are compared to two optimization-based motion planners from
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our previous research that aim to improve motion comfort by minimizing acceleration
discomfort or the predicted incidence of motion sickness. In the time domain, we ob-
served certain differences between human drivers and motion planners and analyzed
the potential reasons leading to such differences. The performance deficiency of human
drivers may not be solely to blame on their inferior capability in planning and control-
ling vehicle motion. Rather, they may have included other factors such as input effort
and fuel consumption in their decision-making. Nevertheless, their driving behavior
could potentially lead to a significantly higher level of motion sickness than the cor-
responding motion planner. We assert that this phenomenon is related to their lower
susceptibility to motion sickness, which means they are not sensitive to the features in
vehicle motion that are perceived by passengers as nauseogenic. In terms of the average
performance, the participants show approximately 23.5% more acceleration energy or
70.2% more frequency-weighted acceleration energy than the motion planners. These
values are calculated with identical travel times. The findings in this study suggest that
AVs could potentially overcome the challenges posed by motion sickness by significantly
improving their level of motion comfort over average human drivers without sacrificing
time efficiency.

Nonetheless, this study relies primarily on the conclusion from past studies that mo-
tion sickness has a strong correlation with accelerations in certain frequency ranges. In
the literature, there are more complex numerical models to predict motion sickness. We
expect that including such models in the motion planning algorithm would require more
intensive computation, making it more difficult to implement such approaches in real
time. Alternatively, one may explore learning-based approaches to shift the computa-
tion offline and achieve real-time sub-optimal planning. Besides, the actual effect of the
proposed method on the development of motion sickness among passengers in an au-
tomated vehicle remains to be validated. If an on-road experiment is to be performed,
a closed track would be needed as motion sickness develops rather slowly and an in-
strumented vehicle needs to complete multiple laps to observe a difference. Lastly, this
work includes only a small number of participants for the evaluation of human driving
performance. This limits our ability to generalize the conclusions above to average hu-
man drivers. Instead, only the advantage over the best-performing participant was em-
phasized. We plan to test human drivers on a larger scale on public roads to solidify the
baseline performance. This would contribute not only to the evaluation of motion plan-
ning and control methods in automated driving but also to quantifying their potential
advantage over human drivers.

Besides, the performance deficiency of human drivers might be overestimated. The
elevation change and pavement conditions faced by the participants are not considered
by the motion planners. Meanwhile, the accelerations might be underestimated when
processing the measurement data. The actual extent of how these two factors influence
the suggested performance difference could not be verified. On the test route, the use of
a GPS sensor alone as a source of position information is insufficient due to the unstable
satellite connection. In future research, we recommend measuring the vehicle’s relative
position within the lane as an additional source of positional information, which could
improve the estimation quality of the vehicle trajectory. This could be done by, for ex-
ample, mounting cameras on the sides of the test vehicle and calculating the distance
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with intrinsic camera parameters. Lastly, we recommend the experimental validation
of the findings from this study in terms of subjective comfort evaluation. The demon-
strated advantage of AVs in mitigating motion sickness is based on empirical prediction
methods of motion sickness. It is highly helpful in promoting AVs if the benefit could be
reproduced in a real-world setup with human subjects.
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CONTROL FOR CURVE TILTING

If everything seems under control, you’re just not going fast enough.

Mario Andretti

Parts of this chapter have been published in IEEE Transactions on Control Systems Technology [1].
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4.1. INTRODUCTION

The attractive advantages of active suspension have promoted its continuous develop-
ment. The active force generation in the suspension system allows the decoupling of the
control of wheel and vehicle body motion, making it feasible to improve the ride quality
and the road holding performance simultaneously [2]. Moreover, it enables the control
of the vehicle’s body attitude, which could be helpful when for example, the vehicle is
subjected to a side collision. The vehicle body could be rolled away from the side of
impact, absorbing more energy with the mechanical structure and hence providing the
occupants with better protection. Besides, active suspension unlocks further potential
in enhancing motion comfort in other motion regimes than the vertical. The tilting car
concept invented for railroad vehicles [3] could now be brought onto road vehicles. This
was first seen on production passenger vehicles under the name of curve tilting. Two
major challenges need to be tackled for a useful implementation of the tilting concept:
predicting the driving action and accommodating the dynamic vehicle motion. The for-
mer is essential for determining the reference tilting angle that leads to a reduction in
lateral acceleration. Meanwhile, the coupled roll-yaw rotation that amplifies motion
sickness should be avoided in this reference generation process. Desirably, the roll angle
should have a phase lead over the yaw motion [4]. Hence the tilting must have started
before the driver applies a steering input. This is usually achieved with the camera-based
road preview that detects the lane marks and estimates the curvature and has seen suc-
cessful experimental implementation in a motorway driving scenario. However, this is
complicated by adding the longitudinal motion into consideration. In a more dynamic
scenario, predicting driver input and vehicle motion becomes more difficult when sig-
nificant speed changes are present. The actual speed adopted by the driver determines
the magnitude of the lateral acceleration. This uncertainty causes difficulty not only in
generating a reference roll angle but also in the control. The inertial accelerations ex-
erted on the vehicle body are countered by the redistribution of vertical loads among the
four wheels. The change in vertical load should be compensated for by the active sus-
pensions in order to maintain a stable body attitude. Without an accurate estimate of
the load transfer, it is difficult to achieve satisfactory control quality.

The state-of-the-art approach of the active curve tilting functionality is based on the
preview of road curvature using stereo cameras, combined with PID control [5] which
is widely implemented in industrial applications. Previewing curvature alone is not suf-
ficient for predicting the vehicle’s planar motion and is a compromised solution for ve-
hicles with little to no automation. With the human driver in the loop, the longitudinal
velocity can only be predicted by understanding the driver’s intention and the surround-
ing traffic situation. However, this cannot provide a precise value of the velocity at a cer-
tain time ahead. Similarly, the steering action may be presumed by the lane mark and
the usage of turning indicators, as implemented in lane-keeping assistance [6]. Never-
theless, such estimation has limited precision and the actual moment and magnitude
of the steering input remain uncertain. With these uncertainties in predicting the steer-
ing action, it is difficult to determine the tilting manner of the vehicle body in order
to effectively minimize the lateral disturbance exerted on the occupants. Meanwhile,
these uncertainties also harm the control quality of the roll motion. The acceleration (or
deceleration) and steering inputs influence the attitude of the vehicle body by causing
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longitudinal and lateral load transfer, which further exerts additional vertical forces on
the suspensions at different locations. Only with reliably predicted planar motion can
such forces be estimated in advance and requested from the active suspensions in or-
der to prevent the vehicle body’s attitude from being disturbed. The PID control method
exhibits certain disadvantages in this specific application. In order to maximize the uti-
lization of the stroke length available, the system inevitably operates in the nonlinear
range of the spring where linear methods are perceived as less capable. When operating
close to certain constraints (e.g., physical limit, actuator’s capability) in the system, PID
cannot explicitly avoid violations, potentially causing damages to the suspension system
in the long term and raising the operational cost of the vehicle.

Alternatively, nonlinear model predictive control (NMPC) is known for its capabil-
ity of explicitly handling nonlinear system dynamics and constraints. Model predictive
control is an optimization-based control method that determines the control input by
minimizing a cost function while satisfying certain constraints. Based on the predic-
tion with a model of the system’s dynamics throughout a certain prediction horizon, the
cost function accumulates the control effort and the consequential error. By minimiz-
ing the cost function, the controller computes the control input that yields an optimal
trade-off solution between quality and actuation expenses. Nonlinear MPC is a branch
of MPC that allows predicting with nonlinear models and can handle nonlinear con-
straints if necessary. The underlying numerical optimization problem is more complex
than in a linear MPC, where the prediction model and constraints are linear and the cost
function is typically quadratic. With few exceptions (e.g., quadratic programming as in
a linear MPC), optimization of a nonlinear non-convex cost function requires intensive
computation. The main contributor to the computational burden is the complexity of
the prediction model that allows the evaluation of the cost function. The evaluation of
the cost function is done by simulating the system behavior with the prediction model
by means of numerical integration. On top of that, most nonlinear optimization algo-
rithms, including gradient descent, sequential quadratic programming, interior-point
method, etc., utilize the gradient information of the cost function, which is determined
numerically if the analytic form of the gradient function is unavailable. The numerical
differentiation method further increases the computational cost. Hence, the dimension-
ality of the input also plays a role. Another contributing factor to the complexity is the
non-convexity of the cost function. In practice, it is difficult to verify the convexity of a
cost function. Hence, the number of local optima in the function should be considered
unknown.

Running the aforementioned nonlinear optimization algorithms for one time with-
out proper initialization is at the risk of converging to a local minimum that does not
yield a reasonable control input. This problem could be tackled with global optimiza-
tion heuristics, for example, multi-start local search, evolutionary algorithms, simulated
annealing, etc. Such approaches are successful in raising the chance of avoiding local
minima but are computationally less efficient. In the case of vehicle dynamics, some
studies run NMPC controllers at 20 Hz [7], [8], while linear controllers such as PID and
linear quadratic regulator (LQR) can operate at 100 Hz. This makes the aforementioned
heuristics that demand heavy computation less desirable in this specific application. In-
stead, the warm-start technique has been explored to enable real-time implementation
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of NMPC in vehicle dynamics control. One of the approaches is to initialize the up-
coming optimization process using the results of the previous step [9]. The method is
effective if the plant is modeled with sufficient accuracy and the magnitude of the dis-
turbance is limited. Only under such conditions, the prediction coincides with the actual
behavior of the system and the previous result is still feasible, although not necessarily
optimal due to the shift in the prediction horizon. Otherwise, the actual state at the next
step may deviate largely from what is predicted and the corresponding control input
does not yield a good initial guess anymore. Instead, some studies propose to initialize
online optimization with an explicit control law [10]. The explicit control law is com-
puted offline by approximating the optimal solution of the optimization problem with
PWA functions. The approach of explicitly initializing the NMPC with an alternative
sub-optimal controller has been proposed in [11] and tested with an arbitrary mathe-
matical model. A similar method was implemented in [12], where the explicit controller
is computed by solving a comparable hybrid MPC problem offline. The controller aims
to stabilize the excessive yaw and lateral motion of a passenger vehicle in case of a rear-
end traverse impact. Such approaches effectively move a portion of the computational
effort offline and better utilize the onboard storage resource.

4.2. CONTROL METHOD
This section presents in detail the control approach to the curve tilting application. The
control system’s main objective is to ensure that the vehicle body’s roll angle accurately
follows the reference value. The functionality is enabled by active suspension actua-
tors that generate the desired amount of additional vertical force, as commanded by the
controller. The force commands are computed under the framework of nonlinear model
predictive control. The underlying numerical optimization process is accelerated with a
novel explicit initialization method. The control scheme is explained in Fig. 4.1 and the
components will be explained in Subsections 4.2.1-4.2.5.

4.2.1. REFERENCE MOTION
The desired manner of active roll motion is designed according to comfort-related re-
quirements and physical limitations. The reference roll angle is a function of previewed
lateral acceleration on the vehicle chassis at 1 second ahead. The permissible roll an-
gle can reduce the lateral acceleration by at most 0.5 m/s2 from what is exerted on the
passenger. As the lateral acceleration builds up, it would be undesirable if the roll an-
gle approaches the saturation value with a high velocity. Hence, we adopted a smooth
curve shape for the transition (Fig. 4.2). A half period of a sinusoid is placed at the origin,
connecting two linear sections with a constant value:

φss
r e f =

{
k1 sin

(
k2ay,prev

)
,

∣∣k2ay,prev
∣∣≤π/2

k1,
∣∣k2ay,prev

∣∣>π/2
(4.1)

The parameter k1 is set to equal the maximum permissible roll angle φmax . The pa-
rameter k2 is chosen to meet the following boundary condition:

dφss
ref

dass
y,prev

∣∣∣ass
y,prev=0 = k1k2 = 1

g
(4.2)
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Figure 4.1: A schematic drawing of the proposed control approach. The components inside the dashed rect-
angle belong to the explicit initialization scheme. The NMPC solver takes inputs from the reference generator,
the vehicle’s onboard sensors, and the output of the initialization to compute an optimal control input to the
active suspension actuators.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

a
y, preview

 [m/s
2
]

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

re
f

ss
 [

ra
d

]

-1.5

-1

-0.5

0

0.5

1

1.5

a
y
, 
p
as

se
n
g
er

 [
m

/s
2
]

Figure 4.2: The reference motion and resultant lateral acceleration sensed by the passenger are plotted versus
the previewed lateral acceleration. The previewed lateral acceleration is estimated with the current velocity
and the curvature of the lane center at 1 second of time ahead.
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where g is the gravitational acceleration. This equation expresses the requirement that
the slope of the tangent line of the curve at the origin should result in zero lateral accel-
eration to be sensed by the passenger. It ensures that the minor lateral disturbances are
fully compensated for. In addition to the smooth steady-state reference curve, we fur-
ther applied a low-pass filter on the previewed acceleration, in order to generate feasible
and comfortable reference motion even when the curvature changes abruptly. The filter
is defined as:

ay,prev (s) = ω2
n

s2 +2ζωn s +ω2
n

ass
y,prev (s) (4.3)

where ωn and ζ are the natural frequency and the damping coefficient of the filter, re-
spectively. A second-order filter is chosen such that the roll acceleration is bounded and
the roll velocity is continuous. The filter exhibits an over-damped behavior (i.e., ζ > 1),
which eliminates overshoot and residual oscillations in the reference motion.

4.2.2. PREDICTION MODEL
The motion regimes of interest include the vehicle body’s roll, pitch, and heave, noted
by φ, θ, and z, respectively. They must be modeled as a whole as these motions interact
with each other through the rigid vehicle body. The equations of motion are as follows
[13]:

Ixx φ̈=(
Fz,FL +Fz,RL −Fz,FR −Fz,RR

)
B/2

−mspray
(
hcg −hcr

)− (
Izz − Iy y

)
θ̇ψ̇

Iy y θ̈ =
(
Fz,RL +Fz,RR

)
LR − (

Fz,FL +Fz,FR
)

LF

−msprax
(
hcg −hcp

)+ (Ixx − Izz )ψ̇φ̇

mspr z̈ =Fz,FL +Fz,FR +Fz,RL +Fz,RR

(4.4)

where hcg is the static height of the center of gravity and hcp, and hcr stand for the static
heights of the instant centers of pitch and roll rotations, respectively. The longitudinal
distances from the center of gravity of the sprung mass mspr to the front and rear axle are
denoted by LF and LR, whereas the track width of the vehicle is represented by B . The
vertical force at each wheel, Fz,∗ (where ∗ ∈ {FL,FR,RL,RR} stands for wheel locations) is
a function of the motion states plus the control input from the active suspension actua-
tor Fact,∗:

Fz,∗ = f∗
(
φ, φ̇,θ, θ̇, z, ż

)+Fact,∗ (4.5)

The planar motions (i.e., longitudinal, lateral, and yaw) are excluded as they are gov-
erned by either a human driver or the motion planning and control on an automated
vehicle. Still, the planar motions have a strong influence on these modeled motions. The
inertial acceleration causes load transfer in longitudinal and lateral directions, exerting
additional pitch and yaw moments on the vehicle body. The yaw motion is coupled with
pitch and roll according to the rotational dynamics of a rigid body governed by Euler’s
equations.
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Suspension forces are the key characteristics to describe in the prediction model. The
typical approach to suspension control assumes constant spring stiffness and damping
coefficient, in order to obtain a linear model [14], [15]. Since we aim to maximize the
utilization of wheel travel for the tilting, the suspension is stretched or compressed to
an extent that the linear approximation is no longer valid. On one hand, the kinematics
of the suspension system is constrained by its geometry, which is optimized for a lin-
ear relationship around the neutral position. As the wheel moves farther away from the
neutral position, the control arms rotate largely so that the validity of the small-angle ap-
proximation no longer holds. Consequently, the compression or stretching of the spring
and damper is not proportional to the wheel displacement. In addition, the forces on the
spring and damper are not proportional to their displacement or velocity, either. In prac-
tice, the spring has a stiffness that gradually increases when compressed, which together
with the buffer block, protects the components from physical damage due to excessive
wheel movements. Meanwhile, the dampers usually exhibit degressive characteristics
(i.e., the force-to-velocity ratio decreases as the velocity increases) which prevent the hy-
draulic cylinder from over-pressurization. Besides, the damper generates less force in
the compression stroke than in the stretching stroke. This is mainly done to minimize
the transmission of road disturbance in case of an upward impact is exerted on the wheel
(e.g., when driving over speed bumps or debris), which is more frequently experienced
[16]. These nonlinearities can be captured at once by determining the function of force-
to-displacement and force-to-velocity relationships. The relevant data can be obtained
from the simulation model.

4.2.3. OPTIMAL CONTROL PROBLEM

The MPC determines the control input by solving an optimal control problem (OCP) at
each time step. An optimal control input sequence of finite length is calculated by mini-
mizing a cost function and the first input in the sequence is forwarded to the controlled
system. The OCP is formulated as:

min
u

JNMPC(u)

s.t. umin ≤ u ≤ umax
(4.6)

The cost function J reflects the priorities of the state tracking errors and control ef-
forts and focuses on a finite horizon from the current moment. In this study, we use
a quadratic cost function integrated through the prediction horizon:

J =
∫ t0+tp

t0

(
(xt −xref)

T Q (xt −xref)+ut
T Rut

)
d t (4.7)

where the states, reference states, and inputs are defined as:

x =(
φ, φ̇,θ, θ̇, z, ż

)T

xref =
(
φref,0,0,0,0,0

)T

ut =
(
Fact,FL,Fact,FR,Fact,RL,Fact,RR

)T

(4.8)
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Table 4.1: Weighting parameters of the NMPC

Variable Unit Weight
Roll angle rad 12
Roll rate rad/s 0.4

Pitch angle rad 2
Pitch rate rad/s 0.1

Heave m 2
Heave rate m/s 0.1

Actuation force kN 0.0001

The cost function is evaluated by means of numerical integration with an Euler step of
50 ms. The control input is fixed through the prediction horizon tp, i.e. the number of
decision variables is 4. The inputs are bounded within the capability of the actuators.
Due to the limited information available for predicting the vehicle’s planar motion, the
exogenous disturbances are assumed constant through the prediction horizon of 0.4 s.
The assumption may not be valid for more dynamic situations and could be improved
when combined with a motion planner. Minimizing the aforementioned cost function
results in an optimal control input that ensures that the reference roll angle is tracked
with a minimal error while the influence of the active suspension forces on the pitch (θ
and θ̇) and heave (z and ż) motions and the control efforts are kept reasonably low. The
values of the weighting parameters are presented in Table 4.1.

4.2.4. EXPLICIT INITIALIZATION
The numerical optimization process for solving the OCP described above is accelerated
with an explicit initialization technique. A hybrid MPC is developed for this purpose. By
approximating the nonlinear dynamics with multiple linear modes under a piecewise
affine (PWA) formulation, we formulate the OCP as a mixed-integer quadratic program-
ming (MIQP) problem that can be solved efficiently [17]. Given finite modes and pre-
diction steps, the MIQP problem contains finite binary and continuous variables. It is
therefore possible to solve the problem in finite time by naive enumeration of all com-
binations of the binary variables. The branch-and-bound algorithm only has to do so
in the worst case [18]. This feature allows the MIQP problem to be solved with guaran-
teed global optimality given sufficient computational effort, which is not a problem for
offline preparation. Nevertheless, the formulation of a hybrid model of the roll, pitch,
and heave motion is complex due to a large number of modes. To overcome this, we
divide the whole vehicle body into four separate sprung masses, each suspended above
the corresponding wheel. Such dynamics are described with a quarter-car model:

[
z∗,k+1

ż∗,k+1

]
= A∗, j

[
z∗,k

ż∗,k

]
+B∗, j Fact, *,k + f∗, j[

z∗, j ,lb

ż∗, j ,lb

]
≤

[
zk

żk

]
≤

[
z∗, j ,ub

ż∗, j ,ub

] (4.9)

where j denotes the mode that the system operates in at step k. For each mode j , a
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Figure 4.3: The suspension force characteristics according to the actual multi-body model and the hybrid
model for quarter-car dynamics.

Figure 4.4: Slices of the 3-D look-up table for the purpose of explicitly initializing the optimization problem in
NMPC.
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corresponding set of A, B , and f is defined based on the PWA approximation of the sus-
pension forces. As Fig. 4.3 shows, the forces on the front and rear springs and dampers
are each divided into 4 sectors. Given the independence between the spring and the
damper, the hybrid quarter-car model contains 16 modes. The decision is based on
the fact that most hydraulic dampers on passenger vehicles have 4 operating modes,
namely the slow bump, fast bump, slow rebound, and fast rebound. For sake of conve-
nience, we also divide the spring characteristics into 4 pieces. In the hybrid model, the
dynamics of the unsprung mass, including the tire, wheel, and wheel hub, are neglected
because of the high modal frequency (100 Hz according to [19]) as a result of the high
stiffness-to-mass ratio. The sampling frequency of the MPC, 20 Hz in our case, is too low
to capture such dynamics without aliasing according to the Nyquist–Shannon sampling
theorem. Increasing the sampling frequency of the MPC to 200 Hz is unfavorable from
the perspective of computational complexity. The higher frequency vibration is outside
the frequency range of interest and has a limited impact on the aspect of comfort that
this paper focuses on. Thus the radial dynamics of the tire is neglected. The OCP in the
hybrid MPC is formulated as:

min
Fact ,∗

Jhyb(Fact ,∗)

s.t . Fmin ≤ Fact ,∗ ≤ Fmax

(4.10)

where the cost function Jhyb is:

J =
k∑

i=1
qz

(
z∗− zref,*

)2 + rhybF 2
act,* (4.11)

The resemblance of the OCP in the hybrid MPC to the one in the NMPC is achieved by
choosing the proper reference and weightings. The hybrid MPC controls the height of
the sprung mass to follow a reference:

zFL,ref = zRL,ref =φref ·B/2

zFR,ref = zRR,ref =−φref ·B/2
(4.12)

If all four suspensions track their reference height, the vehicle body would consequently
track the reference roll angle. The equivalence of weighting is given by:

qz,hyb · z2
*,ref = qφ,NMPC ·φ2

ref

rhyb ·F 2
act,* = rNMPC ·F 2

act,*

(4.13)

Given the identical penalty on the control effort in both OCPs, the penalty on height
tracking error should equal the penalty on the consequent roll tracking error. The hybrid
MPC is implemented using the Multi-parametric Toolbox [20] and the OCP is solved on a
uniform grid of the 3-dimensional space of z∗, ż∗, zref, * and the initial output is evaluated
by linear interpolation (see Fig. 4.4). In total, the OCP is solved 3,549 times. Using multi-
parametric optimization for generating the explicit control low would reduce the loss
optimality than the grid approach but the computational time is observed to be too high
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Table 4.2: Comparison of roll and pitch moment of inertia

Moment of Inertia Roll Pitch
Rigid Body [kgm2] 718.2 2783.8

4 Point Masses [kgm2] 1020.1 3341.1
Difference [%] 42.0 20.0

even for offline processing. Instead, we expect online optimization to compensate for
the loss of optimality.

Nevertheless, there are further fundamental differences when modeling a rigid body
with four separate point masses. They should be carefully considered to avoid invalidat-
ing the initialization scheme. Firstly, the four sprung masses do not yield precisely the
actual moment of inertia of roll and pitch when connected with rigid links. The com-
parison is given in Table 4.2. The mismatch in moments of inertia may cause the hybrid
MPC to demand a larger force than the actual optimal force according to the NMPC’s
OCP. Moreover, the quarter-car models alone can by no means capture the load transfer
caused by planar accelerations. The load transfer influences each individual quarter-car
model as an external disturbance and should be compensated for with:

Fcomp,* = ms ay
(
hcg −hcr

)/
(2B) · sside

sside =
{

1,∗ ∈ {FR,RR}
−1,∗ ∈ {FL,RL}

(4.14)

The compensatory component is added to the initial output by interpolating the hybrid
OCP solutions to eventually construct the starting point as:

F init
act,* = Finterp,* +Fcomp,* (4.15)

The eventual starting point is expected to reduce the online computational load as well
as to serve as a valid control input by itself. Relevant results will be presented in Section
4.4.

4.2.5. NONLINEAR PROGRAMMING SOLVER
From the starting point described above, local optimization is further performed to find
the optimal control input. We implemented the gradient descent method with inex-
act (backtracking) line search [21]. To incorporate the constraints on control inputs, a
shrinkage of the step length also happens when the current step size causes a violation.
The algorithm stops when the norm of the local gradient is below a certain threshold,
or when the number of iterations exceeds a certain limit. The latter allows us to bal-
ance the performance gain and the computational load, which can be exploited when
running the controller with limited computational resources.

4.3. SIMULATION SETUP
The proposed control strategy is examined in a virtual environment in multiple scenar-
ios. The simulation platform is IPG CarMaker, in which a passenger car’s dynamics are
modeled in detail and experimentally validated by DRiV Incorporated, which includes
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validated sub-models of the active suspension actuators. A virtual driver model controls
the vehicle’s longitudinal and lateral motion to follow the desired route. It allows devi-
ating from the lane center in order to reduce the curvature of the path and the velocity
is regulated such that the acceleration stays within a predefined envelope. In the sim-
ulation, the velocity-dependent curvature preview is implemented with a virtual road
sensor, while in reality this may be enabled by high-precision road maps and/or the
environmental perception systems on automated vehicles. The simulation is initially
executed on a desktop PC (3.7 GHz Hexa-core CPU plus 64 GB DDR4 RAM) for under-
standing the behavior of the system and tuning the parameters before moving to a hard
real-time platform (see details in 4.3.3).

4.3.1. SCENARIOS

The system is supposed to operate on well-paved roads only. We adopted three typical
scenarios that are commonly experienced in daily driving, namely the highway, rural,
and urban scenarios. Highway driving mainly features sustained cornering motion that
changes gradually and the peak magnitude of the acceleration is rather low, too. The
longitudinal velocity would stay mostly constant. This scenario mainly tests the system’s
performance in terms of steady-state tracking. Driving in urban areas is the exact op-
posite as it involves sharp turnings with shorter duration and moderate magnitude, in
addition to the frequent changing of direction and speed. It examines the system’s dy-
namic response to quick-changing references. In between is the rural scenario where
mid- to high-speed corners are common. The corners can be closely adjacent to each
other and the curvature is varying continuously. A higher magnitude of lateral accelera-
tion than the other scenarios may be observed. The paths of the vehicle in the proposed
scenarios are shown in Fig. 4.5.

4.3.2. EVALUATION

The simulation study aims to evaluate the proposed system from two perspectives: con-
trol quality and motion comfort. For control quality, we focus on the tracking error of
the roll angle, specifically, the root-mean-square (RMS) value of the error signal. Mo-
tion comfort, on the other hand, is a more comprehensive quality to quantify and mea-
sure. Extensive guidelines for comfort evaluation subject to mechanical vibrations can
be found in ISO 2631-1 [22]. However, the proposed method only aims to reduce the
lateral acceleration exerted on the occupant in order to mitigate motion sickness. Thus
we adopt the frequency weighting proposed in [23] for motion sickness induced by lat-
eral oscillations. A virtual inertial measurement unit (IMU) is placed at the approximate
position of the otolith organs of the occupant. The IMU’s orientation is fixed to the ve-
hicle body, assuming that the occupant is relevantly static to the vehicle. In addition to
examining the RMS value of the sensed lateral acceleration, we further take into account
the human body’s sensitivity to vibrations with different frequencies. The lateral accel-
eration signal’s power distribution (PSD) is calculated first before the aforementioned
weighting is applied. To help demonstrate the performance of the NMPC method, we
also included a PID-based curve tilting controller as the baseline. The PID controller is
accompanied by the same disturbance-compensating input as a feed-forward term that
counteracts lateral load transfer. The PID output is bounded according to the actuators’
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Figure 4.5: Road profiles of the proposed scenarios for the simulation study.

capability and its integral component resets to zero once the reference roll angle starts to
change. This helps combat the windup issue due to the relatively large integral gain. The
PID controller is tuned per scenario to maximize its performance while the weighting
parameters in the NMPC remain constant. Additional simulation runs are performed by
using the output of the explicit initialization as control input such that the validity of the
initialization scheme is verified.

4.3.3. HIL SETUP

In order to further validate whether the control method is efficient enough for real-time
implementation with limited computational resources, the simulation runs have been
repeated on a hardware-in-the-loop setup (Fig. 4.6). The controller is compiled on a
dSPACE MicroAutoBox II, which carries a single-core 900 MHz processor and 16 MB ran-
dom memory. This device has been widely used in the industry to test prototype con-
trol algorithms. It yields a feasible performance for industrial microprocessors targeting
highly automated vehicles (e.g., the quad-core 800 MHz NXP S32S247). The simulation
environment is compiled on the dSPACE DS1006 processing board (quad-core 2.8 GHz
CPU, 1 GB DDR2 RAM). The two devices communicate via a CAN bus, on which the vir-
tual vehicle exchanges the controller’s command with the necessary measurements. The
communication operates at 20 Hz, identical to the controller’s sampling frequency, while
the vehicle dynamics are updated at 1 kHz. Also included in the HIL setup is the Delft Ad-
vanced Driving Simulator (DAVSi) [24], which mainly consists of a mock-up of the front
half of a Toyota Yaris and a hexapod motion platform driven by six electric motors. The
experiment runs in hard real-time mode, where if the turnaround time of the controller
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Figure 4.6: A schematic drawing of the HIL experiment setup explaining the functions of each platform and
the communications between the platforms.

exceeds the sampling time, the simulation is terminated immediately.

4.4. RESULTS

4.4.1. NUMERICAL PERFORMANCE

The NMPC’s solver settings influence the trade-off between computational effort and
performance. The key parameter in our case is the number of iterations. This parame-
ter is varied between 2 and 64. The corresponding performance indicators are shown in
Fig. 4.7. The contribution of the initialization scheme is apparent. After a small number
of iterations, the tracking error and the resultant lateral acceleration are not decreasing
steeply anymore. Performing more iterations is not significantly beneficial, especially
when considering the limited computational resource for real-time implementation. In
the more dynamic scenarios, the tracking error starts to grow at a larger number of itera-
tions. This is partly due to the assumption that the disturbances are constant throughout
the prediction horizon whose validity diminishes in this scenario. Another part of the
contribution comes from the potential model mismatch. It is nevertheless challenging
to formulate a compact prediction model to capture all the complex multibody dynam-
ics of a passenger vehicle. Because the equivalent moments of inertia in the initialization
scheme are higher, the starting point of the optimization is likely to yield a higher control
effort. This is on some occasions helpful in reducing the tracking error. By further op-
timizing the control inputs, the control effort would decrease while allowing marginally
larger tracking errors. The trend is different when the NMPC solver starts from all ze-
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Figure 4.7: Variation of the comfort and control performance indicators when different numbers of iterations
in the nonlinear optimization are performed. The term NI in the legends stands for ’No Initialization’, meaning
the optimization process starts from zeros.

ros, where both indicators keep decreasing up to 64 iterations. Though a comparable
performance level is only achieved at 64 iterations, illustrating the contribution of the
initialization scheme. Eventually, 8 iterations are chosen for further analysis. With this
setting, a worst-case turnaround time of 43 ms has been observed in the HIL experiment.
This is lower than the sampling time of the controller, 50 ms, proving that the proposed
NMPC controller is capable of real-time implementation.

4.4.2. CONTROL QUALITY

The simulation results for the three scenarios in terms of roll tracking are shown in Fig.
4.8. The RMS tracking error per control method per scenario is compared in Table 4.3. In
the highway scenario, the reference roll angle stays constant for long periods of time, al-
lowing the integral action of PID to correct the error. The model-based approaches, i.e.
the explicit control and NMPC, yield a constant tracking error due to potential model
mismatch. This disadvantage becomes less obvious in rural and urban scenarios, where
the reference roll angle varies more frequently. The integral action is not given sufficient
time to bring down the error before the reference value changes. The quicker response
of explicit control and NMPC contributes in these situations to the reduction of the er-
ror, demonstrating the superiority of the prediction over the reaction in a more dynamic
environment. These two methods show minor non-minimum-phase behavior at the be-
ginning of a changed reference, though. Because when the vehicle leaves a steady-state
cornering motion, the assumption of constant lateral acceleration through the predic-
tion horizon does not hold. The actual lateral acceleration experienced by the vehicle is
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Figure 4.8: Roll angles of the vehicle body per simulation scenario. In each sub-graph, the roll angles of a vehi-
cle with passive suspension and active suspension using different methods are compared against the reference
value.
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lower than what the controller expects. Hence the controller commands a larger force
than the actual need.

Table 4.3: Comparison of the tracking performance of the control methods used in the simulation.

Controller Tracking Error Highway Rural Urban
PID RMS [10−2 rad] 0.706 2.090 1.868

Explicit RMS [10−2 rad] 0.881 2.053 1.330
Difference [%] +24.8 -1.8 -28.8

NMPC RMS [10−2 rad] 0.615 1.747 1.159
Difference [%] -12.9 -16.4 -38.0

4.4.3. MOTION COMFORT

The lateral acceleration sensed by the occupants is shown in Fig. 4.9, indicating their
level of discomfort. Table 4.4 compares the lateral acceleration sensed by the occupant,
with and without the curve tilting function, and using different control methods. The
body of a passive vehicle leans away from the curvature center when cornering, slightly
magnifying the lateral acceleration on the occupant. The effectiveness of the tilting func-
tionality is significant in the highway scenario where all control methods achieved a re-
duction of lateral acceleration by 40%. In rural and urban scenarios, the benefit of the
system decreases to the range of 20-25% due to multiple reasons. On one hand, the ab-
solute magnitude of the reduction in lateral acceleration is limited by the roll angle avail-
able. The same amount of reduction becomes less obvious on a relative scale when the
actual magnitude is larger. On the other hand, the system is not able to respond sharply
to the highly dynamic planar motion. Roll velocity is penalized to ensure a gentle transi-
tion and avoid introducing another source of discomfort. And even the predictive con-
trol methods are only reacting to a change of reference. Though according to the RMS
acceleration, the advantage of using NMPC over PID is only marginal, in contrast with
the more visible improvement in terms of tracking accuracy. This is primarily because
the RMS value is more sensitive to the higher-amplitude part of the signal. The higher
amplitude is usually coupled with steady-state tracking of the saturated reference roll an-
gle, which is a result of the limited roll angle allowed by the suspension geometry. NMPC

Table 4.4: Comparison of the motion comfort in terms of RMS lateral acceleration using different control meth-
ods used in the simulation.

Controller Acceleration Highway Rural Urban
Passive RMS [m/s2] 0.796 1.710 1.103

PID RMS [m/s2] 0.414 1.300 0.882
Difference [%] -47.8 -23.6 -19.3

Explicit RMS [m/s2] 0.465 1.326 0.856
Difference [%] -41.3 -22.1 -21.7

NMPC RMS [m/s2] 0.424 1.269 0.815
Difference [%] -46.5 -25.4 -25.4
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Figure 4.9: Lateral accelerations per simulation scenario. In each sub-graph, the lateral acceleration exerted
on the occupants of a vehicle with passive suspension and with active suspension using different methods are
compared against the lateral acceleration of the vehicle body.
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Figure 4.10: Frequency-domain power distribution of the lateral acceleration sensed by the occupant.

outperforms PID mainly in transient response when the actual lateral acceleration is rel-
atively low. The phase lead of the reference generator also helps mitigate the negative
impact of the PID’s slower response on the resulting comfort quality. Nevertheless, the
trend is consistent between Table 4.3 and 4.4 that NMPC’s advantage over PID is more
obvious in more dynamic driving scenarios. In addition to the RMS value of the sensed
acceleration, we further analyzed the results in the frequency domain. The power spec-
tral density is computed and weighted according to the recommendations in [23], which
indicates a higher influence in the low-frequency range up to 0.25 Hz. The weighted
PSDs resulting are displayed in Fig. 4.10. With the actively controlled roll motion, a sig-
nificant improvement is observed in the frequency range of up to approximately 0.1 Hz
in all three scenarios. Though the active control of the roll motion slightly elevates the
high-frequency components in the highway scenario where the passive motion is steady.

4.5. CONCLUDING REMARKS

This Chapter presents an NMPC strategy for the curve tilting functionality using active
suspensions. To tackle the commonly reported challenge of reducing the computational
load for solving the OCP online, we proposed an explicit initialization scheme. By pre-
computing a look-up table offline, the starting point of the nonlinear optimization is
quickly determined by 3-dimensional linear interpolation. The lookup table results from
a hybrid modeling method of the quarter-car dynamics with highly nonlinear suspen-
sion forces. Based on this model, a hybrid MPC problem has been formulated, reflect-
ing the same objectives and weightings as in the NMPC. The alternative OCP is solved
on a wide range of initial and reference states to form a look-up table. The output of
the interpolation is further combined with disturbance compensation, which estimates
and counteracts the influences of load transfer that are not captured by the quarter-car
model. The eventual starting point is supposed to yield a valid control input. Simu-
lation shows that controlling the suspensions with the initialization scheme already en-
ables the desired functionality. Further performing the online optimization in NMPC im-
proves the transient response and reduces the tracking error. The NMPC approach yields



4

84 4. NONLINEAR MODEL PREDICTIVE CONTROL FOR CURVE TILTING

a better overall tracking performance in all three driving scenarios (12.9%, 16.4%, and
38.0% smaller, respectively) albeit being slightly outperformed by PID in steady-state
tracking where the integral action is highly beneficial. HIL experiment on limited com-
putational resources confirms the real-time capability of the proposed method, whose
parameters are chosen to balance the additional computational effort and the marginal
performance gain. Also, thanks to the explicit initialization scheme, the NMPC solver’s
computational load is reduced significantly compared to starting the optimization from
zeros.

Meanwhile, the current study shows certain disadvantages. Neglecting the dynamics
of the unsprung masses implies that the performance may not be as satisfactory when
driving on a rough road. Nevertheless, the major source of discomfort under such cir-
cumstances would be vertical excitation instead of lateral acceleration. The HIL simula-
tion reveals that the full capability of the NMPC scheme is not yet fully realized with the
hardware available to us. The computational capability of the HIL hardware, released in
2010, is not representative of what could be available on the latest highly automated ve-
hicles, given the rapid development in high-performance automotive microcontrollers.
It is interesting to investigate if the numerical efficiency could be boosted with parallel
computing on multi-core microcontrollers. For industrial applications, the code would
be further optimized for efficiency and could run faster than in the rapid-prototyping
phase. Such advances may allow a more complex prediction model in the NMPC al-
though the model validation process would become more challenging, too. The full po-
tential of the current implementation could be realized on automated vehicles where
the predictive feature of the NMPC can be joined by the motion planning algorithm. The
idea will be explored in the upcoming Chapter 5.
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5.1. INTRODUCTION

Considerable potential in improving motion comfort and reducing motion sickness has
been suggested by the findings in Chapter 3 thanks to the automated vehicle’s advan-
tages in precise perception and motion control. While staying safely within the permis-
sible driving space, the lane width could be better utilized than averagely capable hu-
man drivers. Meanwhile, the possibility of reducing perceived lateral acceleration with
active suspensions has been explored in Chapter 4. When designed to cooperate with
or assist human drivers, the idea of actively tilting the vehicle body is hindered by the
difficulty in predicting vehicle motions. It is possible to anticipate driver action under
certain circumstances but more often only on a behavior level. For example, one may
be certain about the driver commanding a deceleration when approaching a red traf-
fic light. However, this is insufficient for facilitating the planning and control of vehicle
body attitude. The roll and pitch of the vehicle body are under constant influences of
the longitudinal and lateral vehicle motions, primarily due to the load transfer effect. It
is difficult to achieve accurate body attitude control without reliably predicting the ex-
act motion pattern to be commanded. More significant challenges for implementing
roll compensation for lateral acceleration in road vehicles lie within the decision on the
timing and amplitude of the active roll motion. The combination of roll and lateral mo-
tion could cause diverse intensities of motion sickness. Past experiments showed that
the exact magnitude depends on a variety of factors including motion amplitude, fre-
quency, percentage of compensation, phase relations, as well as the location of the rota-
tion axis [2]–[6]. When the lateral acceleration is fully compensated by a corresponding
roll motion, the development of motion sickness appears to be faster than in the case
of a 25% compensation. The findings apply to an excitation frequency of 0.1 and 0.2
Hz while for a lower frequency, a high percentage of roll compensation may contribute
more to improving physical comfort. The recommended range of compensation ratio
partly overlaps what is actually achievable by using active suspensions on passenger ve-
hicles, according to the simulation data presented in Chapter 4 and depending on the
driving scenario. Meanwhile, the phase relation between the roll motion and lateral ac-
celeration is found to be significantly influential to the effect of the compensation. It is
suggested that a phase lead in the roll motion, i.e. the roll angle preceding lateral ac-
celeration, would cause less motion sickness than vice versa. However, the case of no
phase difference examined in the literature was combined with full compensation while
the others were with partial compensation. The uncontrolled differences in the experi-
ment conditions complicate the task to provide solid recommendations on how the roll
motion should be designed.

This chapter introduces a motion planning algorithm extended from what was de-
scribed in Chapter 3 in order to coordinate the roll motion with the planar motions. De-
spite the difficulties in predicting the sickness level to be caused by the combined mo-
tion, it still could reveal the unique advantages of combining automated vehicles with
active suspensions. In understanding such advantages, it could be justified whether the
idea of reducing lateral acceleration with roll compensation is a viable solution for pas-
senger vehicles.
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5.2. OPTIMIZATION PROBLEM

5.2.1. MOTION DEFINITION
The proposed planning algorithm, referred to as ’3DOP’, considers the roll motion of the
vehicle in addition to its longitudinal and lateral motions. It outputs desired vehicle mo-
tions in the three regimes to be fulfilled by chassis actuators and controllers. As has been
described in Chapter 3-3.2.1, the road profile is described with straight and curved seg-
ments, each assigned a curvature (0 for straight segments) and a length. The segments
are further discretized into a string of reference stations distributed along the lane cen-
ter. At each station, a local lateral axis is defined along the curvature radius, with the left-
hand side of the driving direction being positive. The vehicle’s path is then constructed
with a set of waypoints, each located relative to the corresponding station with a lateral
position y . The vehicle’s velocity v and roll angle φwhen passing a waypoint are directly
assigned by the motion planner and the accelerations are calculated accordingly.

5.2.2. OBJECTIVE FUNCTION
The purpose of 3DOP is to improve comfort while preserving time efficiency for pas-
sengers traveling in an automated vehicle. We choose to minimize the weighted sum of
discomfort D and maneuver time T :

J =WtimeT +D (5.1)

Where a relative weighting factor Wtime is used for maneuver time T and is varied to
cover a wide spectrum of user preferences. A small weight suits those highly susceptible
to motion sickness, whereas a larger weight can be selected by those in urgent transit.
Although maneuver time is straightforward to calculate, comfort is a more abstract con-
cept to measure. We choose to characterize the major discomfort indicator in (5.2), as
the integral of squared accelerations along the passenger’s perceived horizontal plane. In
this way, the effect of vehicle body tilt on the lateral acceleration sensed by the passenger
is incorporated. It differs from the MSDV used in [7]. It remains uncertain whether the
MSDV concept could be generalized to combined longitudinal and lateral accelerations
whereas the computation of relative quantities increases the complexity of the problem.

Dacc =
∫ T

0

(
a2

x +a2
y

)
d t (5.2)

The roll motion is an additional source of discomfort that should be considered. Ex-
periments suggest a perception threshold of 0.5 deg/s for the frequency component of
1 Hz [8]. This is far below the roll rate observed on curve tilting systems [9], meaning
that the roll motion could be perceived in most situations. The contribution of roll mo-
tion to motion sickness has also been suggested by past studies. Hence, we penalize the
absolute roll motion in an additional roll-related discomfort term (5.3). The total dis-
comfort is then given by (5.4), which is the sum of acceleration-related discomfort and
roll-related discomfort scaled with weighting factor Wroll.

Droll =
∫ T

0

∣∣φ̇∣∣d t (5.3)
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D = Dacc +WrollDroll (5.4)

The entire motion consists of M = N − 1 segments connecting two adjacent way-
points, with N being the total number of waypoints. The integral form of the objective
function is equivalent to the sum of segment values:

J =
M∑

k=1

(
Wtime∆Tk +∆Dacc,k +Wroll∆Droll,k

)
(5.5)

The segment values are calculated as:

∆Dacc,k = ∫ Tk+1
Tk

(
a2

x,k +a2
y,k

)
d t

∆Droll,k = ∫ Tk+1
Tk

∣∣φ̇∣∣d t
(5.6)

Within a segment, we consider the velocity and roll angle to change linearly with respect
to time. Knowing the distance between the two waypoints dk (1 m in our case) gives the
following:

∆T = 2dk
vk+vk+1

ax,k = (vk+1 − vk )
/
∆T

φ̇k = (
φk+1 −φk

)/
∆T

(5.7)

Further, we assume the curvature remains constant within the segment, calculated as:

κk = (
ψk+1 −ψk

)/
dk (5.8)

The lateral acceleration within the segment is hence approximated as:

ay,k = κk v̄2
k − g sin φ̄k

v̄k = (vk + vk+1)
/

2
φ̄k = (

φk +φk+1
)/

2
(5.9)

Combining these equations allows determining the value of J from a given motion plan.

5.2.3. CONSTRAINTS AND INITIALIZATION
The comfort vs time-efficiency optimization produces reasonable results only when con-
strained properly. In our case, box constraints are placed on all motion variables. For lat-
eral position, the bounds are determined by the width of the lane and the vehicle body.
A typical lane width of 3.75 m is found in most European countries, outside populated
areas. A representative width of a D-segment passenger vehicle including mirrors is un-
der 2.10 m. Hence the vehicle is allowed to deviate from the lane center by up to 0.75 m
on each side and the remaining centimeters are left as a safety margin. The vehicle’s
forward velocity is constrained according to local policies. In the Netherlands, a speed
limit of 80 km/h is found on most of the distributor (rural) roads. The roll angle of the
vehicle body is constrained to lie between ± 5 deg. Given a track width of 1.6 m, an active
suspension actuator is required to lift or lower the vehicle body on its side by 7 cm. Fur-
thermore, the vehicle is expected to drive along the lane center at the speed limit when
entering and exiting the scenario, from and into road sectors with negligible bending.
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Hence the lateral position of the first and the last waypoint is 0, velocity 80 km/h. This
ensures acceptable behavior for the vehicles behind and on the adjacent lanes. No addi-
tional measure is taken to ensure the feasibility of the planned motion concerning vehi-
cle dynamics. The aggressiveness of the motion has to be far below the friction limit to
be considered comfortable by the passengers. This ensures that the performance is only
directly influenced by the choice of weights in the cost function and not by the tightness
of additional constraints. It is still possible to maintain a safety margin at low-friction
conditions by only allowing a very small Wtime.

5.2.4. OPTIMIZATION PROBLEM AND SOLVER

The motion plan consisting of 3N decision variables is determined by solving the opti-
mization problem formulated as (5.10). For this purpose, we used the Sequential Quadratic
Programming (SQP) algorithm in MATLAB R2020b. The step tolerance was reduced to
10−10 while the other parameters remain as default.

min: J (X)
where: X = [

y1 . . . yN , v1 . . . vN ,φ1 . . .φN
]

s.t.: ymin ≤ y1 . . . yN ≤ ymax

vmin ≤ v1 . . . vN ≤ vmax

φmin ≤φ1 . . .φN ≤φmax

(5.10)

5.3. RESULTS

5.3.1. AN EXAMPLE OF PLANNED MOTION

Fig. 5.1 presents the motion plan generated with the weighting factor Wtime = 12. The
optimal solution consists of 1557 decision variables, found after 1129 SQP iterations, and
the cost function was evaluated approximately 1.8M times. The total computation time
is 3066 s on a desktop computer with an Intel Core i5-9400F CPU. The optimization was
terminated as the stopping criterion of step tolerance 10−10 had been met. The plan-
ner comprehensively utilizes the available lane space and the vehicle’s roll capability to
reduce lateral acceleration while coordinating the longitudinal velocity. The manner of
space utilization highly resembles the racing line used in motorsport where the path
curvature should be minimal. Velocity is adjusted in accordance with the curvature.
The vehicle slows down prior to sharp turns and accelerates when the path bending is
lower. The speed in the middle sector (20-30 s) ranges from 30-45 km/h, reflective of
real-world values observed while actually driving on the site. The corner tilting capa-
bility is exploited in a restrained fashion thanks to the additional penalty term. The roll
angle, visualized as a row of comb teeth perpendicular to the vehicle path in Fig. 5.1,
does not necessarily follow the vehicle’s turning direction. During the right-left-right
turns between the two roundabouts, the vehicle only rolls to the right. Because the left
turn is relatively short-lasting, changing the roll angle for it would harm comfort through
the longer right turns. In the roundabouts, however, the three turns contribute almost
equally to acceleration discomfort. The roll angle hence has to change its direction ac-
cordingly for minimizing the perceived lateral acceleration. The effect of curve tilting
on minimizing passenger-perceived lateral acceleration is obvious from the sub-figure
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Figure 5.1: An optimal motion plan generated with Wtime = 12. The main figure visualizes the vehicle’s ideal
motion to navigate through the scenario. The left subfigures show the plans for the lateral position, velocity,
and roll angle. The resulting acceleration profile is shown in the subfigure on the right. The green solid line
represents the lateral acceleration experienced by the passenger and the green dash line represents the lateral
acceleration exerted on the vehicle body. This motion plan has a duration of 47.0 seconds and a discomfort
rating of 205.9.

Table 5.1: Control quality of tracking the motion plan

Tracking Error Position [10−1m] Velocity[km/h] Roll [deg]
Max Absolute 1.331 0.895 0.394

Root-Mean-Square 0.535 0.258 0.122

on the right. A reduction of approximately 0.8 m/s2 is observed when the roll angle is
commanded to the full. Performing the planned motion in the simulation environment
yields tracking errors as given in Table 5.1. The values highlight good feasibility of the
motion planned by 3DOP.

5.3.2. PEAK ACCELERATIONS

The peak acceleration of each motion plan is collected in Fig. 5.2. As Wtime increases, the
maximum magnitude of lateral acceleration grows as expected. However, the longitudi-
nal acceleration reaches a minimum at Wtime = 6 before the monotonic upward trend
that is observable in lateral acceleration. This is partly due to the length of the entry
and exit straights. The smaller lateral acceleration comes at the cost of more change in
longitudinal velocity, which has to happen within a limited distance. With Wtime under
6, the benefit of reduced lateral acceleration outweighs the cost of increased longitudi-
nal acceleration and the loss of time. The peaks of longitudinal and lateral accelerations
are staggered so that the combined planar acceleration is below 5.81 m/s2 or 0.59 g at
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Figure 5.2: Variation of peak acceleration magnitude of the planned motions.

the largest Wtime. This value implies that the motion plans can be performed by most
passenger vehicles in high-friction conditions.

5.3.3. COMPARISON OF PERFORMANCE

We performed simulation runs using the ADM with various acceleration limits derived
from Fig. 5.2. The performance indicators obtained from these runs are shown in Fig.
5.3. We calculate the weighted sum of time and discomfort of these points to locate the
points lying the closest to the lower-left corner. These points represent the best perfor-
mance of the ADM, effectively forming an approximate Pareto front. The road profile
is processed separately by the speed-only and speed+path planning method using the
same set of Wtime. The comparison between 3DOP and these baseline methods is shown
in Fig. 5.4. The string of two-fold scores is fitted as functions in the form of:

y = axb + c (5.11)

which preserves the trend of increased emphasis on time efficiency accelerates the dete-
rioration of comfort. The improvement of 3DOP over the baseline methods is illustrated
in two different ways. Fig. 5.5 shows the potential gain in motion comfort without los-
ing time efficiency and the potential savings in travel time with the same comfort level.
Across the overlapping range of maneuver time, 3DOP achieves a maximum reduction
of discomfort by 54.7% over optimal speed planning, 34.2% over the ADM, or 28.1% over
optimal planar motion planning. Alternatively, it saves maneuver time by a maximum
of 29.4%, 17.2%, and 14.3% over the three baselines. The time-saving advantage is more
obvious when a high level of comfort is demanded because of the limited capability to
roll the vehicle body. A higher amplitude of lateral acceleration means the reduction is
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Figure 5.5: Advantages of 3DOP over baseline methods.

smaller in terms of proportion.

5.4. CONCLUDING REMARKS
We presented a motion planning method that jointly plans the path, speed, and roll mo-
tion of a vehicle equipped with active suspensions. The method exploits the possibility
to actively roll the vehicle body, in order to further improve motion comfort as well as
time efficiency. The planned motion is shown to be feasible as it can be tracked by a vir-
tual passenger vehicle with limited error, even when using basic control structures. The
results support the use of active suspensions on automated vehicles as the coordination
between planar and roll motion can significantly enhance motion comfort. Compared
with only optimizing within the horizontal plane, the proposed method improves com-
fort by up to 28.1% while consuming the same amount of time, or saves at most 14.4% of
travel time while maintaining the same level of comfort. The advantage becomes more
significant when compared with a driver model representative of highly experienced hu-
man drivers.

This work exhibits certain limitations while the understanding is to be deepened with
follow-up studies. Firstly, solving the optimization problem for the entire scenario de-
mands intensive computational effort. This approach cannot be implemented directly
as a real-time motion planner. Receding-horizon and data-based approaches, similar to
that presented in Chapter 3 could be explored to simplify online computation. Mean-
while, although the objective benefit of the proposed method is attractive, it remains
uncertain whether the computed motion profiles are appreciated by users. This ques-
tion could be answered by subjecting human participants to the planned motions and
requesting subjective evaluations from them. This nonetheless demands for more ex-
pensive equipment in the form of a test vehicle with active suspensions and automated
driving capabilities. Experimental studies can also be exploited to collect human driving
data that replaces the parameterized driver model. One may refer to 2 for details of an
attempt made within this dissertation.
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This chapter is a summary of the findings, limitations, remaining open questions, and
future recommendations from Chapters 2-5.

6.1. FINDINGS
This dissertation has primarily led to a deeper understanding of how motion comfort
could be improved using the solutions feasible on automated vehicles, as well as how
the performance of the explored solutions compares to a passenger vehicle commonly
seen on public roads at the moment with a human driver responsible for the planning
and control.

The first step taken towards establishing such an understanding was to investigate
the driving performance of human drivers regarding the comfort aspect. The initial at-
tempt relied on existing naturalistic driving data collected in the ACFR dataset. The post-
processed vehicle trajectories suggested the peak longitudinal acceleration falls between
0.54 and 1.25 m/s2, whereas the lateral acceleration falls between 1.42 and 3.62 m/s2.
The number varies per type of maneuver performed at the recording location, namely
turning right, driving straight-on, or turning left. The lower values were observed from
the straight-moving traffic because the geometry of the roundabout has been designed
for improving traffic flow in this direction. The fact that the peak longitudinal accelera-
tion is lower than the peak lateral acceleration is partly attributed to the drivers’ possible
preference for maintaining a higher speed which reduces fuel consumption and saves
time. Another factor leading to this difference is the limited coverage of the recording.
Because of the choice of data acquisition method, which relied on the roof-mounted
LiDAR on a vehicle parked near the intersection, the trajectories only extended for a
short distance before the entry and after the exit of the roundabout. The major ac-
/deceleration phases were missing. The vehicle’s initial and terminal velocities were
found to be much lower than the speed limit imposed on the corresponding segments.
The incompleteness also hinders a comprehensive evaluation of the comfort-oriented
driving performance because the factor of time is missing. It has been emphasized on
multiple occasions the necessity of including time efficiency when evaluating comfort
due to the inevitable conflict of interest. A fair comparison of comfort level could only
be made among trajectories of similar durations. Alternatively, one could compare the
durations among trajectories yielding similar comfort levels. Therefore, the analysis of
the naturalistic dataset is insufficient for our evaluation purpose. Consequently, an ex-
perimental study was conducted in order to overcome these limitations. A comprehen-
sive route was chosen and a group of 16 participants recruited from the public were re-
quested to drive through it. The duration of each test run was timed using GPS-based
triggering which minimizes the variation. In terms of peak accelerations, the experi-
ment suggests an average of 3.57 and 1.90 m/s2 for lateral and longitudinal directions,
respectively. The mean peak lateral acceleration matches the findings from the natu-
ralistic driving dataset despite the latter being collected in a different country, namely
Australia. Meanwhile, the longitudinal acceleration is around 50% higher than in pre-
vious observations. This major difference could support the argument that the miss-
ing ac-/deceleration phases had led to a lower value in peak longitudinal accelerations.
Through the 920-meter-long test route, the participants spent an average of 76.5 s driv-
ing time, with the fastest slightly above 70 s and the slowest around 85 s. When character-



6.1. FINDINGS

6

101

ized by the energy of the acceleration signals, the discomfort accumulated through the
maneuver has an average of 211.4 m2/s3, a maximum of 244.5 m2/s3, and a minimum of
169.4. The most comfortable ride was not the slowest one, however. This demonstrates
the performance variances among the participants. It was unfortunately not possible
to better characterize such variances in statistics due to the rather small sample group.
Nevertheless, the relatively better-performing individuals could at least be representa-
tive of an averagely skillful human driver.

The second step taken was to study the possibility of improving acceleration-related
motion comfort within the horizontal plane by means of motion planning algorithms.
On top of minimizing all planar accelerations equally, the idea of targeting a specific
frequency range that causes the most motion sickness was explored. The implementa-
tion was enabled by a novel method of calculating band-pass filtered acceleration sig-
nal in a variable-step fashion, which accompanies a spatiotemporal motion planning
framework that defines vehicle motion with respect to its relative position in its driving
lane. The effectiveness of this method is demonstrated by comparing it with the vari-
ant that regards all frequency components equally. The comparison reveals interesting
differences as when the frequency-weighted accelerations are minimized, the acceler-
ation profile appears to be more pointy, i.e. with more sharp and swift changes. This
helps reduce the low-frequency acceleration components that are perceived as the most
nauseogenic but also gives rise to jerks and total acceleration, resulting in deteriorated
general motion comfort. When formulated in a receding-horizon fashion, the motion
planners’ performance is strongly influenced by the choices of preview time and nom-
inal sampling time. A longer preview time yields better performance but comes at a
cost of higher computational burdens. Contrary to expectation, a shorter step length
is not necessarily beneficial when minimizing frequency-weighted accelerations. The
cause of this is suspected to be the step-wise calculation of the frequency-weighting fil-
ter. The shorter step time gives the optimizer the option to command excessive initial
acceleration without being heavily penalized. Meanwhile, the observation brings unex-
pected benefits in terms of computation time. The real-time threshold is relaxed with
the increased sampling interval. The reduced dimension of the optimization problem
partly offsets the increased complexity of performing the frequency-weighting calcula-
tions. The combination of 5s preview time and 0.5s sampling time required an average
of 0.33s to find the optimal solution. The computational complexity was estimated to be
at a factor of 5 to 6 over the alternative of minimizing general acceleration. Many differ-
ences between the motion planners and human drivers evaluated in Chapter 2 are noted.
The average performance deficit is around 70.2% for frequency-weighted acceleration
energy or 23.5% in overall acceleration energy, measured with equal driving time. Hu-
man drivers are reasonably capable of planning and performing a comfortable motion
but not as much in avoiding motion sickness. This is related to the fact that drivers are
significantly less susceptible to motion sickness than passengers. Hence they may not
notice some features in vehicle motion they commanded that the passengers perceive as
sickening. It should be emphasized that driving capability is not the sole contributor to
the performance deficit. In other words, the exact upside potential in improving motion
comfort or mitigating motion sickness with automated driving might be smaller than
the numbers mentioned above. The simulated environment where the motion planner
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is tested is simpler than the real world in many ways. For example, it assumes a perfectly
flat road surface while some depressed pavement can be seen at the actual test location.
The decision-making process of human drivers is also far more complicated than that
of the motion planner. For example, they may prefer zero input when the situation al-
lows in order to reduce physical workload. They also consider the possible scenario of
having to yield to other road users and hence plan the speed more cautiously than when
only time and comfort need to be minimized. Further plausible causes include the hu-
man drivers’ consideration for reducing fuel consumption or the wear of brakes, both of
which contribute to the cost of using a vehicle. Nonetheless, the findings from this com-
parison provide an approximate idea of how much potential do automated vehicles hold
in mitigating the motion sickness paradox and hence argue for further development and
mass deployment of automated vehicles.

In an independent branch of effort, the concept of reducing lateral acceleration with
roll compensation has been explored. The concept relies on the capability of active
suspensions to generate force and therefore manipulate vehicle body attitude. Using
the nonlinear model predictive control method, 12.9%, 16.4%, and 38.0% smaller RMS
tracking errors are achieved over the industrial state-of-the-art implementations with
scenario-specific tunings for the motorway, rural, and urban driving scenarios, respec-
tively. The issues of heavy computational burden that are commonly connected to the
use of NMPC are overcome by the dedicated warm-start strategy, resulting in feasible
real-time implementation in a hardware-in-the-loop setup, where the controller oper-
ated on a dSPACE MicroAutoBox while communicating via CAN with the IPG CarMaker
environment running on a separate computer. Frequency-domain analysis revealed an
attractive reduction in the frequency range around and below what is considered the
most nauseogenic. However, the reduction is less significant in the more dynamic driv-
ing scenarios. It confirms the anticipations on the difficulty of implementing the tilting
concept in road vehicles despite the use of an advanced control method. The bottleneck
is believed to primarily lie within the reference generator for the desired roll motion. The
parameters are chosen in a relatively conservative way in order not to surprise a human
driver. The commanded roll angle is consequently somewhat reluctant in the more dy-
namic driving scenarios. This is further complicated by the unpredictable disturbances
on the vehicle body attitude due to the strong influence of load transfer. A better perfor-
mance could be expected if the roll angle planning is integrated into the motion planning
framework proposed in Chapter 3. The novel idea was explored in Chapter 5 by extend-
ing the optimization problem to include the roll angle as a part of the decision variables
and describing the effect of the roll angle on the lateral acceleration felt by the passen-
gers. The need for a phase advance in roll angle with respect to the lateral acceleration
was not explicitly formulated into the objective of the optimization problem. Instead,
it was covered by the goal of minimizing planar accelerations, with the absolute change
in roll angle being penalized additionally. It prompts the optimal motion plan to start
increasing the roll angle before the rise of the lateral acceleration.

6.2. LIMITATIONS
Extra caution should be taken when using the conclusions in this dissertation. While
some qualitative arguments could be transferable, the exact extent of the advantage of
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the proposed methods explored here might vary given different conditions.

To begin with, the research effort described in Chapter 2 provides only an initial at-
tempt to measure average human driving performance in balancing comfort and time
efficiency. The relatively small number of test runs recorded limits the statistical signif-
icance of the baseline. This is especially complicated further by the fact that the per-
formance is measured in a two-fold fashion by including both a comfort indicator and
travel time. More samples are obviously helpful in increasing the chance of both deter-
mining the average performance and finding the upper limit of human drivers. Hence
to avoid exaggerating the potential of automated vehicles, it is recommended to use the
better-performing samples in the experimental data as a representation of the average
human drivers until such data has been collected on a larger scale.

The motion planning algorithm proposed for mitigating motion sickness relies on
the empirical model developed from the observed strong correlation between motion
sickness and low-frequency oscillations. Optimizing for frequency-weighted accelera-
tions resulted in an 11.3% reduction in this measure of motion sickness compared with
optimizing for general acceleration comfort. The value is specific to the scenario be-
ing investigated, which involves highly dynamic maneuvering in a rather compact time
span. A smaller advantage might be observed in milder scenarios such as motorway
driving. The advantage also depends on the difference in width between the lane and the
vehicle. Moreover, the reduction in frequency-weighted acceleration here should not be
interpreted as a reduction of the same proportion in the severity of motion sickness in an
individual, nor in the possibility of developing motion sickness in the general population
in the ideal case of full-scale deployment of AVs. It remains unknown how such a reduc-
tion is reflected in human subjects. While the acceleration signal might be decomposed
as a sum of various frequency components, one may not assume the resulting motion
sickness level equal to the sum of the motion sickness levels caused by these frequency
components. One may recommend the use of more complex models of motion sick-
ness for more accurate prediction. However, Chapter 3 already shows that the relatively
simple approach of frequency weighting is already on the verge of real-time computa-
tion threshold. It is not advised to further increase the online computational burden
as the potential benefit of reduced incidence of motion sickness may not be worth the
cost of amplified energy consumption. Alternative to the online optimization-based ap-
proach, learning-based methods could be explored for better computational efficiency.
The reader may refer to [1] for an example of such attempts, which is a spin-off study of
this dissertation under the supervision of the author.

When comparing human drivers with the proposed motion planning algorithms, the
imperfections in the experimental setup for data collection should also be considered.
The presence of elevation changes and road banking angle could have influenced the
measured acceleration values in either direction. Such effects cannot be fully compen-
sated for by cross-referencing with the GPS trajectory. In addition, human drivers are
believed to have a more comprehensive decision-making process when planning and
controlling vehicle motion. Albeit the experiment was conducted outside the busy hours
to avoid traffic interaction as much as possible, the possibility of having to give way to
other road users could not be excluded. The participants had to still account for a pos-
sible situation where another vehicle has priority when they approach one of the two
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roundabouts. The extra caution is reflected by a lower speed adopted by the participants
before entering the intersection, which costs more time without apparently benefiting
comfort. There was an additional issue with one obvious piece of pavement damage
across the test route. The location of the damage is before a straight section where a
higher speed could have been adopted. Instead, the participants had to restrain from
accelerating until they drove past this depressed patch. One could consider this as if the
participants were solving an optimization problem with an additional dimension of ver-
tical comfort. Furthermore, the human driver may tend to reduce input effort and keep
a lower physical workload and avoid fatigue. For example, they tend to leave the vehicle
coasting rather than control its speed precisely when the situation allows as no pedal in-
put would be needed. While this partly explains the cause of performance difference, it
does not make the potential improvement with AVs lessor because one should perceive
being prone to fatigue as another disadvantage of human drivers.

The NMPC-based controller for active suspensions mainly causes challenges when
refining the prediction model. An accurate description of system dynamics with the pre-
diction model is fundamental for the application of MPC techniques. This involves the
determination of both the types of dynamics (e.g., the dimension of the state space) and
the exact parameters. In this specific case, the prediction model captures the roll, pitch,
and heave motion of a rigid body subject to highly nonlinear suspension and damper
forces. The dynamics of the wheel carrier, which exhibits a higher natural frequency,
have been neglected for the sake of computational efficiency. It implies that the con-
trol quality is only ensured for high-quality pavement and is uncertain for situations
with more vertical excitation. Besides, the control performance could be sensitive to
the loading condition. The payload mass and its distribution across the vehicle would al-
most definitely be different from a fixed set of model parameters. Additional sensors and
algorithms may be necessary to estimate and adapt the parameters accordingly. It is an-
ticipated that the damper in a suspension assembly would have varying characteristics
throughout its lifespan. Such variations could be more difficult to estimate. Hence the
NMPC-based controller is considered still premature for production-level deployment.
This is combined with the higher cost of manufacturing the actuator and equipping the
vehicles with higher-performance computational hardware.

In Chapter 5, considerable potential in further coordinating the roll motion with a
motion planner has been suggested. The advantage is characterized by planar acceler-
ations due to the uncertainty in predicting motion sickness under combined motions,
especially roll and yaw rotations. Hence the reduction in overall acceleration does not
translate to the same amount of reduction in motion sickness. The realization of the
suggested improvement is challenging, too. The optimization problem solved by the
motion planner requires accurate knowledge of the road and does not consider inter-
actions with other road users. In practice, motion planners would more likely operate
in a receding-horizon fashion, using a limited preview distance and updating the mo-
tion plan for the constantly varying scenario. The performance deficit caused by this has
been presented in Chapter 3. Nevertheless, the 2-dimensional baseline used in Chapter
5 is given the same amount of information as the proposed method. The comparison
is still considered fair and could be useful in demonstrating the value of active suspen-
sion in automated vehicles. However, these results still do not justify whether the use of
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active suspensions should indeed be equipped on automated vehicles on a large scale.
The practical aspects including cost and energy consumption should be considered in
addition.

6.3. OPEN QUESTIONS AND FUTURE RECOMMENDATIONS
The dissertation has left a few questions inconclusive while raising more to be answered.
Recommendations are made based on the accumulated knowledge.

• How to characterize and evaluate the comfort-oriented driving performance of
human drivers? This question can be divided into smaller sub-questions includ-
ing but not limited to, what scenario can best expose the differences, what are the
suitable performance indicators, how the necessary data should be collected, and
what test facility and equipment should be used. Answering this question is nec-
essary not only for understanding human drivers but also for concretely demon-
strating the advantage of automated vehicles. It has been part of the goal of this
dissertation to provide such a demonstration and several options have been ex-
plored. However, more work still needs to be done for the standardization of driv-
ing performance evaluations. Specifically, data on the subjective rating of motion
comfort need to be collected for a wider range of scenarios and the typical pattern
of car usage should be considered. A wider spectrum of motion data should be
gathered and compared with the subjective rating in order to motivate the choice
of a performance indicator.

• How to distinguish motion comfort and motion sickness in subjective evaluations?
As shown in Chapter 3, optimizing for squared MSDV, an indicator of motion sick-
ness, led to very different motion profiles from optimizing for squared accelera-
tions, a motion comfort indicator. Presumably, acceleration- or jerk-based mo-
tion comfort indicators have an almost immediate effect on the subject. Motion
sickness has slower temporal dynamics on the other hand. A rise in nauseous feel-
ing could appear with a delay after certain motion inputs. For the participants of
a relevant experiment, especially if continuous measurement is used, it could be
difficult to identify if their current level of suffering is a result of direct discomfort
or motion sickness from sustained exposure. In contrast, if sampled measurement
is used, the participant may lose an accurate sense of discomfort that happened
some time ago. A better understanding of this question is important for the vali-
dation of any motion planning algorithm that claims to either improve comfort or
mitigate motion sickness.

• Is it worth attempting to minimize motion sickness and is it possible? There can
be two interpretations of the goal. It could mean either minimizing the severity
of motion sickness for an individual or minimizing the chance of anyone expe-
riencing motion sickness in a group. This dissertation has chosen an indicator
of motion sickness from the literature that is found to correlate with the severity
of motion sickness and used it as the objective of an optimization problem. The
reduction achieved in simulation is 11.3% compared with optimizing for accel-
erations. It could require a participant group of a considerable size to verify this
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reduction in an experimental study, given the significant individual variance in
motion sickness responses. It is probable that a more accurate motion sickness
prediction model could be used but the computational demand is highly prob-
able to be higher, too. It then poses more challenges when implementing such
algorithms on a real vehicle. The cost incurred by using expensive computational
hardware for running the more complex algorithm should be compared with the
potential gain in reducing motion sickness. It might be a more viable option to use
heuristic objectives instead that would result in a lower chance of motion sickness
without requiring an accurate prediction of motion sickness.

• Will active suspensions eventually be applied to automated vehicles on a large
scale? Chapter 5 has suggested an attractive improvement in acceleration comfort
with the coordinated planning of the roll motion enabled by active suspensions.
However, the concerns of excessive energy consumption remain less investigated.
Especially in the context of electrified mobility, users are typically more sensitive
to the consumption of auxiliary devices. Improving energy efficiency in active sus-
pension actuators is therefore of high priority. Besides, there is a risk of worse han-
dling quality of the vehicle which could compromise safety. For example, if the ve-
hicle was at a tilted attitude when an emergency evasion needs to be performed,
the imbalance in the wheel load distribution, excessive suspension extension, and
skewed wheel alignment could limit the vehicle’s friction potential and increase
the chance of losing stability. It is recommended to investigate the vehicle dynam-
ics quality at a larger roll angle in order to evaluate whether it is proper to perform
roll compensation on lateral accelerations with active suspensions, as well as how
the negative effects could be best overcome with corresponding control strategies.
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PROPOSITIONS ACCOMPANYING

THE DISSERTATION

1. It is wrong to presume that male drivers are more aggressive or female drivers are
more sluggish.
This proposition pertains to Chapter 2

2. Acceleration magnitude is the most recommendable motion comfort-related cri-
terion when designing and evaluating motion planning algorithms.
This proposition pertains to Chapter 3

3. Model predictive control with a complex prediction model cannot be widely im-
plemented in the automotive industry.
This proposition pertains to Chapter 4

4. Scientific disciplines are equally valuable but never equally valued.

5. Paper disposables such as straws and bags, only reduce people’s guilty feelings, not
their environmental impact.

6. Human beings are selfish as individuals and self-destructive as a group.

7. Personal achievements are largely attributed to luck rather than perseverance.

8. In the future, customers should always be given the option to buy a new car that is
categorized as SAE Level 0, i.e. with automation limited to warning and momen-
tary assistance 1.

9. This proposition will be forgotten.

1https://www.sae.org/standards/content/j3016_202104/
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